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Highlights 

• Covalent chemistry was performed in an ion mobility/mass spectrometer (IM/MS). 

• The effects of various parameters on the extent of reactions was observed. 

• Angiotensin I and ubiquitin were covalently labeled in the gas-phase. 

• Ion/ion reactions modify ions with solution-like conformations.  
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Abstract 

The traveling wave trap cell of a commercial ion mobility mass spectrometer (IM/MS) was used 

as a gas-phase reactor for covalent chemistry by making a simple modification to a standard 

nanoelectrospray source. Reagents and analytes were generated from pulsed opposite polarity 

nanoelectrospray sources and isolated by their m/z prior to reaction. Covalent bond formation 

was first observed with the model peptide angiotensin I. The modification site was identified as 

the N-terminus of the peptide by collision induced dissociation (CID). The IM cell separated the 

covalent reaction product from the proton transfer product by their respective ion mobilities. 

Next, the effects of several trapping parameters, including the trap traveling wave height, the 

trap RF voltage, and the trap pressure, were evaluated. Decreasing traveling wave height and 

increasing RF voltage and pressure increased the number of proton transfer events from 

apomyoglobin to reagent anions. The 6+ charge state of ubiquitin generated from nanospray 

under native-like conditions was covalently modified in the gas phase through ion/ion 

reactions. Probing the reacted protein with CID led to the assignment of lysine 29 and arginine 

54 as reactive nucleophiles accessible to the reagent. IM analysis of the unmodified native-like 

6+ charge state revealed that the gas-phase structure of the protein in the trap was in its 

compact form. Overall, we introduce a promising method for three-dimensional structural 

characterization of biomacromolecules.  
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1. Introduction 

Native mass spectrometry (MS) (including tandem MS (MS/MS)), native ion mobility/mass 

spectrometry (IM/MS), and covalent labeling analyzed by mass spectrometry are widely-used 

techniques to develop an understanding of how proteins are structured and how their 

structures relate to their function [1]. Native MS measures masses of intact proteins at high 

mass accuracy [2-3]. Stoichiometry of intact complexes and subunit masses can be determined 

by solution- [4-5] or gas-phase [6-7] complex dissociation. IM/MS integrated with native MS 

also gives the added dimension of protein shape/size. Low-resolution topography maps of 

entire protein complexes can be generated [8-9].  

Covalent labeling analyzed by mass spectrometry illuminates details about protein 

conformations [10-11] and binding/interacting sites [12-13], determined at the amino acid-

residue level. Proteins are modified by covalent labeling strategies in native solution conditions, 

followed by enzymatic digestion [14]. The identification of modified peptides by liquid 

chromatography/tandem mass spectrometry (LC/MS/MS) affords the assignment of the 

location of modification sites. Although this method is not a native mass spectrometry method, 

covalent labeling has been highly successful in providing native protein structural information.  

Though solution-phase covalent labeling gives information about protein folding and 

binding, protein structures can change between the solution phase and the gas phase. Since IM 

measures proteins as gas-phase ions, the IM structure may or may not directly correlate to 

protein structures either in solution or their native environment in vivo. Evidence shows that 

under gentle conditions, the collision cross sections (CCS) from stable, globular proteins can 

match calculations derived from NMR and X-ray structures [15-16] and FTIR assignments [17]. 
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CCS is a measure of overall ion shape/size, dependent on ion mobility, temperature, buffer gas 

number density, and the reduced mass for the collision between the ion and buffer gas. 

However, ion temperatures can increase due to collisional heating if pressures and injection 

energies are not carefully controlled. The increase in temperature causes smaller proteins and 

peptides to change conformations [18]. Some non-globular proteins have also been observed to 

collapse in the gas-phase, giving CCS values smaller than expected from the native structure in 

solution [19-22]. Additionally, many intact MS methods lack the necessary information to 

localize folding and protein/protein or small molecule attachment. Thus, uncertainty over the 

degree to which native structures are maintained in ion mobility experiments remains. 

Covalent labeling sample preparation, including labeling, digestion, cleanup, and 

separation of labeled peptides remains a bottleneck for rapid MS structural characterization. 

Eliminating this bottleneck is a critical need for taking advantage of the rapid analysis times of 

MS for structural biology. Covalent labeling does not directly provide the overall size/shape of 

the protein, and the solution covalent labeling chemistry, enzymatic digestion, and 

cleanup/separation limit high-throughput analysis. Also, labeling experiments do not 

characterize gas-phase structures, thereby creating ambiguity between the two techniques 

with regards to the gas-phase structures measured by IM/MS and the solution structures 

measured by covalent labeling. Therefore, it is desirable to validate gas-phase structures 

against solution structures and gain information complementary to size/shape obtainable at 

much higher speeds than current workflows.  

Previous work in gas-phase ion chemistry shows that covalent reactions in the gas-phase 

are efficient and occur on analytically relevant timescales (i.e., tens of milliseconds) [23-26]. 
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Gas-phase covalent labeling via ion/ion reactions inside of mass spectrometers has been 

demonstrated for peptides [27-29] and the protein ubiquitin under denaturing conditions [30-

31]. These reactions require the presence of an electrostatically “sticky” group to anchor the 

reagent to the protein to form a long lived complex. The ion/ion reaction method is rapid (mass 

spectrometer timescale, requires no solution chemistry) but does not directly give the overall 

structure. Therefore, a technique measuring the overall gas-phase structure (e.g., IM) is needed 

to complement gas-phase covalent labeling. Here, we demonstrate adaption of an electrospray 

source for producing opposite polarities of ions to enable covalent labeling reactions in the trap 

of a commercially available quadrupole/traveling wave IM/time-of-flight (TOF) platform [32]. 

The IM measurement characterizes the overall shape/size of gas-phase protein ions and gas-

phase ion/ion covalent labeling will provide details about the accessibility and reactivity of 

residue side chains (Figure 1). Herein, we have laid the groundwork for a gas-phase structural 

biology workbench. 

 
 

2. Material and Methods 

2.1 Materials  

Human angiotensin I (DRVYIHPFHL), ubiquitin from bovine erythrocytes, myoglobin from horse 

heart, ammonium acetate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-1-octanol (PFO), and 4-

formylbenzene-1,3-disulfonic acid disodium salt hydrate (FBDSA) were purchased from Sigma-

Aldrich (St. Louis, MO). 1-Hydroxy-7-azabenzotriazole (HOAT) was purchased from TCI America 

(Portland, OR). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) was 

purchased from Thermo Scientific (Rockford, IL). Formic acid, acetonitrile, and N, N-dimethyl 
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formamide (DMF) were purchased from Fisher Scientific (Fairmont, NJ). 3-Sulfobenzoic acid 

monosodium salt was purchased from Alfa Aesar (Ward Hill, MA). Angiotensin was dissolved in 

a 50/50/0.1 vol/vol/vol solution of water/acetonitrile/formic acid at 100 nM. FBDSA was used 

at a 1 µM concentration in 50/50 water/acetonitrile. Myoglobin was prepared at 1 µM in 

50/50/0.1 water/acetonitrile/formic acid. Ubiquitin was dissolved in an aqueous 200 mM 

ammonium acetate solution at 1 µM. 10 mM Sulfo-benzoyl-HOAT was synthesized by a 

previously published procedure [33] and used at 10 mM in acetonitrile. PFO was dissolved in 

water/acetonitrile at a concentration of 1 mM of the dimer. 

  

2.2 Instrumentation 

All experiments were performed on a Synapt G2-Si HDMS mass spectrometer (Waters 

Corporation, Wilmslow, U.K.) with electron transfer dissociation (ETD) equipped with the 

NanoLockspray source with the baffle between the two sprayers removed. The NanoLockspray 

source contains two nanoelectrospray (nESI) probes, which were used for sequential anion and 

cation ionization Cations and anions were infused through the sample and reference sprayers, 

respectively, at flow rates less than 500 nL/min. ETD and mobility modes were used with ETD 

refill times and intervals of 1 second each. Waters Research Enabled Software (WRENS) was 

used to apply a 1.5 kV potential to the sample probe during the sample injection phase of the 

ETD scan function and a -3 kV potential to the reference probe during anion fill. This was 

accomplished by first decoupling the reference probe from its power supply. Second, the glow 

discharge voltage source was decoupled from the discharge pin and directly wired to the 

reference probe. WRENS was also used to ensure proper synchronicity between spray voltages 
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and instrument lenses. Briefly, the mass spectrometer scan function is as follows: anions were 

introduced by the reference probe through the stepwave region through the quadrupole, 

where reagents were isolated by their m/z and filled the trap (Figure 2). Next, cations were 

introduced by the sample probe through the stepwave and specific charge states of interest 

were isolated by the quadrupole. The potentials in the trap cell were chosen to maintain an 

excess population of anions in the presence of cations, as the apparent reaction rate of ion/ion 

reactions is dependent on the number density of reagent ions [34]. Reaction products were 

gated from the trap for 500 µs into the helium cell by lowering the potential on the exit gate for 

