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SUMMARY

Hematopoietic stem cell transplantation is a potential curative therapy for malignant and 

nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells 

acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem 

cell mobilization regimen utilizing a unique CXCR2 agonist, GROβ, and the CXCR4 antagonist 

AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 
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fifteen minutes that was equivalent in magnitude to a standard multi-day regimen of G-CSF. 

Mechanistic studies determined that rapid mobilization results from synergistic signaling on 

neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic 

polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential 

trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by 

G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved 

hematopoietic graft.

Graphical abstract

A new strategy for stem cell mobilization enables rapid collection of an improved hematopoietic 

graft in humans

INTRODUCTION

Hematopoietic stem cell (HSC) transplantation has been used to treat malignant hematologic 

diseases for over 50 years. During this time, its therapeutic potential has expanded to non-

malignant hematologic and immunologic disorders. With the emergence of gene therapy 

strategies and reduced toxicity conditioning regimens, hematopoietic transplantation is 

poised to expand to additional patient populations.

Successful transplantation requires harvesting of HSCs in both sufficient number and quality 

for robust engraftment, blood cell recovery, and lifelong maintenance of hematopoiesis. The 

predominant source of HSCs for transplant is mobilized peripheral blood (D’Souza et al., 

2017; Niederwieser et al., 2016) that is acquired by apheresis of donor or patient blood after 

a multi-day regimen of granulocyte colony-stimulating factor (G-CSF). While successful, G-

CSF regimens involve repeated injections and are often associated with bone pain, nausea, 

headache, and fatigue (Pulsipher et al., 2013; Pulsipher et al., 2009). The multi-day regimen 

and associated morbidities can be lifestyle disruptive and stressful for healthy volunteers 
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donating for allogeneic transplants and patients donating for autologous transplant. In a 

small population of healthy donors, G-CSF has been associated with serious toxicities, 

including splenic enlargement and rupture (Tigue et al., 2007). In high-risk individuals, the 

thrombophilic effects of G-CSF increase the risk of myocardial infarction and cerebral 

ischemia.

Despite its success for most patients and donors, poor mobilization rates as high as 40% 

have been reported (Giralt et al., 2014), and often those who do achieve sufficient numbers 

of hematopoietic stem and progenitor cells (HSPCs) require more than one apheresis 

procedure. Repeated, prolonged sessions of apheresis are particularly common amongst 

autologous donors and cause increased patient distress, tie up clinical resources, and 

increase the cost (Hosing et al., 2011; Shaughnessy et al., 2013).

Enhancing the standard of care for stem cell collection offers an opportunity to not only 

improve treatment of those who respond poorly to mobilization by G-CSF, but to expand 

autologous and allogeneic transplants across the full array of diseases that can potentially be 

cured.

RESULTS

GROβ is Well Tolerated in Humans and Modestly Increases Peripheral Blood CD34+ Cells

With the goal of developing a new mobilization regimen to overcome the shortcomings of 

the current standard of care, we began exploring an N-terminal 4-amino acid truncated form 

of the human chemokine GROβ. This molecule specifically binds to the CXCR2 receptor 

and with greater potency than full length GROβ (King et al., 2000). This truncated form is 

used throughout this manuscript and is simply referred to as GROβ. We previously showed 

that GROβ rapidly mobilizes HSPCs in mice (King et al., 2001; Pelus et al., 2004) and 

rhesus macaques (King et al., 2001).

Based on these animal studies, we performed a single-blind, dose escalating pilot study in 

humans to assess the tolerability and preliminary pharmacokinetics and pharmacodynamics 

following intravenous (iv) administration of GROβ in healthy volunteers. All subjects 

received matched placebo in the first session and a dose of GROβ in the second session, 

separated by at least 4 weeks. GROβ had no adverse effects on clinical laboratory 

parameters, ECG, cardiac output, vital signs or lung function, and was not antigenic in the 

population studied. Infusion of GROβ at doses ≥90 μg/kg resulted in reported acute lumbar 

region mid-line back pain, with a maximum tolerated dose of 200 μg/kg. Back pain was 

reported in 11 subjects (29.7%) following infusion with GROβ compared to 2 subjects 

(5.3%) receiving placebo and generally resolved without stopping drug infusion within 10 

min. No other serious adverse events were reported. In subjects receiving doses ≥60 μg/kg, a 

modest but significant increase in peripheral CD34+ cell counts, a phenotypic measure of 

HSPCs, was observed compared to matched placebos (Figure 1A). The maximal CD34+ cell 

count measured was achieved following administration of GROβ in all but one subject 

(Figure 1B).
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Simultaneous Administration of GROβ and AMD3100 Increases Hematopoietic Mobilization

Although GROβ was well tolerated in humans, the magnitude of mobilization was not 

expected to be sufficient for clinical harvesting. We previously reported that administration 

of GROβ following a standard G-CSF regimen increases mobilization in mice. However, 

this strategy would still require multi-day administration of G-CSF and thus would not be 

expected to substantially alter standard of care. Single administration with rapid 

mobilization kinetics would be more ideal. The CXCR4 antagonist AMD3100 (Plerixafor) is 

approved for clinical mobilization and is used in combination with G-CSF, often when G-

CSF has failed to mobilize sufficient numbers of CD34+ cells. Administration of AMD3100 

as a standalone agent has been explored in some patient and donor populations (Devine et 

al., 2008; Pantin et al., 2017). However, the level of mobilization is below that of G-CSF.

With our experience in the healthy volunteer study, we returned to laboratory mouse models 

to explore the efficacy of a combinatorial strategy using GROβ and AMD3100. In mouse 

models, the peak mobilization produced by subcutaneous (sc) administration of AMD3100 

was approximately one hour post-treatment (Broxmeyer et al., 2005) and GROβ peaked 

within 15 min (King et al., 2001). Therefore, we first administered AMD3100, waited for 45 

min, and then administered GROβ, with blood analysis 15 min later (Figure 2A). We 

hypothesized that this dosing strategy would provide peak mobilization for both agents, 

giving us the maximal response. However, contrary to this hypothesis, we saw no increase in 

mobilization over GROβ alone. We then altered our strategy and administered both agents 

simultaneously. Using this simultaneous dosing regimen, peak mobilization was seen within 

15 min (Figure 2B and (Hoggatt and Pelus, 2012)). While each agent given alone had less 

mobilization than a standard regimen of G-CSF (Figure 2C), the simultaneous combination 

of GROβ+AMD3100 resulted in significantly greater mobilization than seen with the 

standard multi-day G-CSF regimen (Figure 2C).

Release of MMP-9 Correlates with Rapid Mobilization

Given that peak mobilization following GROβ+AMD3100 occurred within 15 min, 

mimicking the kinetics of GROβ alone, we hypothesized that the mechanism driving this 

enhanced mobilization was an enhancement of the GROβ mechanism. We previously 

demonstrated that GROβ mobilization is mediated by matrix metalloproteinase-9 (MMP-9) 

(King et al., 2001; Pelus et al., 2004). As seen previously, GROβ increased peripheral blood 

MMP-9 as measured by zymography (Figure 3A) and in addition we now also show similar 

results measured by ELISA (Figures 3B–D). The combination of GROβ+AMD3100 

substantially increased MMP-9 levels (Figures 3A–D), compared to either agent used alone. 

Changes in plasma levels of tissue inhibitor of metalloproteinases 1 (TIMP-1), an 

endogenous inhibitor of MMP-9, were not seen after administration of any agents (Figure 

3C), nor were there significant changes in bone marrow levels (not shown). We next 

assessed peripheral MMP-9 over a 24-hour period post-administration. Peak MMP-9 levels 

were seen within 5–15 min after the combination regimen (Figure 3E) and rapidly returned 

to baseline within 12 hours. Importantly, the kinetics of peripheral MMP-9 release matched 

the kinetics of mobilization (Figure 3F). Analysis of numerous independent experiments 

encompassing 112 individual mice, representing a variety of mouse strains and genetic 

variants (described in later sections), demonstrated a strong correlation between progenitor 
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cells mobilized to peripheral blood and plasma MMP-9 levels following GROβ or 

combination treatment (Figure 3G). These results suggest that the mechanism of action of 

the combinatorial regimen may be like that of GROβ alone, and be dependent on MMP-9.

Neutrophil MMP-9 Enables Rapid Mobilization

Based on the rapid kinetics and the strong correlation of MMP-9 with hematopoietic 

mobilization, we hypothesized that GROβ and AMD3100 acted through their respective 

CXCR2 and CXCR4 receptors on neutrophils, resulting in enhanced MMP-9 release. This 

hypothesis is represented in Figure 4A. We based this hypothesis on; our earlier findings 

with GROβ as a single agent; the large amounts of MMP-9 stored in neutrophil granules 

making them the logical source; the role of these receptors in differentially regulating 

neutrophil trafficking (Eash et al., 2010); and importantly, the presence of high levels of 

CXCR2 receptor on neutrophils, while relatively absent on HSPCs (Supplementary Figure 

1). To demonstrate the role of neutrophils in mobilization, we treated mice with an anti-Gr-1 

antibody to deplete neutrophils (Supplementary Figure 2). Significant mobilization was seen 

with the combinatorial regimen compared to either agent alone in isotype treated mice 

(Figure 4B), whereas neutrophil depletion resulted in a complete absence of GROβ-

mediated mobilization, and dramatically decreased mobilization from the combination 

regimen. In contrast, mobilization with AMD3100 was unaffected by neutrophil depletion.

To demonstrate the role of CXCR4 in the combined response, we used conditional CXCR4 

knockout mice as we have previously described (Hoggatt et al., 2013). Conditional deletion 

of CXCR4 on its own resulted in mobilization (Figure 4C). GROβ administration resulted in 

significantly more mobilization than in wild type mice. In this case, the conditional deletion 

of CXCR4 replaces the effect of AMD3100, resulting in enhanced mobilization. However, 

AMD3100 did not mobilize in knockout mice, as expected given its known target. Similarly, 

there was no additional mobilization with the combination of GROβ+AMD3100 in knockout 

mice compared to GROβ alone. Likewise, CXCR2 gene deletion significantly reduced 

mobilization to GROβ (Figure 4D) and prevented any additional mobilization over 

AMD3100 alone when used in combination.

To confirm the role of MMP-9 we used two approaches. First, we mobilized MMP-9 

knockout mice and compared them to wild type controls. Mice deficient in MMP-9 failed to 

mobilize in response to GROβ (Figure 4E). Mobilization to AMD3100 was unaffected, 

demonstrating that MMP-9 is not a primary mechanism of AMD3100 on its own. 

Importantly, there was no additional mobilization with the combination regimen, 

demonstrating the necessity of MMP-9 for the GROβ+AMD3100 regimen. To further verify, 

we used an antibody neutralization approach. Mice were given a neutralizing antibody for 

MMP-9 two hours prior to treatment, and mobilization was compared to isotype-treated 

controls. As was the case with MMP-9 knockout mice, there was no mobilization in 

response to GROβ (Figure 4F). Mobilization to AMD3100 as a single agent was unaffected 

and there was no additional mobilization with the combination regimen.

The totality of these studies using genetic knockout mice and antibody approaches confirm 

the model hypothesized (Figure 4A). The rapid mobilization elicited by GROβ+AMD3100 

is the result of an agonist effect of GROβ on neutrophil CXCR2 coincident with antagonism 
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of CXCR4 by AMD3100, resulting in release of MMP-9 and subsequent hematopoietic 

mobilization.

Human Neutrophils Release MMP-9 in Response to GROβ+AMD3100

The mouse studies described in Figure 4 suggested a crosstalk between the CXCR2 and 

CXCR4 receptors in neutrophils. Signaling from the CXCR4 receptor appeared to dampen 

CXCR2-mediated mobilization. To further explore this crosstalk, we utilized freshly 

harvested human neutrophils and treated them ex vivo with GROβ and AMD3100. Human 

neutrophils were used in these studies with an eye towards clinical translation of the rapid 

mobilization regimen but also out of practicality to acquire sufficient numbers for signaling 

analysis. In preliminary studies however, mouse peripheral and marrow neutrophils 

demonstrated similar responses to GROβ and AMD3100 as human neutrophils (not shown).

Signaling downstream of both CXCR2 and CXCR4 receptors is known to cause intracellular 

calcium mobilization (Duda et al., 2011; Waugh and Wilson, 2008). Human neutrophils 

treated with GROβ or SDF-1, the ligand for CXCR4, had an increase in calcium 

mobilization (Figure 5A, left panel). However, when the CXCR4 inhibitor AMD3100 was 

added, the calcium mobilization response to SDF-1 was blocked (Figure 5A, right panel). In 

contrast, GROβ+AMD3100 resulted in increased calcium mobilization over GROβ alone, 

demonstrating enhanced G-protein signaling after the combination.

We then pre-treated human neutrophils with pertussis toxin, an inhibitor of Gαi, or 

mastoparan, an activator of Gαi signaling. The CXCR4 receptor is capable of activating Gαi, 

and previously shown to be pertussis toxin sensitive (Juremalm et al., 2000). GROβ 
treatment of neutrophils increased the release of active MMP-9, as measured by zymography 

(Figure 5B) and closely matched the molar ratio of MMP-9 and its inhibitor TIMP-1, as 

measured by ELISA (Figure 5C). When neutrophils were pre-treated with pertussis toxin 

there was a significant increase in MMP-9 release after GROβ treatment (Figure 5B, C). In 

this case, the inhibition of G-protein signaling mimics the effect of AMD3100, i.e., blocking 

CXCR4 signaling enhances the GROβ-mediated release of MMP-9. Similarly, mastoparan, 

which activates Gαi signaling and thus mimics CXCR4 agonism, blocked the GROβ-

mediated release of MMP-9 (Figures 5B, C). In contrast, cholera toxin, which is an activator 

of Gαs signaling, had no effect (Figure 5D, E), validating the role of Gαi signaling pathways 

in the response.

To further determine the potential regulators of the combination regimen, we pretreated 

human neutrophils with signaling pathway inhibitors prior to treatment with GROβ, 

AMD3100, or the combination. Inhibition of p38 MAPK signaling with SB203580 (Figure 

5F), or JAK2 with AG490 (Figure 5G), had no effect on GROβ-mediated release of MMP-9, 

or the enhanced release in response to the combination treatment. Pre-treatment with PI3K 

inhibitors, Wortmannin or LY294002, resulted in an increase in GROβ-mediated release of 

MMP-9 (Figures 5H and 5I, respectively), to a similar degree as combination treatment. 

Similarly, blockade of MEK1 signaling by PD98059 partially mimicked the effect of 

AMD3100. Distinct from the effects of these inhibitors in mimicking AMD3100, the Src 

family kinase inhibitor PP2 blocked GROβ-mediated release of MMP-9 as well as the 

enhanced release from the combination regimen (Figure 5K). This result suggests that Src 
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family kinases are a key signaling pathway downstream of CXCR2 governing MMP-9 

release.

Mouse Strains Differentially Mobilize to GROβ + AMD3100

The donor and patient pool for hematopoietic mobilization is diverse, and the clinical 

experience with G-CSF has shown broad ranges in the ability to mobilize between individual 

donors (Vasu et al., 2008). Prior reports in mice have also shown differences in the capacity 

to mobilize in response to G-CSF or cyclophosphamide (Roberts et al., 1997; Watters et al., 

2003). We assessed mobilization in C57Bl/6, DBA/2, or their F1 hybrid (BDF1). 

Mobilization with GROβ or the combination treatment was significantly greater in DBA/2, 

compared to C57Bl/6 mice (Figure 6A), while mobilization with AMD3100 did not differ 

amongst the strains. This result suggested that the strain differences were predominantly due 

to a GROβ-related mechanism. Indeed, when we assessed blood plasma levels for MMP-9 

activity, DBA/2 mice exhibited more activity after GROβ or combination treatment than did 

C57Bl/6 mice (Figure 6B).

To further explore this differential mobilization, and to account for other potential 

differences in the bone marrow niche or vasculature, we performed similar experiments in 

chimeric mice. Lethally irradiated BDF1 mice were transplanted with DBA/2, C57Bl/6, or 

BDF1 bone marrow. In these mice, the microenvironment was the same and only the 

hematopoietic system differed. As we showed previously, DBA/2 mice had greater 

mobilization to GROβ and the combination of GROβ+AMD3100 than C57Bl/6 mice 

(Figure 6C). Similarly, DBA/2 chimeric mice demonstrated greater mobilization than 

C57Bl/6 chimeras (Figure 6D). These results demonstrate that the strain differences in 

mobilization response to GROβ are due to differences in the hematopoietic system.

Mouse Strains Differ in MMP-9 Hemopexin-like Domain

There are numerous genetic differences amongst strains of mice that could account for the 

differing mobilization response. However, given that the differences in our experiments 

seemed to be GROβ-dependent, as mouse strains did not differ in mobilization to 

AMD3100, coupled with the increased MMP-9 activity in the DBA/2 mice (Figure 6B), and 

the clear constraint to the hematopoietic system (Figure 6D), we hypothesized that the 

difference in mobilization to the combination regimen was mediated by genetic variation in 

MMP-9. Evaluation of the genomic sequence of MMP-9 in DBA/2 and C57Bl/6 mice 

identified two, single nucleotide polymorphisms (SNPs) between the strains at positions 639 

and 711 (Figure 6E). These SNPs result in leucine to proline and histidine to proline 

switches at those positions. These polymorphisms exist in the hemopexin-like domain of 

MMP-9, where the inhibitor TIMP-1 binds (Cha et al., 2002; Van den Steen et al., 2006).

Given the difference in gelatinolytic activity between DBA/2 and C57Bl/6 mice after GROβ 
or combination treatment (Figure 6B), and the greater mobilization in DBA/2 mice 

compared to C57Bl/6 (Figures 6A,C), we hypothesized that the SNPs we found in the 

hemopexin-like domain may alter the binding of TIMP-1 to MMP-9, and thus alter activity. 

To test this hypothesis, we loaded equal amounts of MMP-9 isolated from DBA/2 or 

C57Bl/6 mice onto sepharose beads with immobilized TIMP-1. After washing, MMP-9 was 
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eluted off the beads and levels determined by ELISA. The MMP-9 acquired from DBA/2 

mice eluted off the TIMP-1 beads more readily than did the MMP-9 from C57Bl/6 mice 

(Figure 6F), suggesting that the binding of TIMP-1 to MMP-9 in DBA/2 mice is not as 

strong as C57Bl/6 MMP-9, consistent with the newly found SNPs in the hemopexin-like 

domain.

Based on these findings, we reasoned that the strain differences in mobilization to our new 

regimen could be attributed to this specific genetic difference. To test this hypothesis, we 

created retroviral vectors containing scrambled, C57Bl/6 MMP-9 or DBA/2 MMP-9 

transgene, with a GFP reporter, and transduced bone marrow cells from MMP-9 knockout 

mice (Figure 6G). After transduction, HSPCs were sorted based upon GFP expression and 

transplanted into cohorts of lethally irradiated MMP-9 knockout mice. This experimental 

setup created chimeric mice in which all the hematopoietic cells would express a specific 

form of MMP-9, independent of any other strain differences. As we observed in other 

experiments, un-manipulated MMP-9 knockout mice did not mobilize after GROβ treatment 

and C57Bl/6 mice mobilized to a lesser degree than DBA/2 mice (Figure 6H). Transplant of 

MMP-9 knockout mice with hematopoietic cells transduced with the C57Bl/6 MMP-9 

transgene restored mobilization to GROβ and the combination treatment (Figure 6I). 

Similarly, transplant with the DBA/2 MMP-9 transgene-transduced cells restored 

mobilization that was greater than the C57Bl/6 transgene chimeras. These results reveal that 

these two SNPs in the MMP-9 gene result in significant differences in biologic activity.

GROβ Increases Bone Marrow Vascular Permeability

The rapid and robust mobilization kinetics of GROβ+AMD3100 made us curious as to 

potential changes in the bone marrow niche. Mobilization with G-CSF is known to cause 

numerous changes within the bone marrow, including a characteristic flattening of 

osteolineage cells, reduction of adhesion and chemoattractant molecules, etc. (Hoggatt and 

Pelus, 2011; Tay et al., 2017). In contrast to overt changes in the microenvironment we 

(Hoggatt et al., 2013) and others have seen with G-CSF, we did not observe histologic 

differences in the bone marrow environment or significant changes in adhesion molecule 

expression 15 min following GROβ+AMD3100 treatment (not shown). Since we previously 

used intra-vital imaging to observe HSCs within the bone marrow in dynamic settings (Lo 

Celso et al., 2009) we applied this technique to assess the microenvironment during our 

mobilization treatment. In a pilot study, we treated mice with vehicle control or the GROβ
+AMD3100 combination. Five minutes after treatment, we injected the mice with a 

rhodamine dextran dye with the intent to label the vasculature. Quite unexpectedly, the large 

molecular weight dye leaked out of the bone marrow vessels in the GROβ+AMD3100 

treated mice (Figure 6J and Supplementary Videos 1 and 2). Based on this surprising 

finding, we imaged numerous other mice after treatment with vehicle, GROβ, AMD3100 

and the combination treatment. We observed an increase in vascular permeability with the 

combination regimen and to a lesser degree GROβ or AMD3100 alone (Figure 6K). 

Importantly, when mice were pre-treated with an anti-MMP-9 antibody prior to GROβ
+AMD3100 treatment (Figure 4F), the increase in vascular permeability was completely 

blocked (Figure 6K and Supplementary Videos 3–5). These data demonstrate that 
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combination regimen release of MMP-9 rapidly increases bone marrow vascular 

permeability.

GROβ+AMD3100 Mobilizes a Superior Hematopoietic Graft

We next evaluated and compared the hematopoietic grafts mobilized by GROβ+AMD3100 

compared to a standard multi-day regimen of G-CSF. Lethally irradiated mice transplanted 

with peripheral blood mononuclear cells (PBMC) from mice treated with the combination 

regimen had a 4-day faster recovery of neutrophils (Figure 7A) and a 6-day faster recovery 

of platelets (Figure 7B) compared to mice transplanted with a G-CSF graft. In competitive 

repopulation assays, competing PBMC to freshly harvested bone marrow cells, the grafts 

mobilized with GROβ+AMD3100 were significantly more competitive than G-CSF (Figure 

7C). At 6 months, we performed secondary transplantation assays to determine long-term 

repopulating capacity. Surprisingly, not only did the marrow from mice that received a 

GROβ+AMD3100 graft outcompete the G-CSF group, the chimerism increased compared to 

the primary graft, while the G-CSF graft remained the same (Figure 7D). These data clearly 

demonstrated that the GROβ+AMD3100 regimen mobilized a graft that led to robust short 

and long-term engraftment, and was more competitive than G-CSF grafts.

GROβ+AMD3100 Mobilizes a Highly Engraftable Hematopoietic Stem Cell (heHSC)

One explanation for the slight rise observed in the secondary transplantation assay is that the 

GROβ+AMD3100 graft contained more long-term repopulating stem cells than the G-CSF 

graft. However, since these grafts consisted of total PBMCs we could not definitely rule out 

accessory cell effects. We first evaluated the PBMC grafts by flow cytometry for HSPCs 

using a standard antibody panel, focusing on the lineagenegative Sca-1+ c-kit+ (LSK) 

population, or the more defined stem cell population CD150+ CD48− lineagenegative Sca-1+ 

c-kit+ (SLAM LSK). Despite the clear increase in hematopoietic engraftment in both non-

competitive and competitive transplants (Figures 7A–D), there were less phenotypically 

defined HSPCs in the GROβ+AMD3100 graft compared to G-CSF (Figures 7 E–G). These 

results indicated that perhaps the rapid regimen mobilized a distinct stem cell population 

from that of G-CSF. To test this hypothesis, we repeated competitive transplantations using 

highly purified, FACS-sorted SLAM LSK cells from the peripheral blood of the mobilized 

mice and competitively transplanted the exact same number from each donor source. In 

three separate experiments, SLAM LSK cells acquired from mice treated with GROβ
+AMD3100 were twice as competitive as those from G-CSF-treated mice (Figure 7H). 

Intriguingly, if we truncate transplants that resulted in 10% or less chimerism, the G-CSF 

sourced cells demonstrated low engraftment in 5 out of 17 mice, while no mice were below 

that threshold in the GROβ+AMD3100 grafts. There is only a (1/2)5 = 0.03125 chance that 

all 5 animals would come from the G-CSF group if both groups had the same probability of 

low engraftment, further demonstrating the enhanced engraftment capability of the 

combination regimen. Grafts from both sources resulted in multi-lineage reconstitution 

(Figure 7 I, J), with no apparent lineage bias between sources.

These results demonstrate that the combination regimen of GROβ+AMD3100 mobilizes a 

distinct, highly engraftable hematopoietic stem cell (heHSC) population with superior 

competitiveness compared to G-CSF-mobilized HSCs. As a preliminary, pilot 
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characterization of the heHSC population, we mobilized new cohorts of mice with G-CSF or 

GROβ+AMD3100, sorted SLAM LSK cells from the peripheral blood and from the marrow, 

and performed RNA sequencing. Sequence analysis indicated that the heHSCs had a distinct 

transcriptome compared to G-CSF mobilized HSCs, or those acquired from bone marrow. 

Intriguingly, in a gene set enrichment analysis, when we compared the genes upregulated in 

heHSCs compared to G-CSF mobilized HSCs, there was a significant enrichment for genes 

upregulated in fetal liver HSCs (Ivanova et al., 2002), compared to bone marrow HSCs 

(Figure 7K). This gene signature was unique to the heHSCs mobilized by GROβ+AMD3100 

as it was not seen with freshly harvested bone marrow HSCs (not shown), and was distinct 

from G-CSF mobilized HSCs that were exposed ex vivo to GROβ+AMD3100 

(Supplementary Figure 3). These results suggest that not only do heHSCs have a distinct 

biologic function, they also have a unique transcriptome which partly mirrors that of young, 

fetal liver HSCs.

DISCUSSION

Based on the current clinical standard for stem cell mobilization, we believe that the next 

generation strategy should be: 1) rapid – not five days or more of injections and resultant life 

disruption, but a single treatment with harvesting the same day; 2) more efficient – an ideal 

regimen would have predictable and robust mobilization that could reliably acquire all the 

cells needed in a single apheresis session; 3) less toxic – avoids the multiple injections and 

side effects associated with modern mobilization; and 4) produce a superior stem cell graft – 

that repopulates hematopoiesis quicker, reducing infections and/or bleeding complications 

and hospital stay.

The GROβ+AMD3100 regimen meets many of these goals. In mice, mobilization peaks 

within 15 min. Clinically, this regimen potentially could also be accomplished with a single 

injection, or two simultaneous injections. For the donor, this would be a superior experience 

compared to multi-day regimens currently in use. Nearly all PBSC donors experience bone 

pain, and most of them within 24 hours of the first injection of G-CSF (Pulsipher et al., 

2013; Pulsipher et al., 2009). Overall, GROβ was well tolerated in our healthy volunteer 

study. It will be important to assess pain and toxicity with the combination treatment in 

future clinical studies, but the single injection, single day procedure is likely to have 

considerable advantages over G-CSF. Importantly, grafts obtained with our new regimen 

resulted in quicker hematopoietic recovery, greater donor chimerism, and mobilized HSCs 

with superior competitiveness compared to grafts obtained from G-CSF mobilized donors.

The number of transplants being performed is increasing, as are the potential diseases that 

can be treated. As toxicities associated with conditioning continue to be reduced, coupled 

with strategies to reduce graft versus host disease, a steady supply of HSCs, and hence 

donors, will be needed to expand transplant as a treatment option. One potential barrier is 

donor recruitment and attrition, with many potential donors ultimately declining to donate 

(Kaster et al., 2014; Switzer et al., 2013; Switzer et al., 1999). Some factors include fear of 

needles or pain, the inconvenience of the donation process, a lack of time or worried about 

missing work, and general doubts and worries. A single injection, single day collection with 
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GROβ+AMD3100 could potentially reduce some of these barriers and increase the donor 

pool.

The benefit of a single day procedure, particularly for healthy donors, has been recognized 

by others who have explored AMD3100 as a standalone agent (Devine et al., 2008; 

Schroeder et al., 2017). However, roughly a third of donors fail to mobilize enough after a 

single treatment, and adequate collection fails in many even after multiple apheresis 

sessions. Dose escalation and a change from sc to iv administration of AMD3100 does not 

overcome these shortcomings (Schroeder et al., 2017). Our results suggest that the addition 

of GROβ along with AMD3100 may be enough to boost the efficacy of rapid, single day 

mobilization and warrants further clinical exploration.

Mechanistic studies in mice and human neutrophils clearly indicate that GROβ mobilization 

is enhanced by blocking CXCR4 signaling. These studies suggest that other CXCR4 

antagonists such as ALT-1188, POL5551, or BKT140, are likely to also enhance GROβ 
mobilization. Intriguingly, the mechanism of action of simultaneous administration of GROβ
+AMD3100 appears to be fundamentally different than that of AMD3100 on its own. 

AMD3100 is believed to act by inhibiting CXCR4 directly on stem and progenitor cells. In 

contrast, we have shown that combined administration of GROβ along with AMD3100 

causes mobilization by targeting CXCR4 on neutrophils. This new mechanism of action 

results in faster kinetics of mobilization than AMD3100 on its own. The kinetics will need to 

be further explored in clinical studies, but these animal models support the potential of same 

day drug administration and stem cell harvesting.

We also found that the differing mobilization between the DBA/2 and C57Bl/6 strains of 

mice is due to 2 SNPs in the hemopexin-like domain of MMP-9. These polymorphisms alter 

the activity of MMP-9, resulting in a more active variant in DBA/2 mice. Genetic 

polymorphisms in the hemopexin domain of MMP-9 have also been reported in humans, and 

have shown correlations with cancