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Abstract The paper describes two approaches to determinism: one focuses on the
features of global objects, such as possible worlds or models of a theory, whereas the
other’s concern is the possible behaviour of individual objects. It then gives an outline
of an individuals-based analysis of the determinism of theories. Finally, a general
relativistic spacetime with non-isometric extensions is described and used to illustrate
a conflict between the two approaches: this spacetime is indeterministic by the first
approach but deterministic by the second approach.

Keywords Determinism and indeterminism · General relativity · Initial value
problem

1 Introduction: two traditions of thinking about determinism

There are two traditions of thinking about determinism, one centred upon individual
objects and the other centred upon an entire universe. The former tradition focuses on
relatively small objects or processes (that is, small if compared with the universe) and
asks if these objects or processes could evolve differently than they actually did. The
cloak story that Aristotle tells in De Interpretatione clearly exemplifies this way of
thinking: a given cloakmightwear out, but it could be cut upfirst, that is, beforewearing
out. As we deliberate whether or not the example argues in favour of indeterminism,
the data we look at are limited in space and time. It is of course the cloak that matters,
but some of its surroundings are relevant as well. Just think of a particular person who
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is a potential cutter, a knife, the particular material and weather conditions that make
cloth wear out in time, but also make it capable of being cut up. However large these
surroundings are, if compared to the cloak, we typically do not extend them to the
entire universe. That is, typically we are happy to limit the data for the determinism
question to a relatively small region of our spatiotemporal universe. This observation
applies as well to another great picture we owe to Aristotle, that of tomorrow’s sea
battle. Although armadas of military vessels, together with sailors, their commanders,
weather conditions, etc., occupy a relatively large area of the sea, this span is just a tiny
spatiotemporal region of our entire world. In some examples used in this tradition,
namely those involving human agents and their decisions, the data is even further
restricted—to a particular person, or more precisely, to some particular period in that
person’s life. In this vein, to illustrate future contingency andmotivate his three-valued
logic, Łukasiewicz (1961) invokes a certain Piotr, who may come to the Castle Square
inWarsaw tomorrow but as well may not come to the said location tomorrow.1 A clear
statement of this individuals-based approach to determinism is in Prior (1962, p. 59):2

[...] [I]t seems perfectly possible to say that some things, but not all things, have
alternative possibilities of reaction to one and the same stimulation. It is “open,”
we might say, to a disturbed electron to jump to orbit A, and equally open to it to
jump to orbit B, but perhaps not open to it to jump to orbit C . In other words, its
dispositions may be such that with certain provocations it will “jump to orbit A
or to orbit B” without having any determinate disposition to jump to orbit A, or
any to jump to orbit B. [...] Persons, say, have the power, without the necessity,
of doing X in certain circumstances; for oysters, on the other hand, doing X may
be necessary or impossible; and Y , say turning into a dragon, may be something
which no existing object has the power to do [. . .].

Judging by examples used in the literature, this local approach to determinism and
future contingents is a characteristic feature of theories of agencies andmodal logic, in
particular that branch of logic that investigates the combination of tense and modality.
Philosophers’ debates aside, it is this approach that is used in mundane and everyday’s
contexts, in science labs for instance. A chemistry student investigating a catalytic
reaction may wonder, seeing different outputs of seemingly the same process in sub-
sequent runs of her experiment: is the varying output due to the indeterministic nature
of the process, or to some differences in the reaction’s initial conditions in subsequent
runs of the experiment? In an attempt to clarify the issue, she focuses on local matters
of fact: is the catalyst, as well as other chemical substances used, sufficiently similar
in subsequent runs of the reaction? Are the temperature, pressure, concentrations, and
other relevant characteristics the same in all these runs? The universe and its possible
evolutions are not part of the equation.

The second tradition, one that centres upon most global notions like that of the
universe, world or history, is invariably linked to Laplace’s vision. In Laplace’s well
known metaphor, a super intelligence is capable of “seeing” the entire past and future

1 That paper consists of a much earlier text that was read as Łukasiewicz’s opening address as the Rector
of the University of Warsaw in 1922.
2 I am indebted to Jacek Wawer for drawing my attention to this paper.
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of the universe, thanks to its grasp of an instantaneous state of the Universe and its
knowledge of all of the forces acting in the Universe. After the removal of epistemic
overtones, signalled by words like “knowledge”, or “seeing”, the vision forms the
backbone of the current received analysis of the determinism of theories. The basic
intuition of this approach is that of “once similar, always similar”, that is, a theory is
deterministic iff whenever two models of the theory agree on their initial segments,
they agree as wholes. Tomake the idea precise, three notions are required, namely (iso-
lated) systems of a theory, models of a theory, and isomorphism (similarity) between
segments of a theory’s models. As for the first notion, one begins with asking what the
world would be like, if a theory considered were true. In addressing this question, one
considers systems that fall in the scope of a given theory, and assumes that such sys-
tems are isolated. To achieve the isolation, a theory’s system is viewed as completely
separate, as a (toy) possible world (cf. Butterfield 2005). As for the notion of models,
contrary to appearances, it should not be confused with models in the sense of logic.
However, in spacetime theories models can be identified with appropriate differen-
tial manifolds with some objects defined on them (cf. Earman 2008). The notion of
isomorphism is called for in order to clarify the basic intuition of the universe-based
approach that determinism means that the similarity of the initial segments of models
implies the similarity of whole models. Isomorphism needs to be a relation less strict
than identity since models can differ by merely some mathematical surplus structure,
while representing the same physical states.3 However, since theories are not under-
stood in this approach as formal theories, and a theory’s models are not simply models
in the sense of logic, isomorphism cannot be a standard notion as defined in logic [i.e.,
as a relation between models of a formal language, cf. Hodges (1993)]. One could
think perhaps of this notion as relative to the mathematical structure of a given theory:
given a mathematical structure of a theory, an appropriate notion of isomorphism will
be definable. An example is general relativity in which isomorphism is defined in
terms of diffeomorphism between smooth manifolds.4

Having introduced the required notions, we quote one formulation of the received
analysis of determinism:

Determinism is […] a matter of isomorphic instantaneous slices implying that
the corresponding final segments are isomorphic (where ‘corresponding’ means
‘starting at the time of the instantaneous slice’). That is: we say that a theory
is deterministic if, and only if: for any two of its models, if they have instanta-
neous slices that are isomorphic, then the corresponding final segments are also
isomorphic. (Butterfield 2005)

Drawing a distinction between the two notions of determinism (and indeterminism)
would be merely an exercise in pedantry if they agreed in their verdicts. But, emphat-
ically, they do not agree. In the next Sect. 2 we will discuss two cases, known from
the literature, in which the two approaches disagree. We will then sketch an analy-

3 This worry is not merely theoretical, since theories with gauge freedom (quite typical in physics) exhibit
exactly this feature.
4 For technical details of the received analysis of determinism as well as a survey of variants of this analysis,
see Müller and Placek (2016).
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sis of individuals-based determinism in Sect. 3. Next we will proceed in Sect. 4 to
a case little discussed in philosophical literature, that is, non-isometric extensions of
spacetimes of general relativity (GR). The case is classified as indeterministic by the
universe-based approach whereas the individuals-based approach yields the verdict of
determinism. The paper ends with Sect. 5.

