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Abstract

Introduction—A biocompatible strategy to promote bacterial eradication within the root canal 

system following pulpal necrosis of immature permanent teeth is critical to the success of 

regenerative endodontic procedures. This study sought to synthesize clindamycin-modified triple 

antibiotic (metronidazole/MET; ciprofloxacin/CIP; clindamycin/CLIN) polymer (Polydioxanone, 

PDS) nanofibers and determine in vitro their antimicrobial properties, cell compatibility, and 

dentin discoloration.

Methods—CLIN only and triple antibiotic CLIN-modified (CLIN-m, minocycline-free) 

nanofibers were processed via electrospinning. Scanning electron microscopy (SEM), Fourier 

transform infrared spectroscopy (FTIR), and tensile testing were carried out to investigate fiber 

morphology, antibiotic incorporation, and mechanical strength, respectively. Antimicrobial 

properties of CLIN only and CLIN-m nanofibers were assessed against several bacterial species by 

direct nanofiber/bacteria contact and over time based on aliquot collection up to 21 days. 

Cytocompatibility was measured against human dental pulp stem cells (hDPSC). Dentin 

discoloration upon nanofiber exposure was qualitatively recorded over time. The data were 

statistically analyzed (p<0.05).

Results—The mean fiber diameter of CLIN-containing nanofibers ranged between 352±128 nm 

and 349±128 nm and was significantly smaller than PDS fibers. FTIR analysis confirmed the 

presence of antibiotics in the nanofibers. Hydrated CLIN-m nanofibers demonstrated similar 
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tensile strength to antibiotic-free (PDS) nanofibers. All CLIN-containing nanofibers and aliquots 

demonstrated pronounced antimicrobial activity against all bacteria. Antibiotic-containing aliquots 

led to a slight reduction in DPSC viability but were not considered toxic. No visible dentin 

discoloration upon CLIN-containing nanofiber exposure was observed.

Conclusion—Collectively, based on the remarkable antimicrobial effects, cell-friendly, and 

stain-free properties, our data suggest that CLIN-m triple antibiotic nanofibers might be a viable 

alternative to minocycline-based antibiotic pastes.
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Introduction

Tooth loss in young children as a result of deep caries or trauma-induced pulpal necrosis can 

lead to complications in craniomaxillofacial growth and development, thus impacting their 

psychosocial well-being (1, 2). From a clinical standpoint, the management of pulpal 

necrosis in immature permanent teeth is challenging due to the abrupt interruption of root 

development resulting in thin dentinal walls, wide-open apices, and increased risk of 

cervical fracture (3–6). Calcium hydroxide and mineral trioxide aggregate apexification have 

been widely used to treat immature permanent teeth with necrotic pulps in an effort to obtain 

an aseptic environment and a calcified apical barrier (7). However, neither apexification 

therapy has induced complete root development (length and thickness) (5, 6), which 

compromises the long-term mechanical integrity of the tooth (3, 5–7).

A fairly novel alternative approach to apexification is regenerative endodontics, which aims 

to promote periapical healing, restitution of pulpal function, and root maturation through a 

combinatorial disinfection and intracanal stem cell recruitment approach with the use of 

antibiotic pastes (e.g., triple antibiotic paste [TAP]) and evoked bleeding from the periapical 

tissues, respectively (7, 8). A seminal study by Sato et al. (9) demonstrated significant 

bacterial elimination in deep root canal dentin when using a mixture of metronidazole 

(MET), ciprofloxacin (CIP), and minocycline (MINO) in a paste-like consistency. 

Specifically, MET is a bactericidal imidazole that is highly effective against obligate 

anaerobic bacteria (10), CIP is a bactericidal broad-spectrum synthetic quinolone (11), and 

MINO is a bacteriostatic broad-spectrum tetracycline (9, 12). Despite the documented 

clinical efficacy associated with the use of TAP (1 g/mL), recent evidence demonstrates not 

only toxic effects on various cell types (13–15), but also significant dentin discoloration (9, 

16, 17) and potential anti-angiogenic activity due to the presence of MINO (18–20). 

