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Abstract

Introduction—Increasing clinical evidence supports the implementation of genotyping for anti-

hypertensive drug dosing and selection. Despite robust evidence gleaned from clinical trials, the 

translation of genotype guided therapy into clinical practice faces significant challenges. 

Challenges to implementation include the small effect size of individual variants and the 

polygenetic nature of antihypertensive drug response, a lack of expert consensus on dosing 

guidelines even without genetic information, and proper definition of major antihypertensive drug 

toxicities. Balancing clinical benefit with cost, while overcoming these challenges, remains 

crucial.

Areas covered—This review presents the most impactful clinical trials and cohorts which 

continue to inform and guide future investigation. Variants were selected from among those 

identified in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR), the 

Genetic Epidemiology of Responses to Antihypertensives study (GERA), the Genetics of Drug 

Responsiveness in Essential Hypertension (GENRES) study, the SOPHIA study, the Milan 

Hypertension Pharmacogenomics of hydro-chlorothiazide (MIHYPHCTZ), the Campania Salute 

Network, the International Verapamil SR Trandolapril Study (INVEST), the Nordic Diltiazem 

(NORDIL) Study, GenHAT, and others.

Expert Commentary—The polygenic nature of antihypertensive drug response is a major 

barrier to clinical implementation. Further studies examining clinical effectiveness are required to 

support broad-based implementation of genotype-based prescribing in medical practice.
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1. Introduction

Implementation of pharmacogenomics is underway across the developed world [1–5]. 

Thought leaders from the Clinical Pharmacogenomics Implementation Consortium (CPIC) 

and Dutch Pharmacogenomic Working Group (DPWG) continue to distill abundant 

pharmacogenomic evidence into actionable recommendations for clinicians [6,7]. Despite a 

lack of widespread adoption by payers, institutions such as universities, health systems, 

pharmacies, and private enterprises have driven pharmacogenomics into the clinical sphere 

because each finds value in implementing personalized medicine for patients.

The National Human Genome Research Institute’s ‘Implementing Genomics in Practice’ 

(IGNITE) initiative aims to incorporate genomic information into clinical care [8]. Several 

network members have succeeded in enabling genotype-guided dosing for clopidogrel, 

warfarin, antidepressants, and pain medications within their health systems [3,9,10]. 

Although the prevalence of hypertension exceeds 34% (85 million) of the U.S. adult 

population [11], implementation of genotype-guided dosing for antihypertensive agents has 

not been prioritized. The opportunity to improve control of hypertension persists, as the 

number of individuals with treatment-resistant hypertension has steadily increased to 13.7% 

of the general population and its cardiovascular consequences are significant [11].

Challenges must be overcome in order to realize personalized antihypertensive therapy. 

Given the enormous prevalence of hypertension, a propensity exists to approach 

hypertension treatment algorithms on a population-based level. Indeed, the Eighth Joint 

National Committee (JNC 8) simplified and relaxed therapy targets based on evidence 

produced from the ACCORD trial [12,13]. Many of the disease-specific blood pressure (BP) 

thresholds present in prior JNC iterations were removed. Subsequently, the SPRINT trial has 

again prompted reassessment of BP targets in individuals at high risk [14]. Based on data 

from SPRINT, tighter BP goals have been adopted by the American College of Cardiology/ 

American Heart Association Task Force [15]. In terms of agent selection, JNC 8 

recommended only four classes of first-line medications: thiazide-type diuretics, calcium 

channel blockers (CCBs), angiotensin converting enzyme inhibitors (ACEIs), and 

angiotensin receptor blockers (ARBs). Personalization was essentially limited to the 

prioritization of ACEI and ARB use in those with chronic kidney disease, and the converse 

in those older than 75 years of age and individuals of African-American (AA) descent – with 

race perhaps serving as a surrogate for genetic indicators of antihypertensive class response.

In contrast to the prevailing population-based algorithms, the Pharmacogenomics Research 

Network, International Consortium for Antihypertensive Pharmacogenomics Studies 

(ICAPS), and other contributors have generated robust evidence demonstrating the 

interaction of genotype with antihypertensive agent response [16]. The identified variants 

can be used to predict an individual’s response to a given BP medication or class. However, 

on balance, these interactions have failed to meet the evidentiary standards of CPIC. For 

most agents, expert consensus on dosing guidelines has not been achieved. Contributing 

factors include the small effect size of individual variants, population heterogeneity, 

population size, polypharmacy, a relative lack of major antihypertensive drug toxicities, 

varying clinical trial designs with relatively small patient populations, and the polygenic 
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nature of antihypertensive drug response. Overcoming nonadherence to therapy [17], great 

inter- and intra-patient BP variability [18,19], and differences in BP measurement strategies 

[20,21] may be of equal or greater importance in improving clinical effectiveness than 

genotype-guided prescribing. Provider inertia is an additional barrier due to a lack of 

familiarity with pharmacogenomics [22,23]. With an extensive arsenal of antihypertensive 

agents available, clinicians may feel they have ‘personalized’ antihypertensive therapy long 

before genotype–phenotype associations were identified. As such, the translation of 

pharmacogenomic data into hypertension therapy has been relegated until further replication 

and validation is conducted.

Nonetheless, this report seeks to evaluate relevant genomic studies of hypertension with their 

identified variants that portend the highest likelihood of clinical translation. The prevalence 

of hypertension is considerable and the associated cardiovascular consequences are severe 

[11], so the improvement in clinical effectiveness provided by pharmaco-genotyping is 

welcome and important. We now focus our attention on studies affording differential 

antihypertensive agent selection. Genomic predictors of incident hypertension fall outside 

the scope of this report. The ensuing review delineates the studies, variants, and related 

genes with the greatest evidence for clinical utility.

2. Body

A broad range of genetic variants and loci have been identified as predictors of 

hydrochlorothiazide (HCTZ) response (Table 1), beta-blocker response (Table 2), and 

response to CCBs or rennin-angiotensin system inhibitors (Table 3). Evidence for these 

associations was provided by a number of pharmacogenomic cohorts and trials including the 

Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR), the Genetic 

Epidemiology of Responses to Antihypertensives (GERA) study, the Genetics of Drug 

Responsiveness in Essential Hypertension (GENRES) study, the SOPHIA study, the Milan 

Hypertension Pharmacogenomics of hydrochlorothiazide (MIHYPHCTZ), the 

Pharmacogenomics of Hydrochlorothiazide Sardinian Study (PHSS), the Campania Salute 

Network (CSN), the International Verapamil SR Trandolapril (INVEST) Study, the Nordic 

Diltiazem (NORDIL) Study, and GenHAT. The polygenic nature of anti-hypertensive 

efficacy significantly complicates efforts to implement genetic testing for these agents in 

clinical practice. To date, a complete multigene model has not been developed to guide 

dosing or drug selection for these drugs. Further, the partial models that are available often 

do not account for environmental factors such as sodium intake or biochemical markers like 

renin activity levels. The evidence supporting these predictors is outlined below.

2.1. Pharmacogenomic Evaluation of Antihypertensive Responses

The first Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR1) study was a 

prospective cohort study which sought to evaluate genetic predictors of HCTZ and atenolol 

response in 768 subjects [24]. The Caucasian (N = 461) and AA (N = 298) populations were 

analyzed separately. After antihypertensive drug washout, subjects were initially prescribed 

either HCTZ or atenolol monotherapy for 9 weeks. The alternate drug was added if BP 

control (<120/ 70 mm Hg) was not obtained after titration of the initial drug which occurred 
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in over 90% of participants. PEAR1 compared home BP response to genotype in 37 

candidate single nucleotide polymorphisms (SNPs) which were selected from previously 

published SNPs associating with BP traits in large epidemiologic studies with tens of 

thousands of patients [25–29]. These traits included cross-sectional systolic blood pressure 

(SBP) and diastolic blood pressure (DBP), but the investigations had not specifically 

evaluated BP change in response to an antihypertensive agent.

PEAR1 assessed BP response to monotherapy after 9 weeks. At the conclusion of the study, 

no variant met Bonferroni-corrected statistical significance [30]. However, a three SNP 

model composed of rs1458038 (FGF5), rs3184504 (SH2B3), and rs4551053 (EBF1) 

explained 4.3% and 5.3% of the SBP and DBP response, respectively, to HCTZ 

monotherapy in Caucasians. None of these SNPs were similarly correlated in the AA 

population. In fact, the SNP in SH2B3 was nominally associated with HCTZ response with 

the opposite direction of effect in AAs.

A second model of HCTZ response was facetted by uniting metabolomics and genomics 

approaches. Three novel variants, rs2727563 in PRKAG2, rs12604940 in DCC, and 

rs13262930 in EPHX2 were uncovered in a genome-wide analysis of the Caucasian PEAR1 

cohort, with replication in the GERA cohort (described below) [31]. The metabolomics 

profiling identified 13 molecules associated with HCTZ monotherapy SBP and DBP 

responses, which were enriched for interaction with netrin signaling. Three SNPs in the 

model were selected after a round of replication because of their association with the 

arachidonic acid metabolic pathway. The crafted model is additive; individuals with only 1 

BP lowering allele had an average change in SBP and change in DBP of −1.5 and 1.2 

mmHg, respectively. In contrast, individuals with 6 BP lowering alleles had more 

remarkable reductions in SBP and DBP at −16.3 and −10.4 mmHg, respectively. The model 

was able to account for 11–12% of the variability in HCTZ BP response. Although both the 

FGF5/SH2B3/EBF1 and the PRKAG2/DCC/EPHX2 models show promise, a combined six-

gene model evaluating the independent contribution of all of these variants has yet to be 

reconciled.

Analogous to the HCTZ models, PEAR1 sought to establish predictive model of atenolol 

monotherapy response in Caucasians. A four SNP model was derived and is listed in Table 

2. rs1458038 in FGF5 is common to both the atenolol and HCTZ models, but with the C 

allele favoring atenolol efficacy and the T allele associated with HCTZ response. This SNP 

may prove to be a useful marker in BP agent selection. Again, these variants failed to 

replicate in the AA population. The authors concluded that there was insufficient evidence to 

suggest the genetic scores for either atenolol or HCTZ BP lowering alleles in Caucasians 

were associated with BP response in AAs – even when index SNPs were evaluated in 

flanking regions of the initial candidate variants. While PEAR1 was underpowered to 

identify a single variant strongly predictive of BP response, important insights were gleaned 

into the pharmacology of these drugs. When analyzed in conjunction with other BP response 

studies, additional associations have been identified which are discussed below.

To demonstrate the importance and the power of combining study cohorts, the PEAR1 study 

participants were analyzed in conjunction with the GENRES and INVEST cohorts 
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(described below). Although not part of the above model, variants in PTPRD were found to 

be significantly associated with atenolol monotherapy response, with the opposite direction 

of effect noted for HCTZ [32]. Using a genome-wide association study (GWAS) analysis, 

several SNPs near PTPRD correlated with BP response to atenolol and HCTZ therapy. The 

PTPRD gene encodes for protein tyrosine phosphatase receptor D which is important in 

malignant glioma. Two SNPs, rs12346562 and rs1104514, are located upstream of PTPRD 
gene on chromosome 9p23 and were associated with favorable DBP to atenolol and 

unfavorable DBP response to HCTZ in Caucasians. A different SNP, rs10739150, was 

located downstream of the PTPRD gene on chromosome 9p23 and was associated with 

favorable DBP to atenolol in the AA population. Finally, two additional SNPs, rs4742610 

and rs324498, located in intron of PTPRD gene were associated with resistant hypertension 

in patients with coronary artery disease. Since the SNPs near the PTPRD gene are predictors 

of the responses to atenolol and HCTZ with the opposite directional effects, these mutations 

could prove important in tailoring initial antihypertensive therapy, much like rs1458038 in 

FGF5.

The second iteration of the Pharmacogenomic Evaluation of Antihypertensive Responses 

(PEAR2) study assessed class effects of thiazides and B-blockers and studied chlorthalidone 

and metoprolol response in 457 AAs and Caucasians. CYP2D6 metabolizer status was 

identified as a predictor of metoprolol response [33]. This drug–gene pair now has formal 

allele-based dosing recommendations outlined by the DPWG. Subjects receiving 

chlorthalidone in PEAR2 served as a replication cohort for PEAR1 to help identify an 

expression quantitative trait locus, rs10995, near the gene vasodilator-stimulated 

phosphoprotein (VASP). rs10995 was associated with improved systolic and diastolic BP 

response, as well as VASP mRNA expression [34].

In a combined meta-analysis of the first PEAR1 and PEAR2 cohorts, the association of β-

blocker BP response with genotype was investigated in the AA population [35]. A total of 

459 individuals (150 treated with atenolol alone, 168 treated with metoprolol alone, and 141 

treated with atenolol and HCTZ) were included in the analysis. The variant rs201279313, 

characterized by the deletion of a TTA in the intronic region of SLC25A31, was associated 

with favorable DBP response to atenolol at a Bonferroni-corrected significance in the meta-

analysis. The SLC25A31 gene encodes a membrane transporter involved in the exchange of 

ADP and ATP across mitochondrial membranes which maintains mitochondrial membrane 

potential.

A second associated variant, rs11313667, is characterized by an insertion/deletion variant 

(C/−) in the intronic region ofleucine rich repeat containing 15 (LRRC15) gene. This SNP 

was associated with favorable SBP response in the AA population. It is important to note 

that platelet glycoprotein 5 present in the intronic region of the LRRC15 gene is associated 

with thrombosis and is elevated in hypertensive patients. In the β-blocker monotherapy 

group, a third SNP variant, rs1367094 present in the intronic region of the gene ZMAT4, 

was also associated with better DBP response at genome-wide significance. The effect size 

of the three variants was robust with per allele β values of −4.42 (rs201279313), −3.65 

(rs11313667), and −5.34 (rs1367094) mmHg. The SNPs discovered in this genomic wide 

meta-analysis warrant further investigation.
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2.2. Genetic Epidemiology of Responses to Antihypertensives

The Genetic Epidemiology of Responses to Antihypertensives (GERA1 and GERA2) 

studies were the earliest pharmacogenetics study in antihypertensive agents and are a set of 

multi-ethnic prospective cohort studies examining the interindividual variability of response 

to antihypertensive agents [36,37]. After a 4 week washout, GERA1 evaluated response to 4 

weeks of HCTZ monotherapy in 505 individuals (280 Caucasian and 225 AA). GERA2 

assessed candesartan monotherapy response in 439 individuals of White and AA descent. 

The GERA cohorts have been employed in both discovery and replication analyses. Since 

many of the primary cohort studies involved multiple drugs or subjects from multiple racial 

backgrounds, pooling these studies has proven essential for increasing the sample size to 

enable discovery and improve generalizability of any identified variants.

For example, in a meta-analysis of over one million variants in the GERA1 and PEAR study 

cohorts, two variants were identified in HCTZ-exposed Caucasians at nearly genome-wide 

significance [38]. The two cohorts had similar demographics except that the PEAR enrollees 

were older and had higher pretreatment BPs. However, GERA1 assessed BP in a clinical 

research center, as opposed to the home BP responses measured in PEAR. The most 

significant association with HCTZ BP response was rs16960228, an intronic SNP located in 

PRKCA (encoding protein kinase Cα) which met genome-wide significance. This drug–

gene interaction was replicated in the GENRES and NORDIL studies, but did not reach 

significance in the MIHYPHCTZ study (trials described below). A second variant, 

rs2273359 near the GNAS-EDN3 gene regions, was nearly genome-wide significant. The 

association was replicated in the NORDIL study, but genetic data were unavailable for this 

variant in the GENRES and MIHYPHCTZ studies.

In AAs, the strongest signal identified for HCTZ response was found in YEATS4 (YEATS 

domain containing 4) related to rs7297610 [39]. This SNP was independently associated 

with DBP response in both the GERA1 and PEAR 1 cohorts. rs7297610 belongs to a 

haplotype consisting of two additional variants on chromosome 12 – rs317689 near LYZ 
(lysozyme) and rs315135 near FRS2 (fibroblast growth receptor substrate 2). The variant 

rs7297610 was found to be an expression quantitative trait locus of YEATS4, as baseline 

leukocyte mRNA expression varied across genotypes [40]. Expression of YEATS4 was 

reduced post-treatment in those with the CC genotype, providing mechanistic insight into 

the relevance of this variant.

The GERA2 study identified genes relevant to angiotensin II receptor blockade. One sub-

investigation identified 273 polymorphisms which predicted candesartan response, but held 

the opposite direction of effect for associations with HCTZ response [41]. The SNP 

rs11020821 near FUT4 (fucosyltransferase 4) was the most highly associated variant in 

Caucasians. A second SNP near FUT4, rs16924603, was nominally significant and 

maintained the same direction of effect in AAs. These variants may prove important in the 

selection of a diuretic or angiotensin II receptor blocker as initial antihypertensive therapy.

Eadon et al. Page 6

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2019 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Genetics of Drug Responsiveness in Essential Hypertension and Losartan 
Intervention For Endpoint Reduction in Hypertension

The GENRES study was a single center, placebo-controlled crossover study. Subjects 

included 228 Finnish men who received monotherapy of amlodipine, bisoprolol, HCTZ, or 

losartan in a sequential, but randomized order [42]. The study differed from PEAR and 

GERA in that neither home nor office BP was measured; instead, 24 h ambulatory BP 

monitoring was employed. The GENRES study importantly identified the missense variant 

rs3814995 in nephrin (NPHS1), which is enriched in the Finnish population associated with 

losartan response [43]. This variant was first replicated in the GERA2 and SOPHIA cohorts, 

and later in the Losartan Intervention For Endpoint reduction in hypertension (LIFE) study, 

an additional Finnish cohort study (including men and women) which examined atenolol and 

losartan response in 927 subjects [44]. As opposed to GENRES, LIFE did not include an a 

priori pharmacogenomic outcome and this information was retrospectively acquired.

By co-examining the bisoprolol arm of the GENRES study with the atenolol arm of LIFE, 

rs2514036, a SNP in ACY3, was found associated with beta-blocker response. However, 

rs2514036 was not found to be predictive of atenolol response in the PEAR cohort. Two 

additional HCTZ response SNPs were uncovered near the ALDH1A3 (rs3825926) and 

CLIC5 (rs321329) genes, which maintained the same direction of effect in the PEAR and 

GERA1 cohorts.

2.4. The Italian cohorts

Four Italian studies have contributed considerable evidence for novel pharmacogenomic 

predictors of BP response: SOPHIA, the PHSS, the MIHYPHCTZ, and the CSN. The 

SOPHIA study specifically assessed losartan response in 372 hypertensive individuals. The 

study initially enrolled 722 hypertensive subjects with a systolic BP between 140 and 179 

mmHg and DBP between 90 and 109 mmHg [45]. Clinic visit BP response was utilized as 

the primary outcome after 4 weeks of losartan therapy. A number of issues affected the 

sample size in this investigation. For example, 25.3% of the cohort had normalization of 

their BP during an 8-week run-in period which required enrollees to meet dietary sodium 

and potassium restrictions. These subjects, as well as those with prior BP treatment (N = 

106), were excluded from the final analysis. Finally, the genotyping of 124 individuals failed 

to meet quality control. In the 372 remaining individuals, four SNPs (rs10752271, 

rs10906202, rs4747995, and rs10737061) in the CAMK1D gene were significantly 

associated with losartan SBP response. The gene is relevant to the aldosterone synthesis 

pathway. An intronic SNP of CAMK1D, rs10752271, reached Bonferroni significance and 

was replicated in the GENRES cohort. Whether this variant can be extrapolated as a 

predictor of response to other ARBs remains to be seen since the SNP was not associated 

with candesartan response in the GERA2 study.

Two Italian cohorts evaluated HCTZ response in individuals without prior treatment. The 

MIHYPHCTZ enrolled 142 newly diagnosed individuals with hypertension and the PHSS 

contributed an additional 343 individuals who had not undergone prior treatment for 

hypertension [46]. All participants were Caucasian with an office SBP > 140 mmHg and a 

DBP > 90 mmHg (MIHYPHCTZ allowed either SBP or DBP as entrant criteria). Both 
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studies maintained similar protocols. The MIHYPHCTZ study required a 4-week run-in 

period to standardize sodium and potassium intake, followed by an 8-week total treatment 

period. This interventional period consisted of 12.5 mg daily of HCTZ for 4 weeks and then 

25 mg daily of HCTZ for the final 4 weeks. The PHSS study used an 8-week run-in period, 

followed by an 8-week intervention trial of 25 mg daily of HCTZ without titration. Subjects 

in the PHSS cohort were older with higher BMIs and pretreatment SBPs. The GENRES, 

GERA1, NORDIL, and CSN served as replication cohorts.

The GWAS in these two Italian cohorts revealed six variants predictive of SBP response and 

five variants predictive of DBP. No SNPs were significant for both phenotypes. The most 

highly associated variants with SBP response were found in the introns of two genes, TET2 
or Tet methylcytosine dioxygenase 2 (rs12505746) and CSMD1 or CUB and Sushi multiple 

domains protein 1 (rs7387065 and rs11993031). Two SNPs, rs12505746 in TET2 and 

rs7387065 in CSMD1, were replicated in the GENRES cohort, but not in the GERA1, 

NORDIL, PEAR, or CSN groups. Both genes appear to have plausible mechanisms as TET2 
is a mediator of αENaC gene transcription in the renal collecting duct and CSMD1 is a 

member of the vacuolar-protein-sorting-13 family that has been associated with peripheral 

artery disease, metabolic syndrome, and risk of hypertension. One SNP identified in 

MIHYPHCTZ and PHSS, rs9590353 in UGGT2, was associated with HCTZ DBP response 

and was replicated in the CSN cohort. UGGT2 encodes a glycoprotein without a clear 

mechanistic role in hypertension.

The CSN is an Italian network consisting of thousands of individuals with hypertension [47]. 

These individuals are followed longitudinally by general practitioners near Naples. The 

network has evaluated the interaction of hypertension with renal function [48], obesity [49], 

left ventricular hypertrophy [50], and many other relevant phenotypes. This cohort has 

contributed important data detailing the role of a Gln27Glu variant (rs1042714) in the Beta2-

adrenergic receptor ADRB2 gene that mediates differential effects on left ventricular 

hypertrophy in those treated with atenolol [51]. The authors conclude that individuals with 

the Glu27 allele are more likely to benefit from enalapril therapy as opposed to atenolol. Of 

note, the opposite conclusion was reached in an Australian cohort where Gln27 

homozygotes showed less improvement in LVH in response to carvedilol [52].

2.5. International Verapamil SR Trandolapril Study

The INVEST Study is a multinational, open label study of 22,576 patients with hypertension 

and coronary artery disease [53]. The study aimed to compare morbidity and mortality 

outcomes in individuals randomized to receive verapamil or atenolol. Subjects were co-

treated with trandolapril and/or HCTZ to achieve adequate BP control. The study concluded 

that the calcium antagonism strategy was as effective as the β-blockade strategy in achieving 

BP goals and preventing adverse events. A subset of individuals was genotyped as part of the 

INVEST-GENES study, enabling a number of important BP response variants to be 

uncovered. Many of the studies discussed in detail above were specifically developed with a 

primary endpoint of BP response; in contrast, INVEST was different as its primary outcome 

was related to cardiovascular events including all-cause death, nonfatal MI, and nonfatal 

stroke.
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Since the study involved a CCB arm, it follows logically that several of the genes uncovered 

in INVEST are related to calcium transport or sensitivity. One such gene, KCNMB1 [54], 

was relevant for verapamil response in 5979 INVEST patients with White, Black, or 

Hispanic ancestries. KCNMB1 encodes the β1 subunit of the BK channel. Decreased 

function of this protein is associated with decreased calcium sensitivity, elevated BP, and 

cardiac hypertrophy. Two nonsynonymous polymorphisms in the KCNMB1 gene, Glu65Lys 

(rs11739136) and Val110Leu (rs2301149), contribute to the inter-patient variability in 

verapamil BP response. Lys65 variant carriers achieved BP targets faster than individuals 

who were homozygous for Glu65. The Leu110 allele correlated with protection from 

nonfatal myocardial infarction in patients treated with verapamil, but not those treated with 

atenolol.