500 µs. Next, ions traversed the IM cell filled with N2 and the transfer cell which contained 

argon gas. The potential differences between the two sections of the trap, the helium cell, the 

IM cell, and the transfer cell were tuned to maximize transmission of ion/ion reaction products 

or increased to effect collision induced dissociation (CID). Ions were mass analyzed by the time-

of-flight MS in Resolution Mode (nominal resolving power of 20,000 FWHM). Mobility-selected 

mass spectra were extracted using the MS data station software (MassLynx V4.2). 

 

3. Results and Discussion 

3.1 Implementation of ESI/ESI Ion/Ion Reactions on the Waters Synapt Platform 

The Waters Synapt series of instruments is equipped with the ability to perform ETD. This is 

implemented as follows: the ETD reagent (often a crystalline solid) is placed in a sealed metal 

container where nitrogen that is swept through the container delivers the neutral reagents to a 

discharge needle located after the first conductance-limiting orifice of the instrument [25,35]. A 

discharge voltage is applied to the needle to form gas-phase radical anions of the ETD reagents 
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by glow-discharge ionization[36-38]. Anions are mass selected by the quadrupole (Figure 2 A) 

and enter the trap stacked ring ion guide, filled with helium (~0.07 mbar, 18 ml/min helium 

flow rate). DC biases on the optics are chosen such that potentials become gradually more 

positive (attractive) to the anions into the trap. During injection of the anion (and cation), there 

is no traveling wave in the trap. Typically, a repulsive (more negative) DC voltage is applied at 

the entrance of the helium cell to prevent anions from leaking out of the trap. Next, cations are 

injected (Figure 2 B). The potentials are switched on the ion optics to provide a negative-going 

voltage gradient from the source to the trap, drawing cations into the ion trap. A small negative 

voltage is applied to the entrance of the trap relative to the trap bias in order to prevent anions 

from leaking out the front of the trap while cations are still filling the trap. After the cation fill, 

ETD products are gated out of the trap by lowering the trap gate potential (15 V in this case) for 

a fixed time (500 µs) and by reapplying a traveling wave to the trapping region (typically at 

traveling wave height <1 V) (Figure 2 C). A voltage diagram showing the conditions for the three 

states of the experiment (anion fill, cation fill, ion ejection from the trap) is given in Figure 2 D. 

These events and voltages are all directly controlled from the commercially available version of 

MassLynx. The ETD products then traverse the helium cell and are separated by their mobilities 

in the mobility cell, travel through the transfer cell, and are mass analyzed by the time-of-flight. 

The transfer cell is filled with argon (~0.01 mbar, 1 ml/min argon flow rate) and is divided into 

two regions which are separately biased. By increasing the bias, the transfer collision energy is 

increased, allowing for collisional activation and/or CID after ions exit the mobility cell. Thus, 

CID product ions will have the same drift time as their precursors. 
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 Many capabilities required for covalent ion/ion reactions exist in the commercial 

implementation of ETD in the Synapt platform. These capabilities include: 1. Isolation reagent 

and analyte ions by their m/z, 2. An RF-confining region to mutually store cations and ions, 3. 

The ability to form the covalent reaction product by CID prior to the IM cell (i.e., between the 

trap and He cell regions), 4.) Separation of products from reactants in the mobility cell, and 5.) 

CID of the mobility-separated products in the transfer cell. Therefore, the voltage diagram 

shown in Figure 2 D is also used for ESI/ESI ion/ion reactions. The only modification necessary 

for ESI/ESI reactions was use the second ESI source (the reference probe) to generate anions 

instead of the glow discharge source. This modification was performed by removing the 

discharge voltage wire from the discharge pin and attaching it to the reference probe. A simple 

WRENS script allowed the application of positive and negative ESI voltages to the reference and 

sample probes synchronized to the anion fill and cation fill, respectively. The discharge voltage 

source was changed in WRENS from 100 µA mode to 35 µA mode to enable the application of 

potentials between 0 to -8 kV to the reference probe (in 100 µA mode, only potentials from 0 

to -2 kV can be realized). The ETD reagent container was left empty and the nitrogen flow 

through the container was disabled. No other aspects of the instrument or instrument control 

were modified. 

 

3.2 Angiotensin 3
+
 and FBDSA

- 

Triply protonated angiotensin I and singly deprotonated FBDSA were reacted in the initial 

implementation of ESI/ESI ion/ion reactions. This reaction has been directly adapted from 

previous work on a linear ion trap mass spectrometer [27]. A Schiff base is formed between a 
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primary amine and aldehyde with water as a leaving group. Long-range coulombic attraction 

brings the two species together at rates proportional to the square of the charge [34]. The 

FBDSA reagent is bifunctional, containing both sulfonate and aldehyde functional groups. The 

high proton affinity of sulfonate results in the stable formation of a long-lived electrostatic 

complex, with the sulfonate “anchored” to either an ammonium (protonated lysine) or 

guanidinium (protonated arginine) group [39]. These electrostatic binding strengths have been 

estimated to be on the order of 28 kcal/mol for binding to protonated lysine and 61 kcal/mol 

for binding to arginine [40]. Once electrostatically anchored, the main barrier for observing the 

reaction products is covalent bond formation. Heating the electrostatic complex via energetic 

collisions will provide a mixture of covalently modified peptides and proton transfer products. 

The relative sizes of these two fragmentation channels are controlled by the nature of the 

covalent chemistry and the amount of energy applied to the system. Specifically, the 

observation of covalent chemistry is maximized if collision energies are chosen above the 

activation energy for covalent bond formation (less than 20 kcal/mol) but below the activation 

barrier for proton transfer (i.e. neutral loss of FBDSA) [33,40]. 

The mass spectrum resulting from the ion/ion reaction of angiotensin 3+ and FBDSA 

(Supplemental Figure S1) shows the formation of two products: the charge-reduced angiotensin 

molecular ion [M+2H]2+ and the electrostatically bound complex [M+3H+FBDSA]2+. For this 

experiment, the trap traveling wave voltage was 0.2 V with a wave speed of 300 m/s. Under 

these conditions, the precursor triply charged angiotensin has been virtually completely reacted 

away. The formation of covalent products (i.e. neutral loss of water from the electrostatic 

product) and sequence ions containing the covalent modification are observed in Figure 3A by 
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increasing the DC bias between the trap cell (0.1 mbar He) and the helium cell (4 mbar He) to 

95 V, the helium cell and the IM cell (2.8 mbar N2) to 50 V, and the IM cell and the transfer cell 

(0.025 mbar Ar) to 35 V. The ion/ion reaction products and their sequence fragments share 

identical drift times in their arrival time distributions (ATD) since fragment ions were not 

formed until after IM separation (Figure 3 B). This is illustrated by Figure 3 C for the covalent 

modification products. The covalent modification makes the angiotensin cation significantly 

larger to where it is separated (40 V IM wave height, linear velocity ramp from 900 to 200 m/s) 

from the proton transfer peak. The mass spectrum with the same drift time as the covalently 

modified mobility peak shows a typical peptide fragmentation spectrum, with b and y-type 

ions, with the addition of covalently-modified b2 and b3 ions (Figure 3 C). These data alone do 

not provide evidence whether the modification site is on the N-terminus or the arginine, since 

the b1 fragment is not observed, and uncharged arginine is a reactive nucleophile in the gas-

phase [29,41]. However, studies with high-energy CID and molecular modeling have revealed 

that the N-terminus is not protonated in the gas-phase, and that the arginine side chain is 

protonated [42]. This indicates that Schiff base formation most likely occurs on the N-terminus. 

An IM separation of ion/ion products prior to their dissociation affords the ability to mass 

analyze all the fragments in a single experiment while directly linking the fragments to their 

precursors [43-44]. The combination of IM and CID eliminates the need to perform MS/MS on 

each of the ion/ion reaction products. Instead, all ion fragmentation can be used, and the 

fragments will be linked to their precursors. For example, the singly modified angiotensin 

fragments do not overlap with the doubly modified fragments, as they are separated by the IM 
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cell. Thus, this method accommodates ion/ion reactions that form multiple products or ion/ion 

reactions of a complex mixture. 

 

3.3 Characterization of Parameters Affecting Ion/Ion Reactions 

The effect of several experimental parameters on glow discharge-based reagents for ion/ion 

reactions in a traveling wave ion guide has been previously reported [25,35]. We have repeated 

several of these characterization experiments by proton transfer ion/ion reactions between 

denatured apomyoglobin cations with PFO dimer anions to characterize ion/ion reactions using 

the dueling nanoelectrospray source. An excess of at least ten times the ion count of anion to 

protein was found to be necessary for observing ion/ion reaction products. This is unsurprising 

due to the linear relationship between the observed reaction rate and the number density of 

reagent for ion/ion reactions [34]. The parameters found to have the greatest impact on the 

extent of ion/ion reactions was the trap traveling wave height, the trap RF amplitude, and the 

helium pressure in the trap. The effects of different traveling wave heights are shown in Figure 

4. Figure 4 A shows the reaction of the 16+ charge state of apomyoglobin with singly 

deprotonated PFO dimer. Under these conditions, myoglobin transfers up to seven protons, 

decreasing its charge to the 9+ charge state, with the center of the charge state distribution at 

the 13+ charge state. Increasing the traveling wave amplitude decreases the extent of reaction, 

with 10+ as the lowest charge state for 0.15 and 0.2 V wave heights (Figure 4 B and C, 

respectively), and 13+ as the lowest charge state for 0.3 V (Figure 4 D). The base peak of the 

mass spectrum was 13+ for 0.1 V, 14+ for 0.15 V, 15+ for 0.2 V, and 16+ for 0.3 V. Figure 5 A 

summarizes these results by weighted average charge state of the distribution (Equation 1).  
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Charge states (q) from j to n are multiplied by I, the maximum intensity of each peak and 

divided by the total intensity of all charge states. The average charge state increases linearly 

with the traveling wave amplitude from 0.05 to 0.25 V. Above 0.25 volts, the average charge 

state plateaus. The shape of the curve indicates that the extent of the ion/ion reaction 

decreases linearly with increasing traveling wave amplitude until the reaction no longer occurs. 

Decreased traveling wave height results in the improved mixing of cation and anion 

populations, increasing the number of proton transfer events [25]. The extent of the reaction 

was also increased by either greatly decreasing (~100 m/s) or increasing (several thousand m/s) 

the traveling wave speed (data not shown). With the decreased traveling wave speed, in the so-

called “surfing condition” when ions move at the speed of the wave, the average ion drift 

velocities are lower, allowing for more proton transfer events to occur. With greatly increased 

speed, ions in traveling waves will periodically “roll over” the traveling waves, as their mobilities 

are too low to allow the ions to remain surfing [25,45-46]. Again, the longer interaction times 

allow for a greater number of proton transfer events. 

 Figure 5 B shows the effects of RF amplitude (VRF) on the extent of ion/ion reactions. In 

this experiment, the extent of the reaction increases between 100 and 500 VRF. The ion cloud 

density increases with increasing applied VRF [47]. Thus, cations and anions have increased 

spatial overlap. With better overlap, more proton transfer events occur in the same reaction 

times. Figure 5 C illustrates the effects of ion trap pressure. The corresponding gas flow rates 

are indicated in Supplemental Table ST1. There is an increase in the number of proton transfers 

as the background helium pressure increases, as collisional cooling favors formation of the 
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ion/ion reaction products [34]. The background pressure becomes too high beyond 0.090 mbar 

in the trap, reducing signal under the experimental conditions used. As a result of these 

experiments, the following parameters were used in further studies: 0.1 V trap traveling wave 

height, 500 VRF, and a pressure of 0.068 mbar (i.e., 18 ml/min trap gas flow rate). 

 

3.4 Interrogating Native Ubiquitin with Ion/Ion Reactions 

Ion/ion reactions were applied to native ubiquitin ions in order to assess the three-dimensional 

structure and relative reactivity of residue side chains in the gas phase. Singly deprotonated 

sulfo-benzoyl-HOAT was used due to its lower barrier for covalent reaction in the gas phase 

relative to NHS esters (18 kcal/mol vs. 21 kcal/mol, respectively), with the ability to react with 

lysine, arginine, histidine, aspartate, and glutamate [31,33]. Figure 6 A shows the ion/ion 

reaction of ubiquitin 6+ and sulfo-benzoyl-HOAT-. Several parameters needed to be optimized 

for efficient covalent bond formation (neutral loss of HOAT from the ion/ion reaction product). 

Covalent product formation was not favorable at typical gas flows into the helium cell (>100 

mL/min). CID in the helium cell was inefficient, and the major product observed was the proton 

transfer peak [M+5H]5+, corresponding to loss of the electrostatically attached reagent. Virtually 

no covalent bond formation occurred, indicating that too much energy was being added to the 

system. The most effective way to favorably form covalently-modified products is to apply 

energy below the threshold for proton transfer product formation over an extended time [40]. 

However, in the current instrument setup, there is no straightforward way to apply low 

amplitude collisional “heating” over an extended time period. Therefore, to use lower energies 

to effect CID and covalent product formation, the gas flows into the helium and IM cells were 
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lowered to 20 mL/min (0.59 and 0.66 mbar pressures for each of the cells, respectively). This 

allowed the use of much lower collision energies, with the trapping region of the trap cell at 40 

V, the transfer region of the trap cell at 30 V, and the entrance to the helium cell at 10 V 

relative to the helium cell. The lower collisional energies produced the covalently modified 

product while resulting in almost no proton transfer. The ATD in Figure 6 B was obtained under 

these voltage and pressure conditions. The peak at 12 ms corresponds to the unreacted 

precursor, the peak at ~15 ms corresponds to the addition of one sulfo-benzoyl-HOAT, and the 

peak at ~19 ms corresponds to the addition of two sulfo-benzoyl-HOAT groups.  Figure 6 C 

shows the mass spectrum at 14.517-15.899 ms, showing covalent bond formation through 

neutral loss of HOAT. Due to the relatively short time of activation, the electrostatic complex 

peak was not completely depleted.  

 The ion/ion reaction results in the addition of up to two sulfo-benzoyl-HOAT reagents to 

the 6+ charge state. The reaction can proceed further by reducing the cation signal, changing 

the traveling wave and pressure in the trap cell, and increasing the anion signal. For this study, 

the trap cell conditions were chosen (300 m/s traveling wave, 0.2 V amplitude, 18 mL/min 

helium flow into the trap cell) to maximize the intensity of the electrostatic attachment of a 

single reagent. Next, 45 V of transfer collision energy was applied to perform CID on the 

covalent reaction product in the transfer cell (1 mL/min argon flow rate, 0.01 mbar) to 

sequence the modified protein and determine the location of covalent modification.  

The identities of the products matching the drift time of the covalently modified 

precursor were assigned to determine the sites of covalent modification. These were compared 

to CID of the mass isolated, unreacted 5+ charge state under similar conditions to ensure that 
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all peaks assigned as covalently modified sequence fragments were only observed in the 

covalent modification spectrum (Supplemental Figure S2). The results are shown in Figure 7. 

The smallest unique y ion including the modification was y24 (Supplemental Figure S3). The 

nearest unmodified ion smaller than y24 was the unmodified y22 ion. Thus, the reaction took 

place with a side chain between the two cleavage sites. This localizes the modification site to 

two amino acid residues: glycine 53 and arginine 54. Therefore, one modification site must be 

arginine 54 since glycine is unreactive towards HOAT ester chemistry. The complementary ion 

to y24, b52, is also observed as a covalently modified sequence ion. This indicates that there is 

another side chain with similar surface accessibility and reactivity. The smallest unique modified 

peptide was b32, and the nearest unmodified neighbor smaller than b32 is b27. Thus, the 

modified residue is between alanine 28 and aspartic acid 32. The observation of the intact 

covalent modification mass addition in this section of the sequence is best explained by 

covalent modification of lysine 29. 

The sites for covalent modification must be accessible to the reagent and reactive. This 

precludes buried side chains in the interior of the protein as well as protonated side chains. 

Recently, 193 nm ultraviolet photodissociation (UVPD) was used to probe the protonation 

locations of different native charge states of ubiquitin in the gas phase, as UVPD results in 

fragmentation before protons can mobilize or the protein begins to unfold [48]. The results 

from the 6+ charge state of ubiquitin are consistent with the ion/ion reaction results and 

whether the side chains are exposed or buried in the crystal structure (PDB 1UBQ). Neither 

arginine 54 nor lysine 29 are protonated in the gas phase, and the crystal structure shows that 

these side chains are on the exterior of the protein, so they are likely candidates for 
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modification. The only other residue that clearly meets these requirements is lysine 6. 