Meanwhile, clindamycin (CLIN), a bacteriostatic lincosamide (21, 22) known for its efficacy 

against a broad spectrum of endodontic bacteria (i.e., gram-positive aerobes and most 

anaerobic bacteria), seems a clinically viable alternative to MINO. Thus, this study sought to 

synthesize clindamycin-modified triple antibiotic polymer nanofibers as a biocompatible, 

stain-free and potentially pro-angiogenic intracanal drug delivery system for regenerative 

endodontics.
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Materials and Methods

Synthesis and Characterization of CLIN-containing Antibiotic Nanofibers

CLIN only and CLIN-modified (CLIN-m, minocycline-free) triple antibiotic (CLIN, CIP, 

and MET) nanofibers were processed via electrospinning. Polydioxanone suture filaments 

(PDS II®, Ethicon, Somerville, NJ, USA) were cut into pieces and soaked in 

dichloromethane (Sigma-Aldrich, St. Louis, MO, USA) at room temperature for 48 h to 

remove the sutures’ purple color (23–25). Next, undyed PDS suture filaments were dissolved 

in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP, Sigma-Aldrich) at 10 wt.% under stirring 

conditions. CLIN- and CLIN-m-containing polymer (PDS) solutions were separately 

synthesized by dissolving 210 mg (i.e., 35 wt.% relative to the total PDS weight, 600 mg) of 

each antibiotic, followed by 48 h of vigorous stirring. Electrospinning under optimized 

parameters (1.5–2.0 mL/h, 18 cm distance, and 18 kV) was performed using a laboratory 

designed apparatus (26). Antibiotic-free PDS fibers (control) were synthesized, as 

previously reported (23–26). After electrospinning, the fibers were vacuum dried (48 h), 

followed by storage at 4°C until used (27).

Fiber morphology was evaluated using a field-emission scanning electron microscope (FE-

SEM, Model JSM-6701F, JEOL, Tokyo, Japan). The samples were mounted on Al stubs and 

sputter-coated using Au-Pd prior to imaging. The mean fiber diameter was calculated from 

25 single-fibers per image (4 images/group) using ImageJ software (National Institutes of 

Health, Bethesda, MD, USA) (24). Fourier transform infrared spectroscopy (ATR/

FTIR-4100, JASCO, Easton, MD, USA) was performed for each antibiotic powder and the 

processed fibers to confirm incorporation of the chosen antibiotics (24). The mechanical 

strength of the CLIN-containing fibers (15 × 3 mm2, n = 10/group) was gauged under dry 

and wet conditions (24 h incubation in phosphate-buffered saline, PBS) was determined by 

tensile testing (26).

Antimicrobial Properties

The antimicrobial efficacy of electrospun nanofibers and antibiotics-containing aliquots 

generated through nanofiber samples’ incubation (over time assessment) were evaluated 

against Actinomyces naeslundii (An, ATCC 43143), Enterococcus faecalis (Ef, ATCC 

29212), Aggregatibacter actinomycetemcomitans (Aa, ATCC 33384), and Fusobacterium 
nucleatum (Fn, ATCC 25586) through agar diffusion-based assays (28).

Disc-shaped (ϕ = 5 mm) samples were weighed and disinfected by UV light (30 min each 

side). Fn and Aa were anaerobically cultured for 24 h in 5 mL of Brain heart infusion 

supplemented with 5 g/L of yeast (BHI+YE) and 5% vol Vitamin K + hemin. Meanwhile, Ef 
and An were aerobically cultured for 24 h in 5 mL of Tryptic soy broth (TSB). 100 μL of 

each broth was swabbed onto blood agar plates to form a bacterial lawn that was then 

divided into 3 zones: 10 μL of 0.12% chlorhexidine (CHX; positive control), 10 μL of 

distilled water (negative control), and the fiber disc-shaped samples (23, 29). After 2 days of 

incubation, the zones of growth inhibition were measured (in mm).

For the aliquots, square-shaped (15 × 15 mm) samples (n=3/group/bacteria, 4.0±0.2 mg) 

from each nanofibrous mat were cut, disinfected, and rinsed (2×) with sterile PBS. Each 
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sample was placed in an individual glass vial with sterile PBS (5 mL at 37°C). 500 μL 

aliquots were drawn on days 1, 7, 14, and 21 and replaced with an equivalent amount of 

fresh PBS. The aliquot samples were stored at −20 °C until used. Bacterial plates were 

prepared and cultured as aforementioned and after 2 days of either aerobic or anaerobic 

incubation, the diameters (in mm) of the clear zones of growth inhibition were measured 

(23, 28).