2 On space-invaders and buckling columns

Although analyses of determinism that appeal to possible worlds or models of a theory
are dominant in the literature, there have been a few attempts to define determinism
in terms of the behaviour of individual objects. The motivation for these attempts was
provided by systems for which the received analysis of determinism deliver counter-
intuitive verdicts. We discuss below two systems of this sort, a system with a space
invader and a buckling column.

2.1 Space-invaders

What is referred to as a space-invader is a system of Newtonian gravitation whose
essence is quite simple: a particle does not exist before time t0 and at this time it
emerges from spatial infinity, and continues to exist afterwards. A system of this
sort is exemplified by Xia’s (1992) system of five masses interacting by the force of
Newtonian gravitation. Given specific initial conditions, one of these masses escapes
to spatial infinity at some (finite) time t0. Since the theory of Newtonian gravitation
respects the time-reversal symmetry, a system symmetrical to the above, that is, one
with thefifthmass emerging from infinity at time−t0, counts for a systemofNewtonian
gravitation.

Intuitively speaking, since before −t0 there is absolutely no factor indicating that
the particle will come to being, and if so, when this will happen, the system seems to be
indeterministic. Let us call the intuition underlying this sentiment an “indeterminacy
intuition”. In contrast to the indeterminacy intuition, if we focus on each individual
mass, we see that as soon as it exists, it does not exhibit any trace of having alternative
possible evolutions. Building on the indeterminacy intuition, one envisages many
alternative evolutions of the spatiotemporal universe. These evolutions share some
initial segment (one with four existent masses), but differ with respect to when the
fifth mass comes to being. Among these evolutions, there is also one with no fifth
mass ever. In contrast, the individuals-based approach invites one to posit just one
possible evolution, one in which the fifth mass comes to being at the specified time−t0
(remember that t0 is determined by the initial conditions of the systemwe startedwith).
The proponent of individuals-based approach thus refuses to read the indeterminacy
intuition as hinting at indeterminism, since no individual object of the system has
alternative possible evolutions.

It is controversial which of the two diagnoses ismore adequate, and this controversy
reflects, I believe, the fact that there are two notions of determinism at hand, and the
context of the debate does not indicate which one is to be to used.
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2.2 A buckling column

Abuckling column is a system that has some symmetry at an initial phase, and because
of that symmetry tends to be classified as deterministic by the received analysis of
determinism, whereas it seems to be indeterministic (intuitively speaking). This par-
ticular system is just an example of an initially symmetric system that can be used to
impugn Lewis’s (1983) analysis of determinism. A buckling column is a rotationally
symmetric system consisting of a slim column in a uniform gravitational field and
under a weight placed symmetrically on the column’s top. To emphasise the system’s
crucial features, its rotational symmetry is perfect and the weight is critically heavy,
i.e., the column cannot retain its shape, it must fall. Systems of this sort are studied in
the elasticity theory, see e.g., Al-taee (2010).

Objections to the received analysis of determinism are based on a perception
that (1) the column will buckle, and, because of the symmetry of its initial stage,
i.e., before the buckling, (2) the buckling can be in any direction. For a record, it
should be mentioned, however, that the first part of this diagnosis is not univer-
sally accepted. Given the perfect symmetry of the system before the collapse, it
might be argued that the symmetry should persist after the collapse, which means
that the column will not buckle but become symmetrically flattened by the weight
on its top. One might argue against this view by appealing to the elasticity theory.
Without actually solving the dynamical equation (i.e., by providing exact initial con-
ditions) for a given system, the elasticity theory investigates the form of the state
function of the column, asking how this function behaves, i.e., where its minima,
maxima, and saddle points are. The analysis of a buckling column in two dimen-
sions (such a column can buckle in one of only two directions) says that there
are two stable solutions for the column, identified with buckling in the two direc-
tions, and one unstable solution, identified with the symmetrical flattening of the
column.5 This result, however, allows for different interpretations. One interpreta-
tion claims that there are only two possible directions of buckling, classifying the
unstable solution as impossible. On an alternative interpretation, the stable solutions
are identified with solutions resulting from perturbed (i.e., slightly non-symmetrical)
initial states, an unstable solution—with the evolution developing from a perfectly
symmetrical initial state. This latter interpretation thus says that given the ideal
symmetry of the initial state, only one evolution, i.e., one without buckling, is possi-
ble.

It thus seems that to use the buckling column in an argument for inadequacy of
Lewisian analysis of determinism, we need to consider a world with physics slightly
different fromNewtonian gravitation, just different enough so that perfectly symmetric
columns buckle there.6 Then, the argument goes, by the symmetry of the column’s
pre-fall stage, there are plenty of such possible worlds, each containing a column
buckling in a (seemingly) different direction.

5 We mention the analysis in 2 dimensions, as it is mathematically tractable—cf. Rosales (2012).
6 This move is taken by Belot (1995).
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Now, Lewis’s definition as well as the received view, opt for a relation less stringent
than identity to match segments of possible worlds (or segment of a theory’s models).7

For the received view, the relation is that of isomorphism, and what this exactly means
depends on the mathematical structure of a theory at hand. Lewis prefers the relation
of “duplication” that is to be defined in terms of qualitative and “perfectly natural”
properties and relations. Given that he takes the latter to be discoverable by science,
there is little harm, I believe, in identifying his “duplication” with “isomorphism” of
philosophers of science.

Turning finally to the argument, consider two models (of a slightly changed New-
tonian gravitation), in which the column buckles in different directions. For the two
models to be a witness for indeterminism, they should be non-isomorphic but con-
tain isomorphic initial segments. Clearly, the initial, that is, pre-buckling, segments of
these models are isomorphic; are then the whole models non-isomorphic? Well, one
model is the transform of the other by a rotation over some angle. Naturally, the two
models must then be isomorphic. After all, if rotational symmetry did not count as iso-
morphism, what then would? Consequently, the column is classified as a deterministic
system.

A natural idea of how to improve on the received analysis of determinism, pursued
by Belot (1995), Melia (1999), and Sattig (2015), is to take into account possible evo-
lutions of individual objects comprising the system. The column may fall in different
directions, because in one possible scenario a particular individual object lands on
the top surface of a fallen column, and in another possible scenario—on the bottom
surface of the fallen column. A pair of models in which not one particle, but two parti-
cles, occupy the above “alternative” positions (one on the top, the other on the bottom,
surfaces of the fallen column) seems to be a wrong representation of the modal situ-
ation at hand. The feeling is that in such a case a global isomorphism relating whole
models betrays local isomorphism relating the initial segments, as the latter pairs the
particles that are not paired (identified) by the former. These ideas are translated into
this definition, due to Belot (1995):8

W is deterministic if, whenever W ′ is physically possible with respect to W , and
t , t ′, and f : Wt → W ′

t ′ are such that f is an [isomorphism] […], there is some
[isomorphism] […] g : W → W ′ whose restriction to Wt is f .

Thus, to prove that W is indeterministic, we need to find W ′ physically possible
with respect to W , times t, t ′, initial segments Wt , W ′

t ′ of W, W ′
t ′ , resp., and a local

isomorphism f : Wt → W ′
t ′ such that for every global isomorphism g : W →

W ′, f �= g|Wt . Let us thus see how this definition works in the case of a buckling
column. We would like to prove that any global isomorphism pairs constituents of the
two columns badly, i.e., identifies those constituents that a local isomorphism does not

7 Lewis’s (1983) reasons for rebuking the use of identity in this context are different from those of philoso-
phers of physics, though, and stem from his rejection of overlapping possible world in favour of the
duplication of possible worlds.
8 In the quote “duplication” is replaced by “isomorphism”, which may misrepresent Lewis’s idea, as
duplication might be seen as pairing both individuals and individuals’ states, whereas isomorphism is
concerned with individuals’ states only—see more about it later.
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identify. But we shall see that the argument does not go through—unless isomorphism
relates bare particulars.

Let symbols with a prime sign refer to objects in W ′, and symbols without a prime
sign—to objects in W . Letα(x) stand for a complete state, defined in terms of perfectly
natural properties and relations, of object x in the pre-fall stage Wt of W . Similarly, let
β(y) stand for a complete state of object y in the post-fall segment W \ Wt of W . To
draw attention to a state at a moment m of time, we will use subscript, like in αm(x).
And t and t ′ refer to moments of buckling in the respective models.

Onemight naturally want to take for f the identity, but this is excluded as theworlds
are not allowed to overlap. Since the pre-fall segments are rotationally symmetric, there
is freedom which object x should be paired with which object x ′ by the relation on
states, i.e., f (α(x)) = α′(x ′). After all, for every x1 that is the transform of x by some
rotation O�, α(x) = α(x1). (An analogous condition holds for states of constituents
of W ′.) It follows that f must preserve the rotational symmetry, in the following sense:

If f (α(x)) = α′(x ′), then for every x1 such that x1 = O�(x) for some angle
�, f (α(x1)) = α′(x ′).9

We thus pick an isomorphism f that preserves rotational symmetry; clearly, it pairs
point particles x and x ′ that lie on the side surfaces of the respective columns. Suppose
that in post-fall segments, x and x ′ land in different states in corresponding moments
m, m′, say, one is on the top surface, while the other—on the bottom surface, of the
fallen columns.10 Then for every global isomorphism g, g(βm(x)) �= β ′

m′(x ′). So,
whatever the global isomorphism g is, it must pair state βm(x) of x with a state of
some y′ that is not the same as x ′, i.e.,11

g(βm(x)) = β ′
m′(y′) where y′ �= x ′.

We would like to argue that not only for post-fall states, x and y′ are related as above,
but they are so related in the pre-fall segments. That is, to argue that g restricted to Wt

is not identical to f , i.e., g(αz(x)) �= f (αz(x)) for some moment z < t , we need:

g(αz(x)) = α′
z′(y′) for some corresponding moments z < t and z′ < t ′.

Note, however, that both x ′ and y′ lie on the side surface of the column in W ′, and
although in the post-fall segment they occupy alternative positions (top vs. bottom), in
the pre-fall segment they are related by some rotational symmetry, x ′ = O ′

�′(y′), so
at any moment z′ < t ′, their states must be the same, α′

z′(x ′) = α′
z′(y′). Accordingly,

we get:

9 One consequence of this condition is that point particles equidistant from the axis of one column will be
paired to point particles equidistant from the axis of the second column.
10 As the two columns fall in different directions, there must be some difference between x and x ′ in the
post-fall segments; for brevity we use the mentioned difference in location.
11 If x landed on the top surface, an isomorphism should relate it to some particle on the top surface as
well, so it cannot be x ′, as it landed on the bottom surface.
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g(αz(x)) = α′
z′(y′) = α′

z′(x ′) = f (αz(x)).

Thus, in contrast to the motivation underlying Belot’s definition, we obtained that
the restriction to Wt of any global isomorphism operative in the buckling column
example is identical to f , so the buckling column is, after all, deterministic. Has
anything gone wrong in the reasoning above? One construal of the duplication relation
(recall that Belot uses duplication rather than isomorphism) is that it affords the pairing
of objects in possible worlds that goes over and above quantitative descriptions of
these objects. Technically, the domain as well as the range of a duplication are, on this
construal, sets of constituents of possible worlds. Then it is immediate to see that in the
buckling column example, for some local duplication f , there is no global duplication
g that extends f . Just take f that pairs, by the formula f (x) = x ′, objects x and x ′
that in the post-fall segments land on the opposite sides of the fallen columns (top vs.
bottom). Any global duplication must thus relate x (on the top of the first column)
with some y′ �= x ′ (on the top of the second column), i.e., g(x) = y′. Since y′ �= x ′,
it is not the case that g|Wt = f .

In order for the relations of duplication or isomorphism to do the required job in
the discussed definition of determinism, they need to relate bare particulars. I take this
as an argument against the definition. Now, in contrast to the motivation underlying
this definition, individual objects are little present in it, as the job is done by local
and global isomorphisms (duplications). Shouldn’t thus individual objects themselves
play a more distinctive role in an analysis of determinism? A firm step in this direction
that avoids reference to duplications or isomorphisms, is Sattig’s (2015, p. 5) notion
of “Strong Qualitative Determinism”:

A possible world w is deterministic iff for all times t , and for all objects x in
w, there is no object in any possible world with the same laws of nature as w,
which matches x in its qualitative description up to t , but which does not match
x in its total qualitative description.

Applying this definition to the buckling column, possible worlds with buckling
columns that we discussed have the same laws of nature. Let us focus on one such a
world, and pick there a particle x on a column’s surface that ends up on the bottom
surface after the fall. It is easy to think of another world and a particle in it whose
qualitative description before the fall matches the qualitative description of x before
the fall, but which does not land on the bottom surface after the fall. The definition
thus yields a verdict of indeterminism for the buckling column.

Sattig’s analysis still appeals to a Lewisian picture of non-overlapping worlds, so
to decide on determinism two objects are needed, each inhabiting a different possible
world, rather than just one object. This appeal to two objects is not natural—typically,
one relates indeterminism to one object facing alternative possible future continua-
tions.Moreover, this intuitionfinds support in the treatment of the initial value problem,
which is the main source of information on the determinism and indeterminism of the-
ories of physics. One reason that the initial value problem is not well-posed is that for
given initial conditions there is more than one solution to a theory’s basic equations.
These are solutions for one system and they diverge despite being identical for some
arguments, which invokes an image of branching. In what follows we will thus opt for
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a branching-style version of Sattig’s analysis, in which one and the same individual
object faces alternative evolutions, and accordingly, possible worlds overlap. But it is
worth noting that Sattig’s analysis as well as our approach give similar diagnoses of
our main example, the non-isometric extensions of a GR spacetime.

3 An outline of individuals-based determinism

To sketch our individuals-based approach to the determinism of scientific theories, we
begin with an observation that a theory typically comes with a verdict regarding what
its individual objects are (individual objects are somewhat localised in space and time,
are bearers of states, and stand in relations to themselves and other entities posited
by the theory). Since some theory may admit no individual objects, a verdict might
be purely negative. In some cases, the question of what are individual objects is not
resolved by a theory itself, but left for the theory’s interpretations.

Having the notion “individual objects admitted by a theory, under a given interpre-
tation” we ask next how a given theory describes the evolution of the individual objects
it admits. Is an object’s evolution unique in the whole time considered? Or perhaps, it
is unique but only locally, that is, in an arbitrary small neighbourhood around each set
of allowable initial conditions, but globally non-unique? Or does the uniqueness of
evolutions fail already at the local level? These questions might turn out to be daunt-
ingly hard, but one does not need anything over and above the mathematical apparatus
of a theory to address them. In the spirit of the individuals-based approach, as the
first approximation, a theory is judged deterministic if each individual object it admits
is described by this theory as having a globally unique evolution for each allowable
set of initial conditions. Otherwise, the theory is judged to be indeterministic. Note,
however, that a final analysis needs to take into account the fact that multiple evolu-
tions of states admitted by a theory does not necessarily mean multiple evolutions of
“real” states, as the relation between states posited by a theory and “real” states might
be many-to-one. Thus, only multiple and dissimilar evolutions count as evidence for
indeterminism. The notion of dissimilarity is to be explained in terms of a theory’s
gauge freedom, which is an issue decided by a theory (or a theory’s interpretation).

The determinism question, as described above, looks very much as one for prac-
titioners to decide, since they know the mathematical details and interpretational
subtleties of a theory best to address the question of the uniqueness and the existence
of solutions to the theory’s basic equations. From the perspective of the philosophy
of science, however, this description of determinism is still off the mark: we have not
provided a semi-formal analysis of the determinism of theories that could be applica-
ble to all, or most, scientific theories. It is this task that philosophers of science strive
to achieve, and to which we now turn.

The definition of the determinism of scientific theories that is tailored to accommo-
date the possible behaviour of individual objects is that of Müller and Placek’s (2016);
here we only describe its essential ingredients, referring the reader interested in the
technical details to the aforementioned paper. Recall that in the received analysis of
determinism, the crucial notion is that of the model of a theory. What is needed in
the present approach is its analogue, the modal representation of a system of a theory.
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A distinctive feature of the present approach is that it requires a means to represent
alternative possible evolutions of an individual object (as well as of the entire world),
as conceived by a theory at hand. Such a means—a modal representation of a theory’s
system—is thus modally thick, if the theory considered allows for alternative possible
evolutions, i.e., by having multiple dissimilar solutions to its basic equations (for the
same initial conditions). Consequently, a theory’s indeterminism is an internal feature
of its modal representation. This is in stark contrast to the received view on determin-
ism, as the notion of models it uses is modally thin: a model is not capable, on its own,
of representing alternative possibilities; determinism (and its negation) are features of
a class of models rather than of a single model.

A choice of a modally thin concept of model over a modally thick concept of
modal representation is driven bymetaphysical preferences. The choice reflects the old
debate between Humeans and anti-Humeans: does the world, or a model of the world,
comprise only those things that actually happen, or does it accommodate things as well
that might have happened, ormay happen in the future? I surmise that for a full-fledged
notion of indeterminism, one needs real possibilities; hence modal representations
offer a more adequate format than modally thin models.12

What is then amodal representation of a systemof a given theory? In essence, it is the
set of (overlapping) dissimilar solutions to the theory’s basic equations, for a system of
that theory. Accordingly, if a theory permits just one solution for a system considered,
its modal representation contains only one solution. But a modal representation can
contain many overlapping solutions. For an example, consider the system of Norton’s
(2008) dome, which is a point mass located on the top of a particularly shaped dome,
in a uniform gravitational field. The system’smodal representation is constructed from
the set of functions rb : � → �, b ∈ �+ ∪ {∞}, each representing the point mass’s
position in time, as being on the top of the dome till time b, and sliding down its slope
after b.13 In the the construction, the set of solutions for the system is redescribed,
with the aim of disclosing two features: (1) the ordering inherent to the spatio-temporal
(temporal) and modal structure of the solutions, and (2) the assignment of states. In
the example of Norton’s dome, the resulting ordering is a tree-like partial ordering
of possible moments of the system (aka branching-time, BT),14 and the assignment
relates possible moments to positions of the point mass [for details, see Müller and
Placek (2016)].

The ordering part of a modal representation depends on the kind of theory con-
sidered. For all non-relativistic theories, it is the BT ordering. Special relativity and
some GR spacetimes require the ordering of branching spacetimes, [BST, see Belnap
(1992)]. In general, GR spacetimes (including those with closed time-like curves)
seem to call for a “patch-wise” BST ordering that I investigated in Placek (2014).

12 For a discussion of modal notions, and Humean notions, of determinism, see Placek et al. (2014).
13 Observe that a system’s description which require the point mass to be on the dome’s top since −∞
in time makes all the solutions with b �= ∞ similar, as they all are related one to the other by the time-
translation symmetry. A different description of the system does not imply the time-translation symmetry,
however.
14 “Tree-like” means that the ordering has a single trunk and there is no backward branching, i.e., (x �
z ∧ y � z) → (x � y ∨ y � x).
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The definition of determinism is particularly simple if the ordering part of modal
representations is BT [this option is explored in detail in Müller and Placek (2016)].
Maximal chains ofmoments (i.e., of simultaneity slices) are taken formaximalmodally
consistent subsets of the ordering, and interpreted (after an assignment of states) as
possible histories. A modal representation is said to be indeterministic iff it contains
more than one possible history. A theory is indeterministic iff some system of that the-
ory has an indeterministic modal representation. Once a concept of modal consistency
for other relevant orderings (i.e., other than BT) is agreed upon,15 the above definition
carries over to theories with modal representations that are not based on BT.

Reflecting on the above analysis, to claim the indeterminism of a modal represen-
tation, in its ordering part one needs to find what Placek et al. (2014) called a “modal
fork”, i.e., a fork whose arms are contained in alternative histories. A modal fork thus
signals alternative possible evolutions. In a search for cases of individual-based inde-
terminism, one needs thus to attend to modal forks resulting from the behaviour of
individual objects. The recipe will not work for theories, the modal representation of
which involves the BT ordering, since BT is too frugal to capture the world’s spatial
aspect, and hence cannot represent individual objects.

4 A GR system: indeterministic universe-wise but deterministic
individuals-wise

Weare nowabout to show that the distinction between universe-based determinism and
individuals-based determinism matters: we will exhibit a GR system that is indeter-
ministic universe-wise by the received analysis, but is deterministic individuals-wise.
The problem is known as non-isometric extensions of GR spacetimes. In philosophical
literature non-isometric extensions of some GR spacetimes were described in Earman
(1995) and Belot (2011); the latter takes them as evidence for indeterminism of GR.

4.1 Technical prerequisites

Let us review the required terminology.16 An n-dimensional GR spacetime is a pair
〈M, gab〉, where M is a connected n-dimensional Hausdorff manifold (without bound-
ary) that is infinitely differentiable (smooth) and gab is a smooth, non-degenerate,
pseudo-Riemannian metric of Lorentz signature (+,−, . . . ,−) defined on M . Man-
ifold M is Hausdorff iff it satisfies the Hausdorff property, which says that for every
pair 〈x1, x2〉 of distinct points in M there are non-overlapping open subsets O1 and
O2 of M such that xi ∈ Oi (i = 1, 2). It is said that two spacetimes 〈M, gab〉 and
〈M ′, g′

ab〉 are isometric if there is a diffeomorphism (smooth bijection) ϕ : M → M ′
such that the induced pull-back function ϕ∗ satisfies ϕ∗(g′

ab) = gab. A spacetime
〈M ′, g′

ab〉 is an extension of 〈M, gab〉 if there exists an embedding Λ : M �→ M ′ (i.e.,

15 For a discussion of various relevant concepts of modal consistency, see Müller (2014).
16 Explanations of the mathematics of GR can be found in mathematically-oriented books on GR, like e.g.,
Malament (2012).
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Λ is a diffeomorphism onto its image) and Λ∗(g′
ab |Λ(M)) = gab and Λ(M) �= M ′.

A spacetime is maximal iff it has no extension.
With each point p ∈ M there is an associated vector space, aka tangent space, Mp,

on which gab induces a cone structure, so that each vector ξa ∈ Mp is either timelike,
or null, or spacelike. Time-orientable spacetimes permit a distinction between future
and past lobes of light-cones; technically, a time-orientable spacetime has a continuous
timelike vector field on “its” manifold.

A smooth curve γ : I → M (where I is an open interval of �) is timelike (resp.,
spacelike, or null) iff its tangent vector ξa at each point in γ [I ] is timelike (resp.,
spacelike, or null). A curve is causal if its tangent vector at each point is either null
or timelike. A curve is inextendible iff it has no endpoints. A geodesic in a spacetime
〈M, gab〉 is a curve γ : I → M that satisfies, for every vector ξa ∈ Mp (p ∈ γ [I ])
tangent to the curve the condition ξa∇aξb = 0, where ∇a is the (unique) derivative
operator compatible with gab. For any set S ⊆ M , the domain of dependence of S,
written D(S), is the set of points p ∈ M such that every inextendible causal curve
through p intersects S. S is an achronal subset of M iff no two points in S can be
joined by a timelike curve.

4.2 Determinism and the initial value problem in GR

Weneed now to explain how non-isometric extensions of a GR spacetime are related to
the determinism question. The determinism question presupposes a notion of a system
evolving in time. This latter notion is typically not well-defined in general relativity,
as usually a GR spacetime does not come with a distinguished time. Yet, a somewhat
similar issue can be considered in GR: suppose we are given a 3-dimensional space
with possibly some data on it. (Technically it is a manifold with a metric “‘appropriate
for space”, i.e., a Riemannian metric). The question now is: can this space be uniquely
extended to a 4-dimensional spacetime, i.e., to a manifold with the Lorentzian metric
that satisfies the properties required from a manifold representing a GR spacetime
(listed above), and in which Einstein field equations (EFE) hold? The answer crucially
depends on the kind of data assumed on the space and on the properties the sought-for
spacetime is supposed to have. As for the latter, the relevant factors is the existence
of a matter field, and (if it is assumed to exists) the kind of model for the matter field;
another issue is the occurrence of the cosmological constant in EFE. However, given
the extension problem we will consider, a simple case is enough for our purpose. We
focus upon spacetimes with a vanishing Ricci tensor, the so-called vacuum spacetimes
and consider EFE without the cosmological constant. A satisfactory data for this case
consists of a Riemannian metric g̃ and symmetric covariant 2-tensor k̃ that represents
incremental changes of the metric in the direction normal to 	. In this case the initial
value problem amounts to constructing a 4-dimensional manifold M with a Lorentz
metric g and an embedding i : 	 → M such that if k is the second fundamental form
on i(	) ⊂ M , then i∗(g) = g̃ and i∗(k) = k̃, where i∗ is the pull-back function
induced by embedding i . Further, there is a set of equations relating g̃ and k̃, known as
(vacuum) constraint equations, which guarantee the satisfaction of EFE in a sought-
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for spacetime. Space 	 with the tensors g̃ and k̃ that satisfy the (vacuum) constraint
equations are said to form a (vacuum) initial data set 〈	, g̃, k̃〉.