Previously, calculated estimates based upon intrinsic gas-phase basicities of the amino acid 

residues have shown that this lysine has a high gas-phase basicity [49], which indicates that if 

this residue is unprotonated, it is likely quite reactive toward electrophiles such as the HOAT 

ester. Future development of an additional gas-phase method to determine protonation sites is 

warranted to both confirm the results from UVPD and to determine the nature of the lysine 6 

residue in the gas-phase. 

 

3.5 Ion Mobility Measurements for Assessing the Structure of Ubiquitin 6
+
 in the Trap Cell  

Conclusions regarding the applicability of gas-phase protein structural information to solution-

phase structures are only meaningful if the gas-phase structure maintains the solution-phase 

intramolecular and intermolecular interactions. Molecular dynamics simulations using 

ensembles of solution phase structures for proteins have predicted accurate ion mobility 

spectra [50]. This method predicts that for a ubiquitin cation with a measured nitrogen CCS 

reflecting the nitrogen CCS calculated from the X-ray structure of ubiquitin (1209 Å2), solution 

interactions are maintained. The nitrogen CCS of ubiquitin 6+ cations were measured under 

ion/ion reaction conditions but without the introduction of anion to determine the overall 

structure of the protein in the trap cell. CCS values were measured by calibration with nitrogen 

literature CCS values  and are expected to have a relative error of < 5% [51-52].  

IM instruments can cause collisional activation and rearrangement of small proteins like 

ubiquitin when applying activation energy to drive ions into the mobility cell [18]. Figure 8 

shows the effects of increasing injection energy into the mobility cell. Figure 8 A is the ATD of 
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ubiquitin 6+ with 30 V of injection energy into the helium cell. The base peak has a measured 

CCS of 1230 Å2, with a small peak beginning to form at a CCS of 1410 Å2 that is attributed to 

collisional activation entering the helium cell. Values below 30 V gave no observable signal. No 

parameters within the chosen range of values of lenses before the trap affected the ATD’s 

appearance, giving evidence that even under the gentlest usable conditions there is some 

heating when ions are injected into the helium cell, and that the ubiquitin in the trap sampled 

by ion/ion reactions maintains a native-like structure [15,50]. Increasing the injection energy to 

40 V (Figure 8 B) yields a more unfolded distribution, with peaks at 1545, 1790, and 1930 Å2. 

Figure 8 C shows that with 50 V of injection energy, the distribution is completely extended. 

Clearly, the ATD is not necessarily indicative of the population in the trap, as in these 

experiments, only the injection energy into the helium cell (i.e. after ion/ion reactions have 

taken place) has a major effect on the observed ATD.  

. Therefore, though the collisional energy applied after the trap may cause small 

proteins to unfold, the reaction is indicative of more native-like gas-phase structure. The strong 

electrostatic binding from the sulfonate group on the reagent to a protonated side chain will 

anchor the reagent in place when the collision energy to overcome the barrier to covalent 

reaction is applied. The total through space length of the reagent from the location of covalent 

bond formation to the sulfonate group is less than 7 Å, which constrains the reaction to nearby 

amino acid residues. Thus, the side chains that covalently react with the reagent must be within 

~10 Å from the anchor site regardless of whether the covalent reaction takes place with native-

like or unfolded structures. The reaction is indicative of a limited region on the protein that is 

reactive to the chemistry. This portion of the polypeptide is accessible and contains a 
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nucleophilic side chain and charged group with their distance from each other constrained by 

the size of the reagent. Ubiquitin is a small model protein, and larger proteins and protein 

complexes, with many more vibrational degrees of freedom and intramolecular and 

intermolecular interactions, are far less sensitive to collisional unfolding under these conditions, 

making the energies required for formation of the covalent bond even less likely to unfold 

structures [53]. Therefore, ion/ion reactions are expected to be an even more effective probe 

of the structures of larger proteins and protein complexes. 

 

4. Conclusions 

We have demonstrated, for the first time, the adaptation of a dual polarity dual electrospray 

source to a traveling wave IM/MS for ion/ion reactions. We have implemented this method 

with small peptide and protein models. Ion/ion proton transfer reactions have demonstrated 

that, unsurprisingly, experimental settings for efficient electron transfer from and proton 

transfer to radical anions generated by discharge are virtually identical to conditions for 

efficient ESI/ESI ion/ion reactions. The most important conditions for the reactions were 

confirmed to be substantial ion cloud overlap in space and in time, low relative velocities, and 

an excess of reagent ions. The experimental setup is advantageous because it allows for mass 

selection of reagent anions, ion/ion reactions prior to ion mobility, the ability to collisionally 

activate ions prior to and after the mobility cell, and fast and high m/z range acquisition with 

the TOF MS. Separating precursors and ion/ion reaction products with IM and multiplexed 

fragmentation with fragments linked by mobility to their precursors is a distinct advantage for 

making ion/ion structural measurements.  
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Ion mobility also provides the overall size/structure of the species being measured by 

ion/ion reactions. The IM data strongly suggests that we are probing native like conformers of 

ubiquitin with ion/ion reactions and the location of covalent modifications will be informative 

of protein native structures in the gas-phase. The covalent modification data pinpoints 

uncharged, accessible, reactive side chains on the protein, and is consistent with the locations 

of these side chains in the crystal structure for ubiquitin. Future work is needed for the 

development of this technology. While CID gave adequate sequence coverage for the small 

model protein ubiquitin, strategies and methods achieving higher sequence coverage will be 

necessary for larger proteins. Furthermore, the development of a simple, accurate method for 

identifying gas-phase protonation sites is warranted to provide additional structural 

information. Overall, the data presented here shows that this platform is extremely promising 

for measuring protein structures in the gas phase and, under gentle conditions, a gas-phase 

method for measuring solution protein structures. We anticipate that this development will 

also have utility in improving analytical IM separations. 
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Figure 1. Expected results of ion/ion covalent labeling with IM/MS for a hypothetical protein. A. The 
native CCS measurement reveals that the protein is globular, not linear. B. List of hypothetical labeled 
residues. C. Combination of data from the combined approach, where the protein overall shape and size 
is bounded by the CCS measurement with labeled lysines on the surface of the protein. 
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Figure 2. A cartoon of the region of the instrument involved with the ion/ion reactions. The labels below 
the ion optics correspond to the DC voltages that are applied during the experiment. A. Anions (black 
minus signs) are mass selected in the quadrupole and injected into the trap. B. Cations (red plus signs) 
are isolated and injected to the trap. The trap gate prevents cations from being released. Ion 
populations overlap and the ion/ion reaction proceeds to products (green circles). C. Product ions are 
pulsed out of the trap with a 500 µs pulse of the trap gate and drift through the ion mobility cell. 
Products will traverse the transfer cell and into the time-of-flight mass analyzer (not shown). D. Voltage 
diagram for the three states of the trap during the ion/ion reaction.  
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Figure 3. Ion/ion reaction of angiotensin I 3+ with FBDSA-. A. Fragment mass spectrum resulting from CID 

of the ion/ion reaction products. B. ATD corresponding to A. C. Mass spectrum corresponding to 3.809 

to 4.086 ms in the ATD. Covalently modified fragment ions are annotated in blue text. The mass 

spectrum from the ion/ion reaction prior to CID is reported in Figure S1. 
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Figure 4. Effects of the trap traveling wave voltage on the extent of reaction between apomyoglobin 16+ 

and PFO- dimer. Mass spectra are for traveling wave heights of A. 0.1 V, B. 0.15 V, C. 0.2 V, and D. 0.3 V.  
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Figure 5. Effects of the A. trap traveling wave voltage, B. trap RF, and C. trap pressure on the extent of 

reaction between apomyoglobin 16+ and PFO- dimer. The extent of the reaction is demonstrated by the 

weighted average charge state of the charge state distribution. 
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Figure 6. A. Mass spectrum from the ion/ion reaction of ubiquitin 6+ with sulfo-benzoyl HOAT- (SB-

HOAT). B. ATD of ion/ion reaction in A. with reduced pressures in the helium cell and IM cell and 40V 

trap cell bias. C. Mass spectrum corresponding to 14.517-15.899 ms in B. The * denotes covalent 

addition of the sulfo-benzoyl moiety through observation of the neutral loss of HOAT. 
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Figure 7. Sequence ladder of covalently modified ubiquitin 6+. Blue flags indicate fragments that contain 

the covalent modification. Black flags indicate the largest fragments that have no covalently modified 

counterpart. The two residues in blue, lysine 29 and arginine 54, are the two sites of covalent 

modification.  
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Figure 8. ATD of ubiquitin 6+ from native conditions with various injection energies. A. 30 V, B. 40 V, C. 

50 V. 

 


