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Android Malware Detection via Graphlet
Sampling

Tianchong Gao, Wei Peng, Devkishen Sisodia, Tanay Kumar Saha, Feng Li, Mohammad Al Hasan

Abstract—Android systems are widely used in mobile & wireless distributed systems. In the near future, Android is believed to
dominate the mobile distributed environment. However, with the popularity of Android-based smartphones/tablets comes the rampancy
of Android-based malware. In this paper, we propose a novel topological signature of Android apps based on the function call graphs
(FCGs) extracted from their Android App PacKages (APKs). Specifically, by leveraging recent advances on graphlet mining, the
proposed method fully captures the invocator-invocatee relationship at local neighborhoods in an FCG without exponentially inflating
the state space. Using real benign app and malware samples, we demonstrate that our method, ACTS (App topologiCal signature
through graphleT Sampling), can detect malware and identify malware families robustly and efficiently. More importantly, we
demonstrate that, without augmenting the FCG with any semantic features such as bytecode-based vertex typing, local topological
information captured by ACTS alone can achieve a high malware detection accuracy. Since ACTS only uses structural features, which
are orthogonal to semantic features, it is expected that combining them would give a greater improvement in malware detection
accuracy than combining non-orthogonal semantic features.

Index Terms—Android; graphlet sampling; mobile applications; mobile malware; smartphone
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1 INTRODUCTION

Some rising trends in mobile distributed systems, e.g., the
wearable devices, the medical devices and the intelligent
vehicle systems, are setup on Android platforms following
the big success of it on smartphone market. Since Android
applications written in Java are specifically designed to have
as few implementation dependencies as possible, Android is
believed to be adaptive to the new market and dominate the
mobile distributed environment soon.

As the use of Android continues to grow, so does the
threat of malware. Malicious behaviors observed in such
malware include the theft of private information stored on
the device, device fingerprinting, abusing premium service,
and rooting the device as a backdoor for further attacks [39].
Detecting such malware is a critical task for the security
research community.

It is observed that variants of malware form families
through code sharing and their common lineage [39]. There-
fore, instead of identifying individual malware and extract-
ing a signature from it, we can identify the commonality
within the same malware family and generate signatures
that capture such commonality. Recently, various machine
learning/data mining (i.e., pattern mining) techniques are
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applied to detect Android malware [1, 2, 9, 19, 33, 36]
or closely related tasks such as identifying repackaged
apps [37, 38]. Beyond the common pattern mining frame-
work, these works differ significantly in their selection and
construction of features, their quantification/metrication of
such features, their choice of pattern mining algorithms,
and, in totality of these fine points of design, their appli-
cability, robustness, and efficiency in detecting malware.

A number of different app representations have been
studied for malware detection. For example, Yamaguchi
et al. propose a compact representation of source code, the
code property graph, that combines abstract syntax trees,
control flow graphs, and program dependence graphs [33].
Other approaches do not require the source, but instead
focusing on features at different abstract levels: from the
low-level platform opcode level [36], through the inter-
mediate function call [9] and Android framework API [1]
level, to the high semantic level that includes features such
as network addresses and Android specific artifacts such
as permission and Intents [2]. Yet, other works formulate
malware detection as different pattern mining tasks such as
frequent subgraph mining [19].

Due to the availability of off-the-shelf obfuscation solu-
tions (such as the free ProGuard [29] and the commercial
DexGuard [28]) and the growing number of Android apps,
it is critical for any proposed malware detection algorithm
to be robust and efficient.
Robust. Malware detection should be insensitive to non-
essential transformations. Non-essential transformations are
program transformations that do not fundamentally turn
an app into a different one. Examples of non-essential
transformations include obfuscating long and descriptive
function/method names by replacing them with short and
meaningless ones [29], and re-branding through textual,
pictorial, or animated resource replacement, or changing the___________________________________________________________________
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layout of the user interface [37].
Efficient. Malware detection should only take a reasonable
amount of time to decide whether an app sample is malware
or not. If the time is comparable with that of common com-
mercial malware detection tools, we consider the malware
detection method to be sufficiently efficient.

In practice, efficiency and robustness are often at odds.
At one extreme, as two straightforward examples, crypto-
graphical hashes or package names are highly efficient but
fragile app signatures. They are efficient to obtain/compute
but can easily be changed without essentially affecting the
app [36]. At the other extreme, measuring similarities of
some high-level graph-based representation of the app, such
as code property graphs [33], are more robust, but, as ob-
served by Gascon et al. [9], “is a non-trivial problem whose
complexity hinders the use of these features for malware
detection.”

Our first step towards robustness is to extract from the
app under investigation its function call graph (FCG) [9], in
which each vertex represents a Java method and each edge
represents a method invocation. We concur with Gascon
et al. [9] that FCG is at a proper abstraction level for
detecting malware: In addition to the non-essential transfor-
mations mentioned above, it is also immune to, for example,
both lower-level opcode/instruction obfuscation or higher-
level content encryption.

Based on the extracted FCG, we propose an efficient and
robust Android app signature that faithfully captures the
invocator-invocatee relationship between several functions,
i.e., the topology of local neighborhoods on the FCG. Instead
of using vertices and edges (or extension to 1-hop neighbor-
hoods [9]) on the FCG “as is,” we leverage recent advances
in graph mining to efficiently sample graphlets [23, 24]
on the FCG. Graphlets are small (e.g., less than 6), con-
nected, vertex-induced embedded subgraphs in an under-
lying graph, which is the FCG in our case. In the spectrum
of purely local (e.g., individual vertices/edges and simple
metrics such as degrees) and fully global (e.g., between-
ness centrality [3]) scope of the FCG, our graphlet-based
signature takes a unique position: It faithfully captures
local topological information at a fine-grained granularity
without exponentially inflating the state space.

Given these characteristics, we call our graphlet-based
signature a topological signature and, accordingly, name
our method ACTS (App topologiCal signature through
graphleT Sampling). In our experiments, ACTS achieves a
cross-validated accuracy as high as 87.9% . In comparison,
the same method with a purely local feature (i.e., degree
frequency distribution (DFD) [7]) has an average cross-
validated accuracy of 75%. Since ACTS only uses structural
features, which are orthogonal to semantic features such as
bytecode-based vertex typing, it is expected that combining
them would give a greater improvement in malware de-
tection accuracy than combining non-orthogonal semantic
features.

Moreover, Android is going far beyond the smart-
phones/tablets, e.g., the Android Wear, Android Pay and
Android Auto. Some of the new applications are high level
distributed systems that there are new rules and challenges
for both the programming and the malware detection. In de-
tail, the new malware detection method should be deployed

ω3,1 ω3,2 ω3,3 ω3,4 ω3,5 ω3,6

ω3,7 ω3,8 ω3,9 ω3,10 ω3,11 ω3,12 ω3,13

Fig. 1: The 13 unique 3-graphlet types ω3,i (i = 1, 2, . . . , 13).

on various mobile distributed platforms and get analysis
result swiftly. Since the topological features are related to
the purpose of the software while the semantic features
are highly connected to the programming languages and
platforms, we believe that the method ACTS introduced in
this paper is more adaptive to the new development but the
dynamic analysis methods need additional work to follow
the trend.

In summary, our contributions are:
• We propose a novel topological signature for Android

apps that fully captures the invocator-invocatee rela-
tionship in an app’s FCG, which is otherwise lost in a
global topological metric such as betweenness central-
ity [3], without exponentially inflating the state space
as in n-hop neighborhoods with n ≥ 3.

• By leveraging recent advances in graph mining, we
make the generation of our proposed topological signa-
ture practically efficient without sacrificing its robust-
ness.

• With experiments on real malware/benign app sam-
ples, we demonstrate that local topological information
captured by our method alone can achieve a high mal-
ware detection accuracy, which can be further improved
by incorporating (orthogonal) semantic features.

In the rest of the paper, after the preliminaries (Section 2),
we present our method (Section 3) and experiment results
on real malware/benign app samples (Section 4). We then
reflect on our method (Section 5) and conclude with a brief
review of related works (Section 6).

2 PRELIMINARIES

2.1 Function call graph

Function call graph (FCG) is a graph model for functions
and their invocation relationship, in which vertices repre-
sent functions and a directed edge from vertex v1 to v2
represents that v1 invokes v2. For an Android app, functions
are Java methods, and their invocation relationship can be
statically extracted from Java bytecode by searching for the
invocation-related opcodes, i.e., invoke-*.

2.2 Graphlets

Pržulj et al. first consider a complete set of local graph
topologies with 3, 4, and 5 vertices and name them
graphlets1 in their work on characterizing biological net-
works [22]. Formally, given a graph G, graphlets of G

1. Graphlet is also used to refer wavelet decomposition of graphs [30],
which is an unrelated concept to what we use in this work.
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are small, connected, non-isomorphic, and vertex-induced
subgraphs of G. Although earlier works [22, 23, 24] on
graphlets focus on undirected graphs, we consider directed
graphlets to preserve the inherent directionality of FCGs.

Figure 1 enumerates all the 13 unique types of (di-
rected) graphlets ω3,i

2 (i = 1, 2, . . . , 13) with 3 vertices
(the 3-graphlets): They are pair-wise non-isomorphic. These
graphlet types do not appear equally likely in an FCG. For
instance, although there are many cases in which a function
invokes two others (ω3,5) or two different functions invoke
the same one (ω3,6), 3 mutually recursive functions (ω3,13)
are rare. Later, we will discuss how we use this observation
to improve the performance of our method (Section 3.3).

For vertices 4, 5, and 6, the number of graphlet types
are 199, 9, 364, and 1, 530, 843, respectively [26]. We focus
on graphlets with less than 6 vertices in this work because
larger graphlet types require extra computations but pro-
vide little value in capturing the structure of FCG. Figure 2
illustrates our running example: A 4-graphlet g (the grey
vertices and their induced edges) embedded in a 6-vertex
graph G.

2.3 Graphlet frequency distribution (GFD)

Graphlet frequency distribution (GFD) of a graph G is the
probability distribution of the frequencies of the different
graphlet types in G. For instance, since the number of 3-
graphlets in a (finite) FCG G is finite, we can, in princi-
ple, enumerate all embedded graphlets in G and, for each
such embedded graphlet g, identify g with one of the 13
graphlet types in Figure 1. At the end of the enumeration,
suppose the count (i.e., the frequency) of graphlet type
ω3,i is f3,i (i ∈ {1, 2, . . . , 13}), the frequency distribution
density d3,i at ω3,i is f3,i/

∑13
i=1 f3,i. We call the vector

(d3,1, d3,2, . . . , d3,13) the 3-graphlet frequency distribution (3-
GFD) of G. We can compute n-GFD for any n with the same
procedure, and concatenate several n-GFDs with different n
into a single vector. We can call the concatenated vector a
GFD of G if there is no confusion on its constituents.

The above procedure only works in principle. In prac-
tice, the fast growing number of apps, the size of real
apps’ FCGs, and the combined computation complexity
of graphlet enumeration and identify graphlet types make
the enumeration-and-count procedure impractical to use.
Nevertheless, GFD is a step forward towards our goal: It
is a metrication from the (combinatorial) graphlet space
into the (metric) Euclidean space, where we can apply
pattern learning techniques to detect malware. In other
words, GFD preserves the topological information of local
neighborhoods in an FCG. Later, after giving a high-level
overview of our method (Section 3.1), we will focus on how
to estimate GFD efficiently (Section 3.2).

2.4 Minimum DFS code

Minimum depth-first search (DFS) code is proposed by
Yan and Han to identify isomorphic graphs for frequent
subgraph mining algorithm gSpan [34].

2. The unique types of n-graphlets are enumerated as
ωn,1, ωn,2, . . . , ωn,N(n), with N(n) being the number of unique
types for n-graphlets.
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Fig. 2: Our running example: A 4-graphlet g (the grey vertices and their
induced edges) embedded in a 6-vertex graph G.

Essentially, for a graph G, by defining an encoding (i.e.,
the DFS code) for one3 DFS traversal of G, and a linear
order (i.e., the DFS lexicogrraphic order) for all possible DFS
codes of G, they prove that the minimum (under the DFS
lexicographic order) DFS code C(G):

C(G) = min{C(w)|all DFS traversals w of G}

is a unique encoding under isomorphism: Two graphs G1 and
G2 are isomophic if and only if C(G1) = C(G2).

2.5 Metropolis-Hastings (M-H) algorithm
Markov chain Monte Carlo (MCMC) [10] is a class of algo-
rithms for sampling from a probability distribution. Given
an intended sampling distribution p(x) over a sample space
X , the idea behind general Markov chain Monte Carlo
(MCMC) methods (in which the M-H algorithm is a specific
method) is to construct a Markov chain over X whose
stationary distribution equals to p(x): After the Markov
chain mixes (i.e., reaches its stationary distribution and,
hence, “forgets” where it begins), the subsequently visited
states of the chain can be used as samples from the intended
distribution P (x).

Metropolis-Hastings (M-H) algorithm [20] is a specific
MCMC method that we use for estimating GFD (Sec-
tion 3.2). In the M-H algorithm, the transition between two
consecutive states x and x′ in the chain consists of two
stages: proposals and acceptance/rejection. Correspond-
ingly, there is a proposal distribution q(x′|x) (the probability
of proposing x′ as the next state given the current state x) and
an acceptance distribution a(x′|x) = min(1, A(x′|x)) (the
probability of accepting x′ as the next state given the current
state x), in which:

A(x′|x) = p(x′)q(x|x′)
p(x)q(x′|x)

. (1)

Intuitively, for each iteration of the sampling process, we
first randomly pick x′ with a probability of q(x′|x), and
then either accept x′ (by sampling x′) with a probability of
a(x′|x) or reject x′ (by sampling x again) with a probability
of 1− a(x′|x).

3 METHOD

In this section, after a brief overview of our method (Sec-
tion 3.1), we zoom in on two technical points: Efficient GFD
estimation (Section 3.2) and FCG-specific GFD dimension
reduction heuristics (3.3) that distinguish our method.

3. There may be multiple DFS traversals for a single G.
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3.1 Overview
Given an Android app’s APK (Android PacKage) binary
package, we:
• extract an FCG from the APK,
• estimate the GFD of the FCG (Section 3.2), and
• project the estimated GFD to a lower dimensional space

to reduce the GFD’s dimensions (Section 3.3).
The projected GFD, which is a vector, is a signature

of the app. To stress that this signature preserves detailed
topological information on an app’s FCG, we call it the
topological signature (TS) of the app.

Given a pool of both malware and benign app samples,
we train a classifier on their TSs to detect malware: If the TS
of an app is classified as a malware, the app is flagged as
malware.

3.2 Efficient GFD estimation
Suppose we have a uniform sampler of the FCG, we can
approximate the whole FCG’s GFD with our samples’ GFD.
The more samples we take, the closer the approximation
is. Given the large sample space and the (relatively small)
number of bins (i.e., unique graphlet types) for n-graphlets
with n < 6, we only need to sample a tiny fraction of the
sample space to get a close approximation.

This apparently solve the GFD estimation problem.
However, the real problem is that we need to uniformly
sample graphlets from the FCG without enumerating the
sample space. Fortunately, two recent advances on graph
mining, GRAFT [23] and GUISE [24], show that GFD can
be estimated without enumerating all graphlets. Inspired by
these works, we use MCMC to sample the directed FCG.

3.2.1 Sample space and intended distribution
Since our goal is to uniformly sample from all the embedded
graphlets in the FCG:
• The sample space X consists of all the embedded

graphlets in the FCG.
• The intended distribution p(x) over X is the uniform

distributions, i.e., p(x) = p(x′) for any x, x′ ∈ X .
Suppose we have just sampled graphlet g in the sam-

pling process, the M-H algorithm (Section 2.5) says that,
if we propose to sample graphlet g′ next with a prob-
ability of q(g′|g), an acceptance probability of a(g′|g) =
min(1, A(g′|g)) (in whichA(g′|g) is defined by Equation (1))
will eventually lead to a sampling process that have the
desired sampling distribution p(x).

3.2.2 FCG-induced graphlet graph and graphlet neighbor-
ing relationship
To define the proposal distribution q(x′|x), we consider the
FCG-induced graphlet graph GG of the FCG G. The FCG-
induced graphlet graph GG is an undirected graph with
vertices being all the embedded graphlets in the FCG, and
edges defined by the graphlet neighboring relationship be-
tween the vertices. The graphlet neighboring relationship is
a symmetric relationship between two graphlet embeddings
g1 and g2 in the FCG: g1 and g2 are graphlet neighbors if and
only if they differ by share all but one vertex. In particular,
self-neighboring is excluded by this definition because there
is no vertex difference, which is required by the definition.

Since graphlets on G and vertices on GG have a one-to-one
map, we identify a graphlet g on G with the vertex on GG
that it maps to, and also denote that vertex with g if there is
no confusion in the context.

For example, in Figure 2, g’s neighbors on GG are4 all the
3-graphlets (e.g., {v2, v3, v4}, {v3, v4, v5}, etc.), 4-graphlets
(e.g., {v1, v2, v3, v4}, {v0, v2, v4, v5}, etc.), and 5-graphlets
({v1, v2, v3, v4, v5} and {v0, v2, v3, v4, v5}) that share all but
one vertex with it. Conversely, 1) {v1, v2, v3} is not a neigh-
bor of g because it does not contain both v4 and v5, which
are in g; 2) {v0, v1, v2, v3} is not a neighbor of g because
it does not contain g’s vertices v4 and v5 (and g does not
contain its vertices v0 and v1); 3) {v0, v1, . . . , v5} is not a
neighbor of g because g does not contain its vertices v0 and
v1.

The significance of the graphlet neighboring relationship
on GG is that it can be efficiently generated by local informa-
tion on the FCG G without enumerating the whole G. Specifi-
cally, given an embedded graphlet g of G, the neighbors of
g on GG can be generated by removing, changing, or adding
exactly one vertex in g. Hence, we can efficiently compute
the degree dg of g in GG by generating and counting g’s
neighbors.

3.2.3 Proposal and acceptance distributions
Let d(g) and N(g) be graphlet g’s degree and neighbors in
GG, respectively. Suppose the last graphlet we have sampled
is g, our proposal strategy q(g′|g) is to uniformly sample one
of its neighbors in GG, i.e.,

q(g′|g) =
{

1
dg

if g′ ∈ N(g),
0 otherwise.

(2)

Since dg can be efficiently computed without enumerating
the graph (see above), q(g′|g) can also be efficiently com-
puted since it only requires computing dg .

By Equations (1) and (2), the resulting acceptance strat-
egy a(g′|g) is:

a(g′|g) =
{

min(1,
dg
dg′

) if g′ ∈ N(g),
0 otherwise.

(3)

By Equations (2) and (3), the probability s(g′|g) of sam-
pling g′ next given the current sample g is:

s(g′|g) =


min( 1

dg
, 1
dg′

) g′ ∈ N(g),

1−
∑
h∈N(g) min( 1

dg
, 1
dh

) g′ = g,
0 otherwise.

(4)

The intuition behind the sampling strategy in Equa-
tion (4) can be understood in the following two cases.
Case 1. If g is a graphlet that has the highest degree among
its neighbors in GG, i.e., dg ≥ dg′ for any g′ ∈ N(g),
then min(1/dg, 1/dg′) = 1/dg and, hence, by Equation (4),
s(g|g) = 1 − dg( 1

dg
) = 1 − 1 = 0, i.e., the next sample will

not be g but one of its neighbors.
Case 2. If g is a graphlet with a relatively low degree among
its neighbors in GG, s(g′|g) in Equation (4) will be greater
than 0. The greater the degree differences are, the greater

4. Given that graphlets are vertex-induced subgraphs, we use a
vertex set to represent the (unique) embedded graphlet having those
vertices here.
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0.50 0.32 0.19 0.02 0.01

Fig. 3: The 5 3-graphlet types that have a greater-than-2% frequency density in the GFD of at least one app in our experiment, sorted by their
average frequency density across all malware/benign app samples in our experiment.

0.23 0.20 0.050.10 0.03

~0 ~0 ~0 ~0 ~0

~00.01 ~0~0~00.01 ~0

0.020.29 0.07

Fig. 4: The 20 4-graphlet types that have a greater-than-2% frequency density in the GFD of at least one app in our experiment, sorted by their
average frequency density across all malware/benign app samples in our experiment.

Algorithm 1 Estimate GFD for the FCG G from t samples.
1: I C: all the distinct n-graphlet types for n ∈ {3, 4, 5}
2: I fc: frequency counter for graphlet type c ∈ C
3: I dc: frequency density estimation for graphlet type c ∈ C

Input: G: the FCG; t: number of iterations
4: function ESTIMATE-GFD(G, T )
5: g ← a random (initial) graphlet I bootstrap the sampling process
6: NEXT-SAMPLE(G, g, T ) I obtain the vector (fc|c ∈ C)
7: for c ∈ C do I for each graphlet type c ∈ C
8: dc ← fc/

∑
c∈C fc I estimate its graphlet density

9: end for
10: return (dc|c ∈ C) I (dc|c ∈ C) is a vector ordered by C
11: end function
Input: G: the FCG; g: current graphlet sample; k: remaining iterations
12: procedure NEXT-SAMPLE(G, g, k)
13: N(g)← g’s neighbors in GG I Section 3.2.2
14: choose a g′ ∈ N(g) with an equal probability of 1/dg I Equation (2)
15: a← a number uniformly sampled from [0, 1]
16: if a ≤ min(1, dg/dg′ ) then I accepting g′

17: g ← g′

18: else I rejecting g′

19: end if
20: c← C(g) I identify (the new) g’s type
21: fc ← fc + 1 I increase g’s count
22: if k > 0 then I if there are remaining iterations
23: NEXT-SAMPLE(G, g, k − 1) I we continue the sampling process
24: end if
25: end procedure

s(g′|g) will be. In an extreme case in which g has a single
neighbor g′ with a degree of 100 (i.e., dg = 1 and dg′ = 100),
s(g′|g) = 0.01 and s(g|g) = 0.99: If the current sample is g,
99 out of 100 times, the next sample will still be g.

In other words, the sampling process (i.e., the consecu-
tive states of the Markov chain) is more eager to move away
from the more popular graphlets (i.e., the ones with higher
degrees in GG) and to stay at the less popular ones: The
former has a better chance than the latter of being revisited
later. This results in a fair (i.e., uniform) sampling of all the
embedded graphlets in the FCG G.

3.2.4 Minimum DFS code for directed, unlabeled graphs
An important step of our method is to differentiate the
graphlets in sampling. A naive approach is to apply di-
rected graph isomorphic recognition algorithms. Although

our sapling space is limited to graphlets with no more than
5 nodes, naively recognizing isomorphism graphs is still
a complex work. Hence, we introduce the minimum DFS
code, which is proposed by Yan and Han (Section 2.4),
to identify subgraph isomorphism on an undirected and
labeled graph.

To handle the FCG’s inherent directness, we extend the
definition of DFS lexicographic order to include an encoding
of the edge directionality. Specifically, suppose the ordered
edge sequence in the DFS code C(GT ) for the graph traver-
sal GT is e1, e2, . . . , e|E| (with the encoding of edge ei being
(vi,1, vi,2)), we attach an |E|-tuple (d1, d2, . . . , d|E|) to the
end of C(GT ). di encodes the directionality of ei:

di =


0 the direction is from vi,1 to vi,2,
1 the direction is from vi,2 to vi,1,
2 ei is a bi-directional edge..

This extension captures the directionality of edges and fits
naturally into the minimum DFS code generation algo-
rithm [34]. Without inflating our symbols, we use C(G)
henceforth to represent our extended minimum DFS code.

For example, in Figure 2, the minimum DFS code for the
4-graphlet embedding g is:

C(g) = (0, 1)(1, 2)(2, 0)(2, 3)|(0, 0, 0, 1),

in which vertices v2, v3, v4, and v5 are encoded as 0, 1, 2, and
3, respectively. The 4-tuple at the end encodes the directions
of the edges (v2, v3), (v3, v4), (v4, v2), and (v4, v5): v2 → v3,
v3 → v4, v4 → v2, and v4 ← v5. Any 4-graphlet g′ that is
isomorphic to g will have the same minimum DFS code, i.e.,
C(g′) = C(g).

In the naive subgraph isomorphic recognition algorithm,
the target graph should be compared with each candidate
graphlet. For instance, a 5-node graph has 9,364 possi-
ble matching. Advanced subgraph isomorphic recognition
algorithms, e.g., Frequent Subgraph Discovery (FSD) and
minimum DFS code, pruned the search with labeling the



6

subgraphs [14, 34]. Moreover, the minimum DFS code gen-
eration algorithm applies the DFS search to efficient mine
frequent connected subgraphs. This algorithm has 6-150
speed-up in comparison with FSD algorithm [34].

3.2.5 GFD estimation algorithm
Finally, we estimate the GFD for the FCG G from t samples
by evaluating ESTIMATE-GFD(G, t) in Algorithm 1. In our
experiment, we evaluate multiple t and choose 100, 000
for having both low variance in the sampling result and
acceptable efficiency. Note that, given the average size of
an FCG G (thousands of vertices) and, hence, the sample
space GG (for a 1, 000-vertex G, GG has a worst-case size
of O(1, 0003)), 100, 000 iterations are quite small. Indeed,
for the largest app in our dataset (the Facebook app, with
47, 539 vertices and 77, 900 edges), ESTIMATE-GFD(G,T )
for T = 100, 000 only takes only about 34 seconds on our
desktop workstation with high convergence across multiple
runs.

3.3 FCG-specific GFD dimension reduction heuristics
The curse of dimensionality [12] plagues many machine
learning tasks. Theoretically, by confining the n-graphlets
we sampled to n ∈ {3, 4, 5}, the GFD vectors we obtain
from Algorithm 1 are of 9, 576 (13+199+9, 364; Section 2.2)
dimensions. Reducing the dimensions of these vectors is
desirable.

Fortunately, as briefly discussed in Section 2.2, not all
graphlet types are equally likely to appear in a real FCG.
Figures 3 and 4 show all 3-graphlet and 4-graphlet types (5-
graphlet types are omitted for space constraints) that have
more a greater-than-2% frequency density in the GFD of
at least one of the (more than 1, 400) apps (including both
malware and benign apps) in our experiment: There are 5 3-
graphlet types, 20 4-graphlet types, and 71 5-graphlet types,
respectively.

Note that, as we discuss in Section 2.2 and is verified
here, graphlet types ω3,5 (outgoing invocations) and ω3,6

(incoming invocations) rank among the most frequent 3-
graphlet types, while the mutually recursive type (ω3,13) is
not. Moreover, except for a few cases of mutual recursion,
loops among a few functions of are rare. This suggests
that: 1) either inter-function loops have a long chain of
invocations, 2) or most functions have a clear invocator-
invocatee relationship that is not reciprocal.

These observations suggest that we can significantly
cut down the dimensions of GFDs by projecting the GFD
vectors onto the most frequent dimensions. Indeed, this is what
we do in our method after obtaining the full-spectrum (i.e.,
9, 576-dimensional) GFD estimation.

4 EXPERIMENT RESULTS

4.1 Datasets
In our experiment, we use the benign app samples from
PlayDrone [32] and use the malware samples from the
Android Malware Genome Project (AMGP) [39].

For the benign app portion of our datasets, we download
the dataset of PlayDrone. There are total 49000 benign sam-
ples in 9 different archives. To test the scalability and robust
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Fig. 5: Malware detection accuracy of SVM-GFD (SVMs with GFD-
based signature; dark) and SVM-DFD (SVMs with DFD-based sig-
nature; grey) using C-SVC (C-support vector classification) SVMs
(support vector machines) with different kernels: RBF (radial basis
function), linear, polynomial, and sigmoid.

TABLE 1: Malware detection false positives (FPs) and false negatives
(FNs): SVM-GFD vs. SVM-DFD with different kernels.

RBF linear
FP FN FP FN

GFD 11.53% 12.78% 19.30% 19.55%
DFD 13.03% 27.07% 17.54% 27.82%

polynomial sigmoid
FP FN FP FN

GFD 20.80% 20.55% 22.01% 20.55%
DFD 21.30% 33.08% 26.57% 32.08%

of our algorithm, we randomly and repeatedly choose sets
from the PlayDrone and each set has thousands of benign
samples. We also check the package name, the version
code and the MD5 message of each sample to prevent the
duplicate in it. For the malware portion of our datasets, the
AMGP lists 1, 249 malware samples of 49 families.

4.2 Procedure
We first use Androguard [15], an Android app reverse
engineering toolkit, to extract FCGs from the APK sam-
ples. Specifically, we use the androgexf.py script to extract a
GEXF5-format file that encodes the Java methods and their
invocation relations in the APK.

We implement our GFD estimation algorithm (Algo-
rithm 1) to generate a GFD vector for all n-graphlet types
for n ∈ {3, 4, 5}. The majority of dimensions have a fre-
quency of 0; hence, we use the FCG-specific GFD dimension
reduction heuristics (Section 3.3) to reduce these 9, 576-
dimensional vectors to 96-dimensional ones (details are
shown in Section 4.3.3). These 96-dimensional vectors are
the topological signatures of their corresponding apps.

We then use the LIBSVM [4] support vector machine
(SVM) library for classification; the details are mentioned
below along with corresponding results.

4.3 Results
To understand how the local-topology-preservation prop-
erty of GFD helps in enhancing malware detection perfor-
mance, we compare our method with another method in

5. GEXF (Graph Exchange XML Format); http://gexf.net/format/.
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TABLE 2: Pair-wise malware family label accuracy (in percentage) of SVM-GFD (GFD) vs. SVM-DFD (DFD) with the RBF kernel of the 8 malware
families that have over 40 samples in the AMGP dataset: DroidKungFu3 (DKF3; 303 samples) AnserverBot (AB; 185 samples), BaseBridge
(BB; 118 samples), DroidKungFu4 (DKF4; 96 samples), Pjapps (P; 56 samples), KMin (KM; 52 samples), GoldDream (GD; 47 samples), and
DroidDreamLight (DDL; 46 samples). Since this matrix is symmetric, we only show the upper half of it.

DKF3 AB BB DKF4 P KM GD DDL Benign
GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD

DKF3 - - 84.86 77.57 81.36 64.83 75.94 71.08 84.38 69.27 78.85 65.38 78.72 67.02 84.78 69.57 83.49 79.70
AB - - - - 70.34 54.24 92.18 71.35 83.04 57.14 90.38 82.69 86.87 58.59 92.39 71.74 90.27 85.95
BB - - - - - - 76.69 58.05 82.14 76.79 83.65 60.58 63.64 51.52 89.13 61.96 79.24 55.93

DFK4 - - - - - - - - 75.89 55.36 78.85 76.92 68.69 65.66 69.56 63.04 73.96 64.06
P - - - - - - - - - - 88.46 76.92 69.15 56.38 75 57.61 79.46 75.89

KM - - - - - - - - - - - - 91.49 70.2 90.22 68.48 90.38 77.88
GD - - - - - - - - - - - - - - 72.83 60.87 75.53 71.28

DDL - - - - - - - - - - - - - - - - 77.17 71.74
Benign - - - - - - - - - - - - - - - - - -

which both the (preceding) FCG extraction phase and (sub-
sequent) learning phase are the same. The only difference
is the feature we extract from FCG. Specifically, we use
the degree frequency distribution (DFD) for comparison. In
DFD, vertices with the same degree frequencies are binned
together and counted. DFD is the probability distributions
of element counts over these bins. In other words, the only
difference between the two methods is whether local topol-
ogy information of FCG is used in the subsequent learning
phase: Our GFD-based method uses this information, while
the DFD-based method does not.

For reasons that will be explained shortly, in this ex-
periment, we randomly and repeatedly pick 1200 samples
from the benign dataset to compare with the 1200 malware
samples. In each comparison, we use the 10-fold cross verifi-
cation, which means that each time 120 benign samples and
120 malware samples are randomly chosen as test set, other
samples will be feed as training set and the result shows
the overall average accuracy. Then we compare malware
detection performance of SVMs with GFD-based signatures
(SVM-GFD) and SVMs with DFD-based signatures (SVM-
DFD) using all 4 built-in SVM kernel functions in LIBSVM:
RBF (radial basis function: eγ|u−v|

2

), linear (u′ · v), polyno-
mial ((γu′ · v)3), and sigmoid (tanh(γu′ · v)), in which u
and v are feature vectors, γ = 1/N , and N is the feature
vector dimension. Figure 5 shows the accuracy (the samples
that are correctly labeled by the SVMs) comparison and
Table 1 shows the detailed false positives/negatives (the
samples that are incorrectly labeled by the SVMs). We do
observe similar results on the repeated experiments but we
just choose to report one due to the space constraint.

4.3.1 Malware detection performance

The reason we use a 1:1 ratio between malware and benign
app dataset is that a skewed dataset may give misleading
performance results. Later in this part we will also present
the influence of sample bias. In both Figure 5 and Table 1,
the performance of SVM-GFD and SVM-DFD appear to be
consistent across learning kernels. The high accuracy of the
two algorithms implies that both of them could successfully
capture topological features, and the features are helpful to
Android malware detection.

Comparing these two algorithms, SVM-GFD always
give better results (by average 6% margin over the SVM-
DFD algorithm, to over 80% accuracy). A recent study [2]
on commercial anti-virus scanners’ (AntiVir, AVG, BitDe-
fender, ClamAV, ESET, F-Secure, Kaspersky, McAfee, Panda,

Sophos) performance on the AMGP dataset shows that,
except for two outliers (23.68% and 1.12%), the commercial
AV scanners have accuracy ranging from 84.23% to 98.90%.
SVM-GFD attains a comparable accuracy of 87.85% on the
full AMGP dataset using only the structural features with-
out any semantic augmentation.

Figure 5 suggests that RBF kernel could give a better
result than other three kernels both for SVM-GFD and SVM-
DFD. SVM-GFD could perform a 78% or higher results
on different kernels, while SVM-DFD shows 70% accuracy
when choosing polynomial or sigmoid kernel. So the SVM-
GFD seems more robust than SVM-DFD. Table 1 shows that
they have different performance among false positives (FP)
and false negatives (FN). Because the dataset is 1:1 ratio, FP
and FN achieving a nearly 1:1 ratio means the SVM could
successfully divide the hyperplane. From Table 1 we can see
that these two SVM methods tend to give high accuracy
under the specified circumstances. And SVM-GFD often
have a same FP or FN percentage as SVM-DFD while the
other is much better.

4.3.2 Malware family labeling accuracy

To further understand the significance of capturing local
topology in FCG for malware detection, we compare our
SVM-GFD together with the SVM-DFD in their malware
family labeling accuracy on the 8 malware families that have
over 40 samples in the AMGP dataset. Specifically, we take
the family labels on the malware samples in the AMGP
dataset as the ground truth, and compare the two methods’
accuracy in assigning the correct family labels for the test
data sets. Here we use 3-fold cross verification instead of
the 10-fold one because some families, e.g., GoldDream with
47 samples, do not have enough samples to be divided
into 10 folds. And we use the same number of samples,
which is the size of the smaller family, from two families in
comparison. We also compare each family with a dynamic
benign dataset, which is viewed as another kind of ‘mal-
ware’ family. Therefore, the last column result shows the
accuracy of malware detection in one certain family.

Table 2 shows the pair-wise (one vs. one) malware family
labeling accuracy of SVM-GFD vs. SVM-DFD with the RBF
kernel, since both methods get the best results with the
RBF kernel (Section 4.3.1). SVM-GFD outperforms SVM-
DFD in all pairs of malware families by a margin from
1.93% (DKF4/DroidKungFu4 vs. KM/KMin) to 27.17%
(BB/BaseBridge vs. DDL/DroidDreamLight). The malware
and benign software classification result in each family also
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TABLE 3: Classification result of unknown family

Family Classified as malware Classified as benign software
DKF3 69% 31%

AB 86% 14%
DKF4 74% 26%
DDL 76% 24%

Fig. 6: Accuracy against different sampling size

shows SVM-GFD could achieve 3.57% (P/Pjapps vs. Benign)
to 23.31% (BB/BaseBridge vs. Benign) higher performance.
Note again, the additional local topological information
on FCG captured by GFD, alone, takes the credit for this
improvement in accuracy.

When an unknown sample, which does not belong to
known families, appears, we do experiment to test the
detection accuracy to examine if we need to re-train the
model. In this experiment, we manually eliminate some
malware families from the training dataset and use them
as the test dataset. The detection accuracy is shown in Table
3. The results show that even if the sample belongs to an
unknown family, our SVM-GFD model is still available to
detect the malware with probability 69% and above.

Also, another experiment shows that if we re-train the
SVM-GFD model with samples in that family, the model has
an accuracy of 100% to detect the malware. By comparison,
the detection accuracy is about 75% in classifying malware
within one family with benign software, which is shown in
the last two columns of Table 2. The improving of detection
accuracy implies that malware from other families also
contribute to the classification. This is also the reason of the
robustness of our method when the family is unknown to
the model.

4.3.3 Performance against sampling space size
In Section 3.3, we reduce the graphlet space dimensions
from 9, 576 to 96, because of the reasons: the reduced
features have low frequency density in GFD space, and the
space after reduction can give accurate malware detection.
For the first reason, we analyze the graphlet space of more
than 1, 400 Android apps. The 96 graphlets are chosen
because they have at least 2% frequency density in at least
one app. For the second reason, we analyze the detection
accuracy with different sampling space sizes based on a toy
dataset with 200 apps.

(a) The distribution of number of nodes

(b) The distribution of number of edges

Fig. 7: FCG sizes of benign apps and malicious apps

Figure 6 shows the analysis result. We can find that
when the graphlet space is small, i.e., with less than 5
dimensions, the detection accuracy is not better than a naive
strategy which classifies all apps into benign (or malicious).
However, the graphlet spaces with more than 60 dimensions
have stable and effective performance in malware detection.
This experiment encourages us to apply GFD dimension
reduction heuristics.

4.3.4 Performance against graph size bias
There is a huge difference of the sizes between the benign
apps and malicious apps. While common benign APK files
have the size of 1MB to 10 MB, the malicious APK files are
usually hundreds of KB. Most of the malicious applications
only care about their malicious functions, whose size are
small compared with the source code of the benign applica-
tions. Although our classification is based on FCGs, the size
difference in Android APKs will result in the size difference
in FCGs. There are several metrics to measure the size of a
graph, e.g., the number of nodes and the number of edges.
Figure 7 shows the distribution of the FCG sizes. The result
demonstrates that the malicious apps always have smaller
FCGs than the benign apps. The average number of nodes is
1348 in the malicious apps but it is 10046 in the benign apps.
The numbers of edges are 1919 and 14180 of the malicious
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(a) Accuracies of graphs with different node number

(b) Accuracies of graphs with different edge number

(c) Accuracies of graphs with different max degree

Fig. 8: Accuracies of graphs with different sizes
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Fig. 9: Accuracy response to different malware/benign-app ratios:
SVM-GFD (full line) vs SVM-DFD (dotted line) vs the naive strategy.
Percentage on the x axis is the ratio of malware over benign apps in the
dataset; y axis is the malware detection accuracy.

apps and benign apps, respectively. Considering the average
case, the benign apps have FCGs about 7 times larger as the
FCGs of the malicious apps.

Thus, one may argue that the difference in FCG sizes,
instead of the structure difference between the malicious
apps and benign apps, leads to the high performance of
the detection. Figure 8 shows the detection accuracies when
the malicious apps and benign apps have different sizes of
FCGs. We take three metrics to measure the size of a graph:
the node number, the edge number, and the max degree in
the graph. The scale of grey shows the accuracy: white is
100% accurate and black is 0% accurate. In the result, most
of the results achieve 80% accurate or higher. In Figures 8(a)
and 8(b), there is no significant trend that the accuracy of
different sizes of graph is higher than the accuracy of similar
sizes of graphs. For example, the accuracy of classifying 100
nodes malicious FCGs with 900 nodes benign FCGs is not
higher than the accuracy of classifying 900 nodes malicious
FCGs with 900 nodes benign FCGs.

However, in Figure 8(c), we can find that the accuracies
on the diagonal are always smaller than the accuracies
on the two conners. It means that the differences in the
max degree of the graph significantly impact our detection
results. Considering that the detection is based on the GFD,
we find that the graphlet frequency distribution is correlated
with the max degree in the graph. Combining the results in
Figure 8(a) and 8(b), we can conclude that our detection
accuracy, i.e., the FCG’s GFD, is not directly linked with the
graph size, but it is related with the density of the graph.

4.3.5 Performance against sample bias
In Section 4.3.1, we mention the peril of sample bias: If the
ratio between positive and negative samples (i.e., benign
app and malware samples) is skewed, even a naive strategy
can give a misleadingly high accuracy without actually
identifying malware from benign apps. In real-world mal-
ware detection, positive/negative samples rarely comes in
evenly: It is highly likely we have to work with a skewed
dataset.

Therefore, we study how SVM-GFD responds to sample
bias. In order to avoid the influence of the dataset’s size, we
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TABLE 4: Recall with keeping high precision

RBF linear
fixed precision 80% 90% 100% 80% 90% 100%

GFD recall 62% 42% 38% 28% 0% 0%
DFD recall 0% 0% 0% 0% 0% 0%

polynomial sigmoid
fixed precision 80% 90% 100% 80% 90% 100%

GFD recall 80% 6% 6% 48% 24% 6%
DFD recall 8% 6% 6% 4% 4% 4%

first fix the total number of benign and malicious softwares
to 1000. Then we perturb the ratio between malware and
benign app samples, and study the accuracy response of
SVM-GFD/SVM-DFD with the linear kernel. Figure 9 shows
the results and indicates that SVM-GFD gets higher accu-
racy among all kinds of malware and benign software com-
bination. SVM-GFD has a variance of 4.1 while SVM-DFD
has a variance of 11.4. We conclude that SVM-GFD is more
robust than SVM-DFD against sample bias, especially when
malware or benign software accounts a small proportion.
When the ration between malware and benign software is
2:8, as mentioned above it is a common real-world situation,
SVM-GFD outperforms 7% accuracy but SVM-DFD is just
the same as the naive strategy.

4.3.6 Recall with keeping high precision
In practical cases, not only is the sample dataset skewed
(large number of benign samples and small number of
malicious samples), but also the malware detection method
is expected to have high precision and recall. In this section,
we fix precision to a high value and examine recall of
SVM-GFD/SVM-DFD results. These results show the ability
of the proposed methods to reduce false negatives with
little precision loss. Moreover, in order to eliminate the
performance gain of skewed dataset and simulate real cases,
we choose a biased training dataset with 90% of benign
samples, but a unbiased test dataset with 50% malware.

In this experiment, we fix the precision to 80%, 90%,
and 100% and get the recall of the two methods. Each
number in Table 4 shows an average recall of ten different
experiments. Each experiment uses 10% disjoint dataset as
the test data, which is similar to 10-fold cross verification.
SVM-GFD achieves higher recall value. When the detection
is required to have 100% precision, SVM-GFD can get 38%
recall with the RBF kernel. By comparison, SVM-DFD only
gets 6% recall when the detection requires 100% precision. It
means that SVM-GFD achieves relatively high true positives
without false positives compared to SVM-DFD method.

4.3.7 Most frequent graphlets
To understand why malware detection accuracy improves
only by replacing DFD with GFD, we study the most fre-
quent graphlets that appear in benign apps and in malware.
Figures 10 and 11 show the top 5 most frequent graphlet
types for all benign app and malware samples in our
datasets, respectively. “Most frequent” in this case means
that these graphlet types have the highest average GFD
densities in that category (benign app or malware).

It is interesting to note that, in addition to different
average density values, the types of the most frequent
graphlets are different. For example, while ω3,5 (outgoing

0.45� 0.38� 0.35� 0.19� 0.16�

Fig. 10: The top 5 most frequent graphlet types for benign apps, i.e., the
ones that have the highest average graphlet frequency densities across
all benign apps.

0.52� 0.31� 0.26� 0.19� 0.19�

Fig. 11: The top 5 most frequent graphlet types for malware, i.e., the
ones that have the highest average graphlet frequency densities across
all malware.

invocations; Figure 1) ranks the first and w3,6 (incoming
invocations) ranks the third for malware, ω3,5 ranks the
third and ω3,6 ranks the first for benign apps. In both cases,
these two graphlet types have a graphlet frequency density
gap of 0.1 or more between them. And it also happens
when a function invokes/is invoked by 3 or more other
functions. This suggests that incoming invocations to a same
function is more frequent than outgoing invocations from
a single function in benign apps, while the reverse is true
for malware. The mechanism behind this calls for further
research.

4.3.8 Robustness with SVM parameters

When the two methods are used to detect malware in new
datasets, the SVM may not be well-trained. It is important
for the SVM to have the robustness. In this part, e compare
the GFD and DFD methods with various SVM parameters.
Here we use the RBF kernel, which has the highest per-
formance in classification, as the example. The RBF kernel
has two parameters, the cost C and the Gamma γ. The
cost takes a trade-off between the misclassification rate and
the simplicity of the detection surface [6]. Lower the cost,
simpler the decision surface, but higher the misclassification
rate with the training dataset. The γ is the one in eγ|u−v|

2

. γ
changes the influence of a single example, which is chosen
to be the support vector. Higher the γ, higher the influence
of the example.

Figure 12 shows the accuracy results of the two methods.
Similarly, the scale of grey shows the accuracy: white is
100% accurate and black is 0% accurate. The accuracies of
the GFD results are all above 70%, while some DFD results
are only 53% accurate.
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(a) Accuracies of the GFD method

(b) Accuracies of the DFD method

Fig. 12: Accuracies with different SVM parameters

We also evaluate the F1-score of the two methods, which
is the average of the recall and the precision.

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2 · precision · recall
precision+ recall

=
2TP

2TP + FP + FN

(5)

Figure 13 show the F1-scores of the two methods. The F1-
scores of the GFD results are all above 0.65, while the DFD
results have 0.16 F1-scores when the cost and gamma are
not suitable. We find that when cost and gamma are small,
the false positive rate of the DFD results is high. The DFD
method lacks enough robustness to classify the malicious
applications. When the SVM is not well-trained for the test
dataset, the DFD method has high possibility to raise alarms
to benign applications. On the contrary, our GFD method
has enough robustness to new datasets.

(a) F1-scores of the GFD method

(b) F1-scores of the DFD method

Fig. 13: F1-scores with different SVM parameters

4.3.9 Combination with semantic analysis tool

Since ACTS uses structural features, which are orthogo-
nal to semantic features, combining ACTS with semantic
analysis tools is expected to give a great improvement in
malware detection accuracy. In this experiment, we combine
our method with MaMaDroid, a state-of-the-art malware
detection method using semantic features [18].

Specifically, MaMaDroid abstracts each Android func-
tion into package or family. For instance, the function
com.beyondar.world:getInstance has the family com and the
package com.beyondar. Then MaMaDroid embeds a Markov
Chain to model the sequence of these functions. Because
MaMaDroid mainly focus on the semantic features, this
algorithm is suitable to connect with our structural analysis
tool. In this experiment, we inject the GFD frequency distri-
bution as additional features to show if the combination tool
can get better detection performance. The result is shown
in Figure 14. When directly applying MaMaDroid, the area
under the Receiver Operating Characteristic (ROC) curve is
0.95. If the two analysis tools are combined together, the
area under ROC curve is 0.99. It proves that our method is
an enhancement to existing semantic analysis tools.
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Fig. 14: ROC curve of detection result combining with MaMaDroid

Fig. 15: Feature extraction time of different methods

4.3.10 GFD estimation efficiency

Figure 15 shows the feature extraction time of different
methods among different sizes of FCGs, in our experiment
on a desktop workstation (8-core Intel Core i7-3820 CPU
at 3.60GHz with 12GB RAM) with 100, 000 sampling it-
erations (at which point, the GFD estimation has already
converged). Because GFD-SVM method and MaMaDroid
apply the MCMC algorithm to approximate the true dis-
tribution of GFD or FCG connection, these two methods
have consistency in runtime with different sizes of FCGs. On
the contrary, DFD-SVM method needs to capture the degree
distribution, which is a global feature and not suitable to
MCMC sampling. While MaMaDroid focuses on the func-
tion call relationships themselves, our GFD-SVM method
extracts the graphlets which are more complex [18]. Hence,
the extraction time of our GFD-SVM method is longer but it
is still acceptable.

While the GFD estimation just takes seconds of work to
analyze each single app, the total calculation time mainly
depends on the size of the dataset. Because all apps and
their FCGs are independent with each other, the topolog-
ical features extraction work is absolutely convenient for
distributed computing system. And the overall system is

expected to be more efficient if it is setup on a cloud
computing system with more powerful servers. Analyzing
single extraction work, we note that GFD estimation is
dominated by the generation of 1-hop neighborhood on GG
and the minimum DFS code computations (for graphlet-
type identification), which are independent to the size of
the graph unless the graph is dense.

By contrast, the DFD calculation needs to traverse every
edge and employ a sorting algorithm to the vertices. So it
takes more time to do the DFD calculation especially on
the complex networks. For instance, DFD calculation takes
about 41 seconds for the Facebook application, 7 seconds
longer than the GFD estimation. Therefore, GFD estimation,
and hence ACTS, is practically efficient and accurate (Sec-
tion 1).

The efficiency and accuracy also drive us to move the de-
tection platform to Android itself. It seems possible that each
smartphone could analyze its own applications because the
total size of analysis tool is relative small (ACTS is 65MB and
a vector of 1000 software samples is about 2MB). Deploying
such distributed detection system will allow us to aggregate
and analyze the software swiftly.

5 FURTHER DISCUSSION

5.1 Static features extraction

The essence of ACTS is the FCG-local-topology-preserving
feature based on GFD, on which pattern mining techniques
can be applied. Its effectiveness for malware detection can
be better understood by relating it to the following ideas on
extracting graph features.
Subgraph isomorphism. Subgraph isomorphism can be
applied to determine whether two FCGs share common sub-
structures. Besides its NP-completeness [5], it is not robust
against even minor perturbation (e.g., breaking a large func-
tion into a few smaller ones during code refactoring) in the
FCG due to the binary nature of its result, e.g., yes or no to
“whether two FCGs share an isomorphic subgraphs with 5
vertices.”
Betweenness centrality. Betweenness centrality [3]) mea-
sures relative topologically importance of the vertices in the
FCG. Although betweenness centrality captures the large
picture of the graph topology, it also loses information on
the FCG at the level of a few neighboring vertices. This
nuance is important for detecting malware.
Degree frequency distribution. Degree frequency distri-
bution (DFD) [7] is the distribution of the frequencies of
vertex degrees. DFD can be efficiently computed by a single
walk over the vertices in the graph. However, by focusing
solely on vertices, DFD loses the topological information
in an FCG, which includes, for example, directionality and
the invocation relationship between several functions. Our
experiments (Section 4) demonstrate the importance of such
topological information for detecting malware.
n-hop neighborhood. An n-hop neighborhood is a sub-
graph with a diameter of n, i.e., the maximal shortest (edge)
distance between any pair of vertices in the subgraph is n.
Its granularity in relation to the parameter n is too coarse for
our task. For instance, a 3-hop neighborhood can be much
larger than a 2-hop one.



13

5.2 Case study of dynamic analysis
In order to verify the effectiveness of the graphlet-based
analysis and to better understand why the topological fea-
tures used in ACTS could result in good performance of
benign/malicious software classification, we also conducted
a few case studies using dynamic analysis that based on
semantic features [27].

The motivation of combining the static and dynamic
analysis in Android malware detection is from the desire
of taking the advantages of the two methods. Particularly,
dynamic analysis allows us to run the applications live.
The dynamic analysis tools inspect the behavior of the
applications. Dynamic analysis tools, e.g., Andrubis and
SandDroid, are capable to provide the malicious function
calls [17, 31]. Static analysis allows us to do reverse engi-
neering. Static analysis tools, e.g., Androguard, provide the
information of app permissions, Java methods, and their
invocation relationships.

In the case study, we obtain the critical API calls with
the help of online analysis tools. These critical calls are
represented as edges in the FCG. And if a function invokes
one of more times of the critical API calls, we label the
mapping vertex as a critical vertex. Instead of taking the
full FCG graph into account, now we can just focus on the
graphlets that contain the critical vertices.

Our experiment were taken on four APK files randomly
chosen from four different malware families, TapSnake [21],
SndApps [13], NickySpy [11] and LoveTrap [16]. The result
shows that for each particular malware, its top-2 graphlets
with critical vertices are always the same as the top-2
graphlets in GFD generated by ACTS. And obviously, they
are different from the top-2 graphlets generated from the be-
nign softwares. It implies that the most frequent graphlets of
malware generated by ACTS in Section 4.3.7 always contain
the critical API calls. These graphlets are the attacking core
of a malware.

We also in-depth analyzed one application
com.typ3studios. airhorn in the malware family SndApps [13].
There are just four critical graphlets that were obtained
through dynamic analysis tools. After embedding the
3-node graphlets in 4&5-node graphlets, we find that
there are only 2 kinds of 3-node graphlets that contain
the critical API calls, ω3,5 and ω3,1 in Figure 1, while the
possible 3-node graphlets has 13 types. Also, ω3,5 (outgoing
invocations) is included but w3,6 (incoming invocations)
is not. It supports the result in Figure 11 of Section 4.3.7
that outgoing invocations to a same function is more
frequent than incoming invocations from a single function
in malware. In the future, we plan to add more cases in the
experiment to find the hidden mechanisms of malware by
combining both the static and the dynamic analysis.

6 RELATED WORKS

The present work follows a line of recent works [1, 2,
9, 19, 33, 36] that apply advances in machine learning
and data mining for Android malware detection. Some
of them were based on semantic information, which in-
cludes the signatures, API calls, opcode, and Java methods.
DroidAPIMiner focused on API level information within
the bytecode since APIs convey substantial semantics about

the apps behavior [1]. More specifically, DroidAPIMiner
extracted the information about critical API calls, their pack-
age level information, as well as their parameters and use
these features as the input of classification. Droid Analytics
designs a signature based analytic system [36]. This system
can automatically generate the signatures based on the in-
put Android application’s semantic meaning at the opcode
level. Unlike previous signature-based approaches, which
are vulnerable with bytecode-level transformation attacks,
Droid Analytics can defense against repackaging, code ob-
fuscation, and dynamic payloads [25]. Drebin was a com-
bination of previous semantic based detection methods [2].
It extracted string features from multiple Android-specific
sources, e.g., intent/permission requests, API calls, network
addresses. Although these semantic features directly reflect
the application’s behavior, novel code encryption and ob-
fuscation method made these methods hard to extract the
useful information [8]. In this paper, our idea is exploring
the application feature space to find some special features,
which may be indirect with application’s behavior, but they
should be hard to be obfuscated.

One major kind of indirect feature space is the struc-
ture information. Researchers first builded a FCG to show
the relationships between functions. Then, Martinelli et al.
compared the subgraphs in the input FCGs with known be-
nign or malicious applications’ FCGs, which formulates the
malware detection problem as a subgraph mining problem
[19]. Zhang et al. introduced weight to FCGs and their FCGs
contained both Java methods and APIs [35]. They selected
critical APIs and set different weights to nodes when these
nodes’ APIs have different importance. After that, a similar-
ity score is given between two FCGs to measure the distance
when converting one FCG to another, by adding/deleting
edges and nodes. In MaMaDroid, Mariconti et al. also added
API information in FCGs [18]. They used a Markov chain to
extract the structural information in FCGs. Although these
structure-based detection method focused on the indirect
features, all these features, e.g., the big subgraphs, the dis-
tance between graphs, and the linear linking relationships,
are easy to be obfuscated. For example, adversaries can
simply add some edges, i.e., dummy call relationships, to
make the malicious subgraph looks benign. In this paper,
we choose the frequency of graphlets because it is harder to
build desired graphlets without affecting existing graphlets.
The term of graphlet was first propose by Pržulj et al. [22].
Two recent advances on graph mining, GRAFT [23] and
GUISE [24], inspire our use of GFD as a robust and efficient
topological signature for apps.

Besides semantic information and structure information,
researchers also use other features to enhance static clas-
sification performance. FeatureSmith did not directly give
the feature space. Instead, it applied Natural Language Pro-
cessing (NLP) analysis to automatically collect features from
other security papers [40]. However, the performance of
FeatureSmith relied on other detection methods. DroidSieve
used semantic features as well as resource centric features,
e.g., certificates and their time, nomenclature, inconsistent
representations, incognito applications, and native codes.
Although DroidSieve gained success with the comprehen-
sive feature space, it would be vulnerable if the attackers are
aware about the feature space and obfuscate every feature.
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7 CONCLUSION

In this paper, we propose GFD as a feature for Android
malware detection and adapt recent advances in graph
mining to make GFD estimation robust and efficient. We
demonstrate that local topological information (captured
by graphlets) is attributed to improvement in malware
detection accuracy and efficiency. This provides a new angle
to Android malware detection research, and suggests that
finding structural features (e.g., graphlets) on a graphical
representation of Android apps (e.g., the FCG) that situates
between local and global scope as a fertile ground for future
research.

REFERENCES

[1] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Min-
ing API-level features for robust malware detection in android.
In Security and Privacy in Communication Networks, pages 86–103.
Springer, 2013.

[2] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon,
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