A result that is highly relevant to the initial value problem in the vacuum case
has been obtained by Choquet-Bruhat and Geroch (1969) in the context of globally
hyperbolic spacetimes. A hyperbolic spacetime has particularly nice causal properties.
To recall, 〈M, gab〉 is said to be globally hyperbolic iff there is an achronal subset
S ⊆ M , whose domain of dependence is the whole spacetime. One consequence
of this definition is that a globally hyperbolic spacetime can be foliated by Cauchy
surfaces (though the foliation is non-unique). Choquet-Bruhat and Geroch restrict
their attention to globally hyperbolic spacetimes that could be developed from a given
vacuum initial data set which (1) are vacuum solutions to EFE and (2) such that the
image of space 	 by the embedding is a Cauchy surface in 〈M, g, k〉. A spacetime
satisfying these conditions is called a “vacuum Cauchy development” (VCD) of the
initial data set. Note that condition (2) above implies that VCD is a globally hyperbolic
spacetime. The theorem says:

Theorem 1 Let 〈	, g̃, k̃〉 be an initial vacuum data set. Then there is a unique, up to
isometry, maximal VCD 〈M, g, k〉 of 〈	, g̃, k̃〉.
The phrase “unique up to isometry maximal VCD” means that if there is another
maximal VCD 〈M ′, g′, k′〉 of the same initial data set, then there is a time-orientation
preserving isometry ϕ : M → M ′. Thus, taking isometry for an identifier of vacuum
spacetimes of GR (which is a typical move), the result ensures the uniqueness of
maximal globally hyperbolic spacetimes compatible with vacuum initial data sets.

There has been a considerable controversy of how to interpret this theorem,which is
directly related to the so-called Strong Cosmic Censorship Conjecture (SCCC). After
all, the theorem concerns globally hyperbolic developments only: it puts no restrictions
on other developments of an initial vacuum data set. This raises the question whether a
maximal globally hyperbolic development of an initial data set can be further extended
(of course, the resulting extension cannot be globally hyperbolic). SCCCaddresses this
question, claiming that “for generic initial data to Einstein’s equations, the maximal
globally hyperbolic development has no extension”. (Ringström 2009, p. 188).17

Non-globally hyperbolic spacetimes of GR typically involve causal anomalies,
like closed timelike curves (CTC’s); one might thus think, and this thought is the
content of one interpretation of SCCC, that non-globally hyperbolic developments
of initial data sets are not physical. An alternative interpretation of SCCC, and one
used in recent research of the initial value problem in GR (cf. Ringström 2009) is
that the non-globally hyperbolic developments of initial data sets are rare, in some
measure-theoretical sense, with a measure defined on the space of relevant solutions
to EFE. Without entering here a voluminous debate on SCCC, we opt for the latter
interpretation, as there is arguably no data supporting non-physicality of the discussed
solutions. In a slogan, “rare” does not mean “unphysical”.

The Choquet-Bruhat and Geroch theorem has a consequence that evidence for
indeterminism of GR (if there is one) in the vacuum case must consist of multiple
non-isometric extensions of a maximal globally hyperbolic vacuum spacetime. By

17 The idea of SCCC is due to Penrose (1969); since then it has received many formulations.
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this theorem, an initial vacuum data set has a unique (up to isometry) maximal VCD,
i.e., a maximal globally hyperbolic spacetime satisfying EFE. Thus, if this initial data
set has multiple non-isometric developments satisfying EFE, these development must
be non-isometric extensions of the maximal VCD determined by the data set. The
problem of the determinism of GR (at least one related to the initial value problem)
boils thus down to whether some maximal globally hyperbolic spacetime (satisfying
EFE) has multiple non-isometric extensions (satisfying EFE).

4.3 Non-isometric extensions of Taub spacetime

We will describe below the construction of multiple non-isometric extensions of Taub
spacetime. Our discussion is based on the paper of Chruściel and Isenberg (1993),
which investigates aswell amore realistic class of spacetimes, polarisedGowdy space-
times, that have multiple non-isometric extensions. But since they are mathematically
more demanding, we do here a simpler case of extensions of Taub spacetime.

Taub spacetime is a vacuum solution to EFE; the manifold is M = (t−, t+) × S3

and metric g is given by

ds2 = −U−1dt2 + (2l)2U (dψ + cos�dϕ)2 + (t2 + l2)(d�2 + sin2 �dϕ2),

where and m and l are real positive constants, �, ϕ and ψ are Euler coordinates on
the 3-sphere S3, t± = m ± (m2 + l2)1/2, and

U (t) = (t− − t)(t − t+)

l2 + t2
.

Note that U (t±) = 0, and hence the metric is not defined at t±. Taub spacetime
is globally hyperbolic and maximally so, the Cauchy surfaces being identified by the
condition t = const for t ∈ (t−, t+). AsNewman, Tamburino andUnti (1963) showed,
by using appropriate coordinate transformations 〈M, g〉 can be extended above t+, the
result being two non-hyperbolic spacetimes 〈M↑+, g↑+〉 and 〈M↑−, g↑−〉, known as
Taub-NUT spacetimes. In a similar vein, Taub spacetime can be extended below t−
into two non-hyperbolic spacetimes 〈M↓+, g↓+〉 and 〈M↓−, g↓−〉. Each 〈M↑+, g↑+〉,
〈M↑−, g↑−〉, 〈M↓+, g↓+〉, and 〈M↓−, g↓−〉 satisfiesEFEand contains closed timelike
curves in the region new with respect to M . As showed by Chruściel and Isenberg
(1993), the pair M↑+, M↑− and the pair M↓+, M↓− are isometric.

To produce non-isometric extensions of Taub spacetimewe need to glue together an
upward extension together with a downward extension of Taub spacetime. “Gluing”
means, inmathematical parlance, finding an equivalence relation≡ on the union of two
manifolds, say M↓+∪M↑−, and then taking the set of equivalence classes with respect
to this equivalence relation. The result is the quotient structure (M↓+ ∪ M↑−)/ ≡.

Consider now four results of the gluing [for the equivalence relation used, consult
Chruściel and Isenberg (1993, p. 1619)]:

Mab = (M↓a ∪ M↑b)/ ≡, where a, b ∈ {−,+},
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each result being associated to metric gab, defined in terms of g↑a and g↓b. Each
〈Mab, gab〉 is a non-hyperbolic extension of Taub spacetime 〈M, g〉 and it satisfies
EFE. As for isometries, there are the following results (1993, Theorem 3.1):

1. 〈M+−, g+−〉 is isometric to 〈M−+, g−+〉.
2. 〈M++, g++〉 is isometric to 〈M−−, g−−〉;
3. yet, 〈M−−, g−−〉 is not isometric to 〈M−+, g−+〉, and
4. 〈M++, g++〉 is not isometric to 〈M+−, g+−〉.
The above non-isometric extensions of Taub spacetime provide evidence for inde-

terminism in the sense of Butterfield’s (1989) definition of determinism, which is a
universe-based analysis, tailored to applications to GR. It says:

A theory with models 〈M, Oi 〉 is S-deterministic, where S is a kind of region
that occurs in manifolds of the kind occurring in the models, iff: given any two
models 〈M, Oi 〉 and 〈M ′, O ′

i 〉 containing regions S, S′ of kind S respectively,
and any diffeomorphism α from S onto S′:
if α∗(Oi ) = O ′

i on α(S) = S′, then:
there is an isomorphism β from M onto M ′ that sends S to S′, i.e. β∗(Oi ) = O ′

i
throughout M ′ and β(S) = S′.

Here Oi stand for geometric object fields that either are definable in terms of a space-
time’s metric, or characterise the matter fields of the spacetime. In our (vacuum) case
the definition simplifies considerably, since in the absence of objects not definable in
terms of a metric, the notion of isomorphy coincides with that of isometry, thus β can
be an isometry and the condition on α∗ above concerns only objects defined in terms
of a metric.

To check that the definition yields the verdict of indeterminism of GR, note
that spacetime 〈M++, g++〉 contains region S++ = �++[M], and spacetime
〈M+−, g+−〉 contains region S+− = �+−[M], where �ab : M → Mab is an
embedding, which ensures that 〈Mab, gab〉 is an extension of 〈M, g〉. For diffeo-
morphism α we take α = �+−(�++)−1 : S++ → S+−. Then the push-forward
α∗ induced by α satisfies α∗(g++) = g+− (by the condition on embedding), and
hence—α∗(Oi ) = O ′

i for any object field defined in terms of the metric. On the other
hand, however, 〈M++, g++〉 and 〈M+−, g+−〉 are not isometric, by Chruściel and
Isenberg’s result quoted above. It follows that GR is indeterministic.

Let us next turn our attention to the evolution of individual objects (mass-less and
massive particles) in GR. A notion relevant to a particle’s evolution in GR is that
of (null or timelike) geodesics, which are explained as trajectories of unaccelerated
probe particles. Here “probe” means that the particles do not alter the geometry of the
spacetime they move in. By EFE, a particle’s motion is governed by the spacetime’s
metric, but the metric is influenced by the particle’s motion as well. However, the
influence of probe particles on the spacetime’s metric is assumed to be negligible; the
probe particle is thought of asmoving in the background (independent of it)metric. But
what are the trajectories of “real” particles in GR? A dominant tradition, going back
to Einstein and Grossmann (1913), assumes that particles of sufficiently small mass
and size move along geodesics. The tradition is supported by topological theorems
to the effect that, given certain idealisations are assumed, the particle moves along a
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geodesic. A theorem to this effect is in Ehlers and Geroch (2004); the paper also gives
reference to earlier results of this sort.18 In what follows, we thus consider a Taub
spacetime inhabited by only such particles that satisfy the required idealisations. In
this case all individual objects can be safely assumed to move along geodesics.

Suppose thus that a photon moves along a null geodesic in Taub spacetime. This
spacetime has two non-isometric extensions, 〈M++, g++〉 and 〈M+−, g+−〉. What
happens to the photon as it leaves the initial region? That is, what does the photon’s
geodesic look like as the photon leaves Taub spacetime and proceeds to a new region
of one of the two extensions? The answer is that there are two classes of null geodesics
in Taub spacetime; geodesics of the first class are completed in one extension and geo-
desics of the other class—in the second extension [cf. Hawking and Ellis (1973, pp.
170–178) and Chruściel and Isenberg (1993, Lemma 3.2)]. Thus, the photon’s evolu-
tion appears predestined: depending on which class the photon’s geodesic belongs to,
it will continue to one extension or the other.

One can get a better insight into the case at hand by considering the modal repre-
sentation of the extensions of Taub spacetime. To obtain this modal representation,
one glues together all 〈Mab, gab〉 (a, b ∈ {−,+}) into non-Hausdorff manifold
M̃ = 〈M++ + M+− + M−+ + M−−〉; each 〈Mab〉 comes out as a Hausdorff sub-
manifold of it.

A photon traveling through the image of Taub spacetime in the modal represen-
tation M̃ moves along a null-geodesic. If it has two possible evolutions, say to (the
images of) M++ and M+−, respectively, its geodesic must split, one path continu-
ing in one extension and the other in the second extensions. That is, for the photon’s
indeterministic evolution, there should be two geodesics that coincide in a region of
(the image of) Taub spacetime, but then continue separately, each in the (image of) of
different Mab. Note that the fact that two geodesics coincide in a region implies that
the geodesics intersect at a point and their tangent vectors at that point agree.

Can such bifurcating geodesics occur in a Hausdorff manifold (or in a non-
Hausdorff manifold)? The following relevant fact obtains in a manifold (Hausdorff or
not), equipped with a metric:

Fact 1 If a metric g is appropriately continuous, given a point p and a vector at this
point, in some neighbourhood of p there is a unique geodesic that passes through the
point and whose tangent at this point coincides with the vector.19

Note that the fact concerns only the local existence and uniqueness of a geodesic.
However, for a Hausdorff manifold M , this local result can be strengthened to a global
property: given the continuity condition on g, a point p ∈ M and a vector ξ at p,
there is a unique maximal geodesic γ : I → M such that (1) γ (0) = p and (2)
γ̇ (0) = ξ , where γ̇ (0) stands for a tangent to γ at point p = γ (0). Maximality of
γ means that if there is some other geodesic γ ′ : I ′ → M satisfying conditions

18 Of course, a direct way to learn a particles trajectory is to find an exact solution to a (relevant ) problem
of motion of GR, yet there are only very few exact solutions of this kind.
19 See e.g. Chruściel (2011, p. 6). Typically, a metric of a GR spacetime meets the mentioned continuity
requirement. For examples of metrics that do not satisfy it and accordingly generate non-unique bifurcating
geodesics, see (Chruściel 1991, Appendix F).
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analogous to (1) and (2) above, then I ′ ⊆ I . In sum, (given the continuity assumption
on g), no geodesics can bifurcate inHausdorffmanifolds, but non-Hausdorffmanifolds
might be conductive to bifurcating geodesics. One might thus hope that in the non-
Hausdorff modal representation M̃ there is room for bifurcating geodesics, and hence,
for alternative possible evolution. This hope is to be shattered.

To begin, since Taub spacetime (and hence its image by an isometry) is Hausdorff,
a photon’s geodesic in (the isometric image of) Taub spacetime is unique. Thus, if a
bifurcation occurs, it must occur on a boundary between (the image of) Taub space-
time and the new regions of the extensions. What should this boundary look like to
enable bifurcation? The answer is related to a failure of the Hausdorff property: for this
to be possible, as the photon approaches the boundary, its geodesic should approach
a non-Hausdorff pair of points, (i.e., a pair witnessing the non-Hausdorffness of the
manifold), such that each point of the pair belongs to the new region of a differ-
ent extension. More technically, in the modal representation, the intersection of the
geodesic with (the image of) Taub spacetime should not have a supremum; rather
there should be two (or more) minimal elements of the set of its upper bounds—these
elements are witnesses for non-Hausdorffness.

Now, the surprising feature of the construction of Taub-NUT extensions (shared
by constructions of Misner extensions or extensions of a polarised Gowdy spacetime)
is that no geodesic approaching the boundary faces a non-Hausdorff pair of points.
There is no bifurcation of geodesics, accordingly. One may wonder where are these
non-Hausdorff pairs located in the modal representation for the extensions of Taub
spacetime? To hint at a diagnosis, consider two geodesics traveling through (the image
of) Taub spacetimes towards different extensions. (We know from the above that in
these circumstances they can cross at a point but cannot coincide over an extended
interval.) As such geodesics cross the boundary between Taub spacetime and the new
region of a respective extension, they define two points. Now, no matter which two
geodesics of this sort one takes, they define the pair of points that is a non-Hausdorff
pair. Thus, in order to have a non-Hausdorff pair, we need to consider two geodesics
separated, rather than coinciding in Taub spacetime. But such non-Hausdorff pairs are
not conductive to bifurcation.20

To sum up, no photon’s geodesics can bifurcate in the modal representation of the
extensions of Taub spacetime. This result carries over to all massless and massive
particles. Since geodesics in the modal representation represent possible evolutions
of individual objects, no individual object in Taub spacetime has multiple alternative
possible evolutions that consist in traveling to non-isometric extensions of that space-
time. Accordingly, Taub spacetime together with its non-isometric extensions is not a
case of individuals-based indeterminism.

Arguably, the same verdict can be reached by Sattig’s definition of “Strong Quali-
tative Determinism” (see Sect. 2.2), provided that an object’s qualitative description is
encoded by the object’s geodesic. For possible worlds we take extensions 〈Mab, gab〉
of Taub spacetime. We focus on a given 〈Mab, gab〉 and pick a particle x in the image

20 One may further wonder how non-Hausdorff pairs so peculiarly located emerge. The answer is that the
manifolds considered are constructed as quotient structures of some auxiliary manifolds with respect to an
equivalence relation resulting from a problem’s symmetry, cf. Hawking and Ellis (1973, pp. 170–173).
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�ab(M) ⊂ Mab of Taub spacetime. The qualitative behaviour of x in�ab(M) is given
by its geodesic γ . Suppose now that in some other extension Ma′b′

there is a particle,
which behaves in �a′b′

(M) ⊂ Ma′b′
exactly like x in �ab(M). This means that its

geodesic γ ′ in the image of Taub spacetime must coincide with geodesic γ of x in
the respective image of Taub spacetime. In mathematical parlance, (�ab)−1[γ ] and
(�a′b′

)−1[γ ′] must denote one and the same geodesic in M . As we argued above, this
geodesic in M has a unique maximal extension, and this extension belongs to just one
extended spacetime 〈Mab, gab〉. Thus, there are no two particles, each belonging to a
separate extended spacetime, whose qualitative descriptions match in (corresponding
images of) Taub spacetime, but do not match elsewhere.Thus, as far as the extensions
of Taub spacetime go, GR is Strongly Qualitatively Deterministic.

5 Conclusions

We described two traditions of thinking about determinism and indeterminism: the
dominant tradition analyses these concepts in terms of global notions, like possible
worlds or models of a theory, whereas the minority view defines them in terms of the
possible behaviour of individual objects. We revisited a clash between these traditions
that issued in the context of analysing systems whose initial segments are symmet-
ric: counterintuitively such systems are diagnosed as deterministic by the dominant
approach. We described how, by paying attention to possible evolutions of individual
objects, the minority approach attempted to deliver an opposite verdict.

Next we provided an outline of an analysis of individuals-based determinism, the
essence of which is the concept of modal representation of a system of a given theory.
The modal representation for a given system contains multiple solutions (for fixed
initial conditions) to the theory’s basic equations, if there are such multiple solutions.
An important structure, as it signals the presence of alternative possible evolution, is a
modal fork. A theory is said to be indeterministic iff the modal representation of one of
its systems contains amodal fork, otherwise a theory is said to be deterministic. Further,
a theory is indeterministic individuals-wise iff a modal fork in a modal representation
of that theory is due to the behaviour of an individual object admitted by the theory.

Finally, we exhibited a case from current physics, in which the universe-based
approach and the individuals-based approach deliver opposite verdicts concerning
determinism. The non-isometric extensions of Taub spacetime are viewed as indeter-
ministic by the received (universe-based) approach, but, since no individual object has
alternative possible evolutions in this system, the system is judged as deterministic by
the individuals-based approach.

With this clash of verdicts in sight, imagine Laplace’s demon residing in Taub
spacetime. As it looks to the future, the demon perceives two dissimilar possible
extensions of the spacetime. The demon realises that no matter how much it knows
about Taub spacetime (in which it resides), it cannot learn which of these extensions
will come to pass. The demon concedes that “the future is not present before its eyes”,
that is, Taub spacetime is indeterministic. Next the demon turns to small objects in
Taub spacetime, all those little guys, photons, protons, cloaks, ships, sailors and the
like. As the spacetime has multiple extensions, some individual objects should face

123



Synthese (2019) 196:11–30 29

multiple evolutions, like the cloak from Aristotle’s story that might be cut up as well
as wearing out first. The demon contemplates the physics of Taub spacetime and
its extensions and learns that, given the position and the speed of each object, the
object has exactly one possible evolution. No individual object faces multiple possible
evolutions. Aristotle’s cloak does not fit Laplace’s demon.
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