Mirroring these results, important variants in the calcium channels themselves have been 

identified which may aid in the differential selection of a CCB or β-blocker. The variants 

tested were uncovered through candidate association studies, not genome-wide tests. 

CACNA1C encodes the alpha1c-subunit of the L-type calcium channel. In a candidate SNP 

nested case-control study, eight SNPs in CACNA1C were screened for an interaction 

between treatment effect of verapamil or atenolol with the primary outcomes of death, 

myocardial infarction, and stroke. Among those randomized to verapamil SR treatment, 

rs1051375 allele status correlated strongly with outcome. The AA genotype was associated 

with a reduction in the primary outcome (odds ratio 0.54, 95% confidence interval or CI 

0.32–0.92), while the GG genotype was associated with an increased risk of the composite 

primary outcome in those taking verapamil (odds ratio 4.59 95% CI 1.67–12.67) [55]. A 

second calcium channel, CACNB2 encoding the regulatory β2 subunit of the voltage-gated 

calcium channel, was associated with cardiovascular outcomes in individuals randomized to 

the verapamil arm [56]. The GG genotype of a promoter SNP (rs2357928) was associated 

with an increased risk of the primary outcomes in Whites, Blacks, and Hispanics in the 

verapamil arm as compared to the atenolol arm. A second SNP, rs11014166, was also 

similarly associated with outcomes in those of Hispanic ancestry as compared to Whites or 

Blacks. CACNA1C and CACNB2 remain mechanistically plausible genes that may aid in 

the selection of a CCB or beta-blocker.

The large sample size of INVEST-GENES facilitated the replication of commonly studied 

variants. For example, the influence of ADRB1 on hypertension and β-blocker response is 

well-documented, but inconsistent [57–61]. In INVEST, the Ser49-Arg389 ADRB1 
haplotype was associated with a significant mortality risk (odds ratio 3.66, 95% CI 1.68–

7.99) – whether 1 or 2 alleles were present [62]. This haplotype consists of a two SNP 

model: rs1801253 (Arg389Gly) and rs1801252 (Ser49Gly). The mortality risk was more 

pronounced in individuals treated with verapamil and nonsignificant in those individuals 

receiving atenolol. This finding would suggest that those with the Ser49-Arg389 should 

preferentially receive β-blocker therapy as it attenuates the risk mortality risk of the Ser49-

Arg389 ADRB1 haplotype. INVEST did not necessarily conclude the converse, i.e. that 

Gly49 individuals should preferentially receive CCB therapy. However, this 

recommendation would be corroborated by recent results from the Secondary Prevention of 

Small Subcortical Strokes (SPS3) trial, in which individuals with the ADRB1 Gly49 allele 
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who were treated with atenolol were at higher risk for major adverse cardiovascular events 

(hazard ratio 2.03; 95% CI 1.20–3.45) [63].

Of note, additional variants relevant to adrenergic signal transduction have been assessed. 

Polymorphisms in G protein–coupled receptor kinase 4 (GRK4) interrupt adrenergic 

signaling by leading to phosphorylation of the adrenoreceptors and inhibition of cyclic 

adenosine monophosphate production. GRK4 polymorphisms were identified in the PEAR 

and INVEST cohorts which both impact atenolol mediated BP reduction and cardiovascular 

outcomes [64].

While the INVEST cohort reinforced the association of the ADRB1 haplotype with β-

blocker response phenotypes, the study had the opposite effect on another well-chronicled 

variant, rs4961 in the α-adducin gene (ADD1). The T allele of this SNP is a 

nonsynonymous Gly460Trp mutation in ADD1. It has been associated with salt sensitivity, 

conferring increased diuretic efficacy in some studies, but not others [65–68]. A meta-

analysis of four studies and more than 1000 patients ultimately found a small but significant 

effect of the GG genotype on increased HCTZ BP response [69]. However, the results of 

INVEST suggest the T allele is associated with increased cardiovascular risk, but not HCTZ 

response as measured by either 1) DBP change or 2) total number of antihypertensive agents 

required for BP control [70].

To develop clinically useful recommendations from a vast quantity of genetic data – 

facilitating selection of either β-blocker or CCB therapy – the INVEST group built a genetic 

risk score model [71]. The most highly associated nonsynonymous SNPs in the White and 

Hispanic ethnic groups were tested and later validated in the NORDIL study. Three variants 

were selected for inclusion in the model: rs16982743 in SIGLEC12, rs893184 in A1BG, and 

rs4525 in F5. A genetic risk score ranging from 0 to 3 is assigned based on the number of 

variant alleles present with one point applied for each genotype that confers increased risk in 

the verapamil arm over the atenolol arm. In individuals with a risk score of 0 or 1, CCB 

therapy was associated with lower odds of meeting the cardiovascular endpoint (odds ratio 

0.60, 95% CI 0.42–0.86), while those at higher risk with a score of 2 or 3 were more likely 

to meet a cardiovascular endpoint higher risk (odds ratio 1.31, 95% CI 1.08–1.59) on 

verapamil and should receive a β-blocker instead.

2.6. Nordic Diltiazem

The NORDIL Study is a prospective, randomized study which enrolled over 10,000 subjects 

aged 50–74 in Norway and Sweden [72]. The cohort was composed of individuals with an 

initial diastolic BP exceeding 100 mmHg. Individuals were randomized to receive diltiazem, 

a diuretic, a β-blocker, or both a diuretic and a β-blocker. The study concluded that diltiazem 

was as effective as diuretics, beta-blockers, or both in preventing cardiovascular adverse 

events. An additional outcome of the study was the identification of rs13333226, a SNP in 

the uromodulin gene (UMOD) [73]. While this SNP was not associated with response to an 

antihypertensive agent, it was independently associated with a risk of hypertension and 

reduced urinary uromodulin excretion. The variant’s renal etiology provides a plausible 

mechanism for mediating sodium homeostasis.
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NORDIL contributed a couple of very important pharmacogenomic predictors of drug 

response. First, in a sub-study of 1990 diltiazem treated individuals, genotyping was 

completed for rs12946454, an intronic SNP of PLCD3. PLCD3 encodes a Phospholipase C 

enzyme, essential for calcium release in smooth muscle and maintaining vascular tone. The 

T allele of PLCD3 was associated with both increased systolic and diastolic BP response to 

diltiazem [74].

A second major contribution of the NORDIL study was to help identify a polymorphism in 

NEDD4L (the neural precursor cell–expressed developmentally downregulated 4-like) gene 

as a mediator of HCTZ response [75]. This SNP leads to alternative splicing and varying 

expression of the C2 domain in its host gene and related protein [76]. NEDD4-2 assists in 

the regulation of cell surface expression of the epithelial sodium channel (ENaC) in the 

principal cell of the collecting duct. The G allele of this SNP is associated with higher ENaC 

expression and higher baseline BP. This allele also predicted greater response to HCTZ and 

atenolol in the NORDIL study, without an effect on diltiazem efficacy, a finding that was 

replicated in both the PEAR and INVEST studies [77].

2.7. GenHAT

The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial 

(ALLHAT) was a large study of over 40,000 individuals that reached completion in 2002. 

The study randomized patients aged 55 or older with at least one cardiovascular risk factor 

to chlorothalidone, atenolol, doxazosin, lisinopril, or amlodipine therapy. BP response and 

cardiovascular outcomes were assessed. As an ancillary study to ALLHAT, GenHAT 

included 39,114 individuals and examined several candidate hypertension-related genes to 

determine if variants in the six genes interacted with antihypertensive drug response.

The ACE gene regulates the renin-angiotensin system and promotes conversion of 

angiotensin I to angiotensin II. Previous studies had identified an interaction between ACE-

inhibitor response and the insertion/deletion (I/D) polymorphism in the ACE gene 

(rs1799752) that accounts for variation in circulating levels of the angiotensin converting 

enzyme. GenHAT rather definitively showed that the DD genotype does not influence BP 

reduction or cardiovascular outcomes in patients on ACE-inhibitor therapy, as compared to 

the I/D and II alleles [78]. Although the investigators noticed differences in the prevalence of 

myocardial infarction and left ventricular hypertrophy, the rates of death during 5-year 

follow-up did not differ for the various ACE I/D genotypes. Some of the reasons for the 

observed difference in BP independent effects in ACE I/D genotype groups might be related 

to variation in circulating ACE levels. Although the ACE DD genotype was not associated 

with ACE-inhibitor response, an additional meta-analysis did find a small but significant 

association with HCTZ response [69].

GenHAT is one of the larger genetic studies of hypertension. Its cohort was sufficient to 

enable primary discovery in the AA population. A sub-study assessed the contribution of 

genetics to interindividual variability in response to chlorothalidone, doxazosin, lisinopril, 

and amlodipine in AAs. Thirty-five candidate genes involved in the regulation of salt-water 

balance, the renin-angiotensin system, coagulation, and tissue modeling were interrogated in 
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1131 participants to determine BP response to each medication [79]. No variants reached 

Bonferroni-corrected significance.

Despite this, several variants were identified at suggestive levels of significance which can 

differentiate response to the various BP agent pairings. For example, SNPs in AGTR1 
(rs275653), F7 (rs6046), F13 (rs5985), MMP3 (rs3025058), and REN (rs6681776) were able 

to assist in distinguishing predicted chlorthalidone efficacy from amlodipine or doxazosin. 

Variants in AGT (rs5051), F7 (rs762637), and REN (rs6681776) were useful in predicting 

lisinopril utility over that of chlorthalidone. It is interesting to note that the F7 and MMP3 
genes were associated with both cardiovascular outcomes and BP response to medications.

2.8. International Consortium for Antihypertensive Pharmacogenomics Studies

The ICAPS (http://icaps-htn.org) is a multinational collaboration of at least 29 cohorts with 

over 300,000 participants. All of the studies and trials described above are included among 

its associated groups. ICAPS states its goal is to advance pharmacogenomic discovery and 

find definitive evidence to inform the use of genetic information to guide antihypertensive 

treatment decisions.

The power of this collaborative approach is illustrated in a recent meta-analysis of HCTZ BP 

response [80]. This study included individuals from the GENRES, GERA1, MIHYPHCTZ, 

NORDIL, PEAR1, and PHSS studies. Caucasians were used as the discovery cohort and the 

AA population was examined for replication. The meta-analysis identified two regulatory 

regions GJA1 (Gap Junction protein Alpha 1 gene) and FOXA1 (Forkhead box A1 gene) 

using a GWAS. GJA1 was associated with SBP response to thiazides in the caucasian 

population (rs11750990). GJA1 encodes for Connexin-43, a gap junction protein, which is 

present in myocardial smooth muscles and regulates cell-to-cell communication, elasticity 

and contractibility of vascular wall. In the replication cohort, a similar association was found 

in a second GJA1 variant, rs10499113, in the AA population.

The second locus near FOXA1 was associated with DBP response to HCTZ in both 

Caucasians (rs177848) and AAs (rs177852). FOXA1 is expressed in the collecting duct of 

the kidney and it appears to be a transcription factor, binding to the promoter regions of the 

vasopression receptor, Na+-K+ ATPase, and E-cadherin genes. Although none of the four 

SNPs in GJA1 and FOXA1 met genome-wide significance, all of the associations were 

suggestive. Adjunctively, the investigators performed a functional GWAS, using a gene-

expression-based filtering of the variants. In the meta-analysis approach, the HSD3B1 gene 

(Hydroxyl-delta-5-steroid-dehydrogenase, 3 beta and steroid delta-isomerase 1) was 

identified and found to influence BP response to thiazides in the Caucasian population. 