Colony-Forming Units (CFU/mL)

An and Ef were specifically selected, based on their association with immature trauma-

induced pulpal necrosis (30). Square-shaped (15 × 15 mm) electrospun samples (n=6/group/

specie) were cut, disinfected, fixed to a plastic sample mount (CellCrown; Scaffdex Ltd., 

Tampere, Finland), and placed individually into 24-well plates. Both An and Ef were 

aerobically cultured overnight in 50 mL of TSB and 2 mL of inoculated broth was placed 

into each well to be aerobically incubated for 3 days (28). The samples were removed, 

rinsed with saline (2×), and placed in 3 mL vials with PBS (n=4/group/specie), which were 

sonicated and vortexed to remove biofilm bacteria for enumeration. A 1:100 saline dilution 

was prepared. 100 μL of dislodged biofilm solution was spiral plated onto blood agar plates, 

which were aerobically incubated (37°C for 24 h) and counted. Two samples per group were 

fixed in buffered 2.5% glutaraldehyde solution (Sigma-Aldrich) and dehydrated in ascending 

ethanol solutions prior to SEM imaging.

Cytocompatibility

UV light-disinfected rectangular-shaped (4.0±0.2 mg; n=4/group) samples were individually 

placed into the wells of 24-well plates containing 5 mL of sterile alpha-Modified Eagle’s 

Medium (α-MEM, Gibco Invitrogen Corporation, Grand Island, NY, USA), supplemented 

with 10% FBS (Atlanta Biologicals Inc., Flowery Branch, GA, USA), and incubated at 

37°C. Aliquots (500 μL) were collected at 1, 7, 14, 21, and 28 days to evaluate cell toxicity 

over time (23). Human dental pulp stem cells (hDPSCs, Lonza, Walkersville, MD, USA) 

obtained from permanent third molars were cultured in low glucose DMEM containing 10% 

FBS and 1% penicillin–streptomycin (Sigma-Aldrich) in a humidified incubator at 37°C 

with 5% CO2. The cells were seeded at a density of 3×103/well (100 μL cell suspension) on 

96-well tissue culture plates. After 4 h of incubation, the media was removed and replaced 

with the collected aliquots (100 μL) that were adjusted to 10% FBS and 1% penicillin–

streptomycin. After incubation, 40 μL of CellTiter 96 AQueous One Solution Reagent 

(Promega Corporation, Madison, WI, USA) was allowed to react with the media for 2 h 

prior to reading the absorbance at 490 nm in a microplate reader (BioTek Instruments Inc., 

Winooski, VT, USA) against blank wells. The DPSCs cultured with the media was used as 

the positive control (23).

Dentin Discoloration

Antibiotic-free (PDS), CLIN only, and CLIN-m electrospun fibers were processed, as 

detailed previously. The electrospun samples (n=3/group) were disinfected by UV light (30 

min each side) and individually mounted in plastic inserts (CellCrown) (27). Fifteen human, 

caries-free, non-restored canines were used in conformity with the rules and guidelines of 

the Indiana University Institutional Review Board (IRB #1407656657). The teeth were 
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longitudinally sectioned using a diamond disk mounted on a straight low-speed handpiece 

(27). All specimens were rinsed in saline solution for 10 min. The tooth slices were placed 

in 24-well plates and exposed to the electrospun fibers. A rubber ring was used to 

standardize the distance between the fibers mounted in CellCrowns and the tooth slice 

surface (27). Next, 2 mL of PBS was pipetted into the wells containing the CellCrown/

nanofiber (i.e., CLIN only, CLIN-m, and antibiotic-free PDS fibers). Triple antibiotic paste 

(TAP, Champs Medical, San Antonio, TX, USA) was also prepared at 1 g/mL (MET, CIP, 

and MINO in equal proportions) and pipetted (2 mL) into the wells for the TAP group. Tooth 

slices were also incubated with PBS (control). PBS and TAP were replaced at each interval 

(17). Macrophotographs of each group were taken at days 1, 7, 14, and 21 to qualitatively 

demonstrate the non-staining properties of the clindamycin-containing nanofibers when 

compared to the TAP and control group (antibiotic-free nanofibers).

Statistical Analysis

Two-way analyses of variance (ANOVAs) followed by Holm-Sidak’s multiple comparisons 

were used to evaluate differences tensile properties, antimicrobial properties (colony 

forming unit assays), and cell viability (cytotoxicity). The significance level was set at 

p<0.05.

Results

Characterization of CLIN-containing Nanofibers

SEM micrographs demonstrated a similar fiber diameter for the CLIN (352±128 nm) and 

CLIN-m (349±128 nm) fibers. Antibiotic-free PDS fibers showed a significantly (p<0.05) 

larger diameter (847±172 nm). The inset graphs show the fiber diameter distribution for all 

groups (Figure 1A). FTIR confirmed the antibiotic’s incorporation into CLIN and CLIN-m 

nanofibers (Figure 1B). The dry tensile strength of PDS and CLIN were similar (6.3±2.0 and 

7.2±1.0 MPa, respectively) and significantly higher than the CLIN-m fibers (2.60±1.6 MPa) 

(Figure 1C). However, upon 24 h of hydration, the tensile strength of the CLIN nanofibers 

decreased significantly (1.3 ± 0.26 MPa) compared to the CLIN-m and antibiotic-free PDS 

fibers.

Antimicrobial Properties

The antimicrobial effects of the CLIN and CLIN-m nanofibers were dependent on the 

bacterial species (Figure 1D). Both nanofiber groups inhibited the bacterial growth of all 

species tested. The CLIN-m nanofibers demonstrated greater inhibition zones when tested 

with Aa and Ef; whereas, the CLIN nanofibers exhibited larger inhibition zones when tested 

with An.

The antimicrobial properties were also evaluated over time. Aliquots containing CLIN 

(CLIN only) or a mixture of CLIN, CIP, and MET (CLIN-m) obtained through nanofibers’ 

incubation over 21 days were tested. A fairly homogeneous and consistent antimicrobial 

activity with a slight decrease in inhibition over 21 days was seen (Figure 2A–D). Overall, 

CLIN-m demonstrated greater bacterial growth inhibition than CLIN and CHX against the 

endodontic bacteria tested.
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Colony-Forming Units (CFU/mL)

CLIN-m nanofibers significantly (p<0.05) inhibited biofilm growth of both Aa and Ef 
(Figure 2E). SEM analysis provided further qualitative evidence that CLIN-m antibiotic 

nanofibers inhibited growth of the bacterial species tested (Figure 2F). No significant 

biofilm growth inhibition was observed for the antibiotic-free PDS and CLIN groups, 

regardless of the bacteria tested.

Cytotoxicity

A significant decrease in hDPSC viability was observed after exposure to the aliquots 

obtained from CLIN and CLIN-m nanofibers when compared to PDS and the control groups 

(Figure 3A). However, both CLIN and CLIN-m nanofibers showed cell viability above 70% 

and 50% respectively, at all time points.

Dentin Discoloration

Representative macrophotographs attesting no discernible dentin discoloration for the CLIN-

containing groups (i.e., CLIN and CLIN-m) are shown in Figure 3B. Meanwhile, significant 

color changes can be seen on dentin specimens treated with triple antibiotic paste (TAP), 

particularly when comparing the initial macrophotograph (Day 1) taken after sample 

preparation with the image recorded after 3 weeks (dark-brown color).

Discussion

Regenerative endodontics has drastically changed the management and overall clinical 

prognosis of immature teeth with necrotic pulps (7, 8). The current regenerative-based 

therapy, also known as the “evoked bleeding” method, is comprised of a thorough 

disinfection of the root canal system (RCS), followed by intentional laceration of the 

periapical tissues, allowing stem cell-rich blood invasion into the RCS to stimulate 

regeneration of the pulp-dentin complex (7, 8).

Historically, the successful resolution of endodontic-related infections has required a 

combination of multiple antibiotics (4–7, 9, 10). MET and CIP together have an excellent 

antibacterial spectrum with established effects against obligate anaerobes and gram-negative 

bacteria, respectively (9). Nonetheless, despite the proven clinical efficacy associated with 

antibiotic mixtures containing MINO (i.e., TAP), serious adverse effects that not only offset 

the regenerative potential due to toxicity to dental stem cells (13–15) and potential inhibition 

of angiogenesis have been identified (18–20). A recent in vitro study demonstrated MINO as 

having a similar inhibition of angiogenesis to that of cortisone and heparin (31). 

Furthermore, MINO is thought to negatively affect angiogenesis by decreasing vascular 

endothelial growth factor (VEGF) secretion, which suppresses the neovasculogenesis of 

endothelial cells (20). Worth mentioning, in regenerative endodontics, oxygen and nutrient 

transport to DPSCs via angiogenesis is critical to recreation of the dentin-pulp complex (32).