HSD3B1 is associated with aldosterone and ouabain synthesis; genetic variation in this gene 

has been associated with BP variation. The three gene loci that were identified influence the 

BP response to thiazide diuretics. Future research should be focused on reconciling these 

associations with the many other predictors of thiazide response, building the most complete 

model possible.
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2.9. Pharmacogenomic studies in Asian cohorts

A number of excellent cohort studies have examined variants predictive of antihypertensive 

response in Asian populations. In a Chinese prospective cohort called the Chinese 

Community-Based Comprehensive Prevention and Control of Hypertension project, 

candidate gene variants were assessed in an analysis of 1447 individuals. A SNP (rs7079) in 

AGT was found to be nominally associated with DBP reduction during benazepril therapy 

[81]. In a smaller cohort of 265 Japanese individuals (part of the HOMED-BP-GENE study) 

six SNPs were identified at nominal significance as associated with BP response of CCBs, 

ACE-inhibitors, and angiotensin II receptor blockers [82]. It is well known that amlodipine 

is metabolized by the CYP3A4 and CYP3A5 enzymes. In a study of hypertensive Chinese 

patients after renal transplantation, significant associations were found that the efficacy of 

amlodipine in CYP3A5*3 homozygotes was significantly higher than that in patients with 

other CYP3A5 genotypes [83].

2.10. Biologically attractive variants

The associations discussed in the preceding sections have been uncovered through either 

carefully selected candidate variant studies or unbiased whole genome approaches. Biologic 

plausibility is readily understood for candidate variants in genes of BP pathways such as the 

renin-angiotensin-aldosterone system, adrenergic signaling, or sodium reabsorption 

pathways. For example, rs4149601 in NEDD4L impacts expression of ENaC in the 

collecting duct, driving sodium reabsorption. The locus for this SNP was first found in a 

linkage analysis and then the actual SNP was confirmed to impact BP in additional cohorts 

[76,84,85]. Subsequently, the G allele of this SNP was found to be associated with higher 

ENaC expression, higher baseline BP, and improved response to diuretics [75]. Although the 

NORDIL study identified an association between the G allele of rs4149601 and diuretic 

response, the effect size was greatest among the 258 individuals on a potassium-sparing 

diuretic (β: 9.0 ± 3.4 mmHg in the dominant model) such as amiloride which directly blocks 

ENaC – speaking to the biologic relevance of this variant.

Other biologically attractive candidate variants include the GenHAT variants in 

angiotensinogen (rs5051) and renin (rs6681776). These SNPs offer credible targets for 

discrimination between lisinopril and chlorthalidone efficacy [79], possibly acting as 

surrogates for renin activity. Analogously, the CACNA1C (encoding a subunit of the L-type 

calcium channel) variant from INVEST (rs1051375) aids in differential selection of a β-

blocker or CCB [55]. Further corroborating their role, variants in CACNA1C and AGT were 

also discovered to predict incident hypertension in the Cohorts for Heart and Aging 

Research in Genomic Epidemiology Consortium [26]. These studies indicate that several 

gene loci that predict the development of hypertension and cardiovascular outcomes also 

influence the response to anti-hypertensive medications.

In contrast, rs7297610 in YEATS4 is a less obvious biologically attractive candidate. 

YEATS4 is a transcription factor that is involved in acetylation of nucleosomal histone 

proteins. The SNP was initially identified as part of a GWAS [39]. In order to enhance the 

plausibility of its relationship to HCTZ response, the investigators showed that the variant 
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allele impacted expression of its host gene and that expression was associated with a HCTZ 

response phenotype [40].

Ten Genome wide association studies have revealed a great deal about the underlying 

biology of hypertension. To this end, a number of variants and genes identified in 10 of the 

largest incident hypertension GWAS trials [25–29,86–90] were cross-referenced with the 

pharmacogenomic predictors discussed above. Since the variants from genes discovered in 

the disease association studies served as candidates for some of the pharmacogenomic 

studies, overlap did exist. As discussed above, SNPs from FGF5, SH2B3, and EBF1 were 

associated with both HCTZ response in PEAR and incident hypertension in the CHARGE 

consortium [29,30]. SNPs in PLCD3, CACNA1C, and ADRB1 were similarly found to 

impact incident BP in the CHARGE and Global BPgen Consortiums [26,29]. The majority 

of variants and genes that overlap with pharmacogenomic variants were identified from 

disease association studies published prior to 2015. It is possible that the variants in newer 

GWAS studies [86–90] will ultimately associate with antihypertensive drug efficacy, but 

these studies have not been conducted yet.

Pharmacogenomic Predictors of Toxicity—Much of the discussion above has 

centered on variants associated with BP drug efficacy; however, variants associated with 

pharmacogenomic predictors of toxicity have also been uncovered – with the strongest 

evidence found in the HCTZ studies. For example, the GERA and PEAR studies have 

identified genetic variation underlying HCTZ-induced hypertriglyceridemia, elevated uric 

acid levels, and hypokalemia. Two variants in NELL1, rs12279250 and rs4319515, were 

found to be associated with a significant change in fasting serum triglyceride levels in AAs 

[91]. In both AAs and Caucasians, several loci were identified that predicted elevations in 

uric acid [92]. In the PEAR and GERA cohorts, two SNPs near the HEME binding protein 1 

gene (rs10845697) and the Mitoferrin-1 gene (rs11135740) were found to be significant 

predictors of hypokalemia in a mixed analysis of Caucasians and AAs [93].

Variants have also been identified that are predictive of HCTZ-induced new-onset diabetes 

or elevated fasting plasma glucose in the INVEST-GENES study. In the INVEST and PEAR 

cohorts, variants predictive of elevating fasting blood sugar or new-onset diabetes have been 

investigated. Studies have identified SNPs associated with the development of HCTZ-

induced new-onset diabetes [94–96]. A risk allele, rs7917983 in TCF7L2, yielded an odds 

ratio of 1.53 (95% CI 1.04–2.25) for the development of diabetes in response to HCTZ use. 

The opposite allele held a protective effect, as it decreased the odds of diabetes development 

to 0.48 (95% CI 0.27–0.86) in individuals never treated with HCTZ [94]. In a candidate 

association study, KCNJ1 was assessed because of the suspected relationship between 

HCTZ-induced hypokalemia and blood sugar. KCNJ1 encodes a potassium channel which 

has been associated with changes in fasting plasma glucose in response to HCTZ treatment. 

During a combined analysis of INVEST and PEAR, over 10 SNPs were found to be 

significantly associated with new-onset diabetes during HCTZ therapy. Haplotypes were 

constructed for the AA, Hispanic, and Caucasian populations [95] which are predictive of 

diabetes development. Although the odds ratio of new-onset diabetes is above 2 when risk 

alleles are present, it is clear a multivariant predictive model is required should this 

information be translated into clinical practice.
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3. Conclusion

In summary, we present an overview of the most impactful pharmacogenomic studies of 

antihypertensive agent response. A prodigious wealth of information has been derived from 

the efforts of those involved in PEAR, GERA, GENRES, SOPHIA, MIHYPHCTZ, the 

CSN, INVEST, NORDIL, GenHAT, ICAPS, and others. This knowledge has increased our 

appreciation of the underlying pathophysiology of hypertension as well as the 

pharmacodynamics of commonly used drugs. High evidence variants relevant to HCTZ, β-

blockade, calcium channel antagonism, and renin-angiotensin antagonism are presented and 

summarized.

It is most likely that polygenic models will be needed to inform clinical behavior in an 

additive fashion. A sophisticated computational analysis will be required to build clinical 

recommendation sets from the polygenic architecture that has been discovered. As we move 

into the next phase of pharmacogenomic discovery and application, randomized controlled 

trials should, to the extent possible, standardize genotyping platforms, define precise 

phenotypes and outcomes, and employ common BP measurement techniques. Clinical 

effectiveness trials may be entertained which examine panels of genes in a real-world setting 

of polypharmacy. The incredible diversity of genes and variants uncovered presents both an 

obstacle and an opportunity for future clinical translation.

4. Expert commentary

The promise of discovery using GWA Studies for complex medical disorders has been 

significantly underappreciated. As this review shows, multiple SNPs in genes with 

biological plausibility for a role in hypertension, BP response and/ or alternatively 

cardiovascular and mortality risk have been identified. Given that only rare variants would 

have a large effect size, it is not surprising that the platforms used in the pharmacogenetics 

studies reported in this review would not capture these variants given that all required a 

minor allele frequency of > 0.05. This review substantially supports the value of multiple 

SNPs in combination providing significant measures of the interindividual variability of BP 

response to multiple classes of antihypertensive agents. In addition, although evidence for 

adverse events related to antihypertensive therapy is now forthcoming, it is highly likely that 

many more issues related to the genetic prediction of safety of antihypertensive medications 

will be coming forward.

Power and replication continue to be the biggest barriers to identifying genetic predictors of 

BP response. Combined cohorts, as mentioned in this report, are limited primarily in 

heterogeneity in study design that impacts patient characteristics, methods of pre-study 

medication withdrawal, and duration and dosing of study medication. Despite these 

differences, consistent genetic signals are emerging, which should, if they play a predictive 

role in BP response to a particular agent or class of agent. This suggests then, that despite 

heterogeneity of study populations and study design, the same answer should be obtainable.

Implementation science is now required to best take these findings forward in a way that is 

clear, easy to use and overcomes the potential clinician inertia that may be present due to 
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lack of formal education in genetics, familiarity with the available pharmacogenomic 

evidence, and a computer decision support (CDS) system which efficiently filters drug dose 

and class recommendations in the clinic. Before this translation can be realized, consensus 

guidelines will be required which delineate the variants relevant to each drug, in each 

population.

5. Five-year view

There are key barriers to implementing pharmacogenomic-based prescribing in the treatment 

of hypertension. Two notable issues include the polygenic nature of BP response and the 

relatively small contribution of any single variant to the BP response phenotype. The authors 

speculate that even advances in technology will be unable to overcome these impediments 

over the next several years. Many electronic medical record systems contain CDS to aid 

clinicians in dosing medications. The authors believe it is more likely that a clinical 

bioinformatics model of antihypertensive drug-dosing and titration will be implemented 

before a genomic model. Factors such as age, demographics, race, ethnicity, drug– drug 

interactions (DDIs), and plasma renin activity are stronger predictors of antihypertensive 

response than most of the genetic variants discussed in this review [97]. A CDS algorithm 

that incorporates these clinical predictors, DDIs, and plasma renin activity is a more cost-

effective and evidence-based approach to optimizing antihypertensive response. Additional 

implementation science studies are required to confirm if genetic variants of 

antihypertensive response add value over a clinical algorithm.

From an investigational standpoint, whole exome (or genome) sequencing is likely to 

become more common place in clinical studies of genetics. In some cases, this sequencing 

data will move into the clinical sphere as part of implementation science; however, it is more 

likely to be applied to disease prediction or pharmacogenomic prediction with large effect 

sizes. The genetic data will continue to trend toward increasing complexity and even greater 

individualization. Algorithm development will prove essential to afford rapid translation of 

polygenic data into a single, sometimes binary, clinical recommendation. The 

implementation of these algorithms will also rely upon CDS to move complex genetic 

matrices into the clinical setting. Complex risk scores will be calculated behind the scenes 

and clinicians will use these risk scores to inform their prescribing habits.
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Key issues

• Hypertension is a major risk factor for cardiovascular disease and blood 

pressure control remains sub-optimal in the United States. Treatment-resistant 

hypertension exceeds 13% of the general population. Present guidelines 

provide little guidance on personalization of antihypertensive regimens.

• Pharmacogenomic markers have been identified that predict the blood 

pressure lowering response to commonly used antihypertensive agents.

• The major trials and cohorts providing the strongest level of evidence for 

genomic predictors of hypertension drug response are described. These 

studies are quite heterogeneous in their populations, outcomes, variants 

assessed, drugs utilized, and measurement of blood pressure. As such, the 

identified variants may replicate in some, but not all studies. Genetic 

interactions with blood pressure response have failed to meet the evidentiary 

standards of the Clinical Pharmacogenomics Implementation Committee.

• Barriers persist which limit clinical translation. To date, few drugs have expert 

consensus on pharmacogenomic dosing guidelines. Further, the small effect 

size of some variants, frequent polypharmacy, and polygenic nature of 

antihypertensive drug response must be addressed and overcome in future 

studies.

• In order to accomplish clinical translation, multiple studies with large sample 

sizes, well defined populations, and standardized blood pressure phenotypes 

are required. Replication is essential. The development of multi-gene models 

and computer decision support algorithms will further assist in this endeavor.
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