In the late 1990’s, the first effort of using clindamycin-impregnated fibers as an intracanal 

drug delivery system was reported (33). The total amount of clindamycin present in a 1-cm-

long ethylene vinyl acetate (EVA) fiber was 1.3 mg. The authors reported a continuous 
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release of antibiotic and significant antimicrobial properties over 1 week. The 

clindamycin/EVA fibers were shown to be effective in reducing growth of several 

endodontic pathogens using an in vitro extracted human teeth model. No discoloration was 

observed upon treatment (33). To the best of our knowledge, the present study is the first 

reporting on the synthesis of CLIN-modified triple (CLIN, MET, and CIP) antibiotic 

nanofibrous-based drug delivery system. Thus, the use of CLIN may be a promising 

substitute to MINO, not only based on its broad antibacterial spectrum and stain-free 

properties, but also due to reported in vitro pro-angiogenic activity (22).

The SEM micrographs presented the clindamycin-containing nanofibers as being smaller in 

fiber diameter than the antibiotic-free PDS control. Smaller fibers have been claimed to be 

superior, since they provide more surface area, which could allow more drug release over 

time (24). FTIR spectra confirmed the CLIN, CIP, and MET incorporation into the CLIN 

and CLIN-m nanofibers. The mechanical properties of the clindamycin-modified triple 

antibiotic nanofibers were evaluated through the employment of tensile tests under both wet 

and dry conditions. The nanofibers were determined to be able to mechanically withstand 

handling, which suggests its potential to endure placement in clinical conditions.

The antimicrobial activity of CLIN-containing nanofibers was measured against Aa, An, Ef, 
and Fn, which were selected based on their role in endodontic bacterial infections. 

Specifically, Ef is often associated with asymptomatic, persistent endodontic infections due 

to difficulty in bacterial eradication during traditional endodontic treatment (34). Agar 

diffusion-based assays confirmed the incorporation and release of antibiotics from the 

polymer nanofibers. Overall, both CLIN and CLIN-m nanofibers provided bacterial 

inhibition significantly greater than that of chlorhexidine for all bacteria tested, with varying 

degrees of success based on the bacterial specie. Specifically, the antimicrobial effects of 

both nanofibers on Fn were significantly greater than any other bacteria tested potentially 

due to Fn being an anaerobic, gram-negative bacterium, which CLIN has a well-established 

antimicrobial effect against. CLIN-m triple antibiotic nanofibers and aliquots demonstrated a 

significantly (p < 0.05) stronger antimicrobial efficacy against Aa and Ef when compared 

with the CLIN group due to the multiple antibiotics mixture. Moreover, the incorporation of 

MET and CIP, in addition to CLIN, demonstrated being essential to inhibiting the biofilm 

growth of both Aa and Ef.

Analysis of our cell viability data for CLIN-containing nanofibers (i.e., CLIN and CLIN-m) 

revealed slight toxicity of CLIN-m nanofibers to DPSCs (ranging from ~52% at Day 1 to 

~63% at Day 28), with the CLIN only nanofibers producing a significantly (p<0.05) more 

cell-friendly effect compared to CLIN-m over 28 days (Figure 3A). This observation is 

likely due to the absence of MET and CIP being released from the CLIN nanofibers. 

Although the present study did not investigate the kinetics of drug release, the demonstrated 

long-term antimicrobial activity, in addition to an increase in cell viability over time, 

suggests a similar antibiotic release pattern, i.e., burst release, followed by sustained 

maintenance of the antimicrobial properties, as previously reported by similar studies 

involving the use of PDS polymer nanofibers as a drug delivery system (24). We previously 

demonstrated that human dentin treated with antibiotic-containing nanofibers support cell 

adhesion/proliferation (15). Cell spreading was comparable in antibiotic-free and triple 
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antibiotic eluting nanofibers, whereas, cells on TAP-treated dentin did not spread. Cell 

proliferation on Day 7 was significantly higher on dentin treated with antibiotic nanofibers 

compared to TAP. Taken together, the present data suggest that since CLIN and CLIN-m 

nanofibers could carry pro-angiogenic effect to cells it could make a superior candidate to 

TAP and triple antibiotic (minocycline-containing) nanofibers in regenerative endodontics.

In spite of the clinically proven antimicrobial properties associated with antibiotic mixtures 

containing MINO, the intracanal use of TAP has led to severe crown discoloration. In this 

study, dentin discoloration was qualitatively evaluated (i.e., macrophotographs) based on 

long-term (3 weeks) exposure to CLIN, CLIN-m, and TAP. As expected, neither CLIN nor 

CLIN-m nanofibers demonstrated any discernible dentin discoloration after 3 weeks, which 

further confirms the association between MINO and tooth discoloration, as well as 

enlightening the stain-free properties of the proposed CLIN-modified triple antibiotic 

nanofibers. The findings of the present study corroborate with a previous investigation over 

the discoloration potential of tetracycline-based (minocycline or doxycycline) antibiotic 

pastes or nanofibers (17). In brief, two distinct triple antibiotic pastes containing either 

MINO or DOX, in addition to four nanofibers-based 3D tubular-shaped drug delivery 

constructs formulated with MINO or DOX at distinct concentrations, were quantitatively 

evaluated (CIEL*a*b* parameters) over 28 days. The incorporation of MINO or DOX into 

3D nanofibrous constructs produced similar dentin discoloration when compared with their 

respective triple antibiotic systems, although less pronounced discoloration was seen for 

DOX-containing paste or nanofibers (17).

Taken together, this study demonstrated that CLIN-m triple antibiotic nanofibers can be 

successfully processed via electrospinning. Furthermore, as highlighted in our previous and 

comprehensive review on the clinical perspective of the proposed strategy (35), the rationale 

for using biodegradable antibiotic-containing nanofibers as a three-dimensional (3D) 

intracanal drug delivery construct is the localized release of the antimicrobial agents at much 

lower concentration and in a predictable fashion onto the dentinal walls. Lastly, it should be 

acknowledged that although the angiogenic potential of the proposed CLIN-m nanofibers 

needs to be further investigated, the data gathered herein demonstrates its clinical potential 

in regenerative endodontics based on significant antimicrobial effects, low cytotoxicity, 

discoloration-free properties, and potential angiogenic effects. Thus, the clinical relevance of 

the proposed intracanal drug delivery system should be further assessed using preclinical 

animal models of periapical disease, which in turn could provide the means to test its 

efficacy in humans.
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Highlights

• Clindamycin-containing nanofibers were successfully synthesized

• Clindamycin-modified triple-antibiotic fibers (CLIN-m) showed great 

antimicrobial effects

• CLIN-m nanofibers did not promote significant cell death

• CLIN-containing nanofibers did not cause any visible dentin discoloration
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Figure 1. 
(A) Representative SEM micrographs of antibiotic-free (PDS), CLIN, and CLIN-m 

electrospun fibers. The fiber diameter distribution and mean fiber diameter (±SD) are given 

in the inset; (B) FTIR spectra confirming CLIN, CIP, and MET incorporation into the CLIN 

and CLIN-m nanofibers; (C) Tensile strength of the obtained fibers under dry and wet 

conditions; (D) Mean inhibition zones of CLIN-containing fibers against Ef, An, Aa, and Fn. 

(D-Inset) Representative blood agar plate showing Fn growth inhibition.

Karczewski et al. Page 12

J Endod. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Effects of CLIN-containing electrospun nanofibers on the growth of bacteria. Results from 

agar diffusion assays are represented as mean inhibition zone (in mm) against the different 

bacteria tested: (A) A. actinomycetemcomitans (B) A. naeslundii (C) E. faecalis, and (D) F. 
nucleatum. Same letters indicate non-significant difference compared with the results of the 

same day of aliquots. (E) Spiral plating was used to calculate CFU/mL of samples of 

dislodged A. naeslundii and E. faecalis. Significant difference is denoted with a different 

letter (*p < .05) when compared with the control. Representative SEM micrographs showing 

growth inhibition of An and Ef on CLIN-m electrospun nanofibers when compared to PDS.
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Figure 3. 
(A) hDPSCs viability in response to aliquots on days 1, 3, 7, 14, 21, and 28 from electrospun 

nanofibers. Statistical analyses were compared with the same-day results. (B) Representative 

macrophotographs showing human dentin color stability/change after 1, 7, 14, and 21 days 

of exposure to control (PBS), antibiotic-free (PDS), CLIN, and CLIN-m nanofibers and 

triple antibiotic paste (TAP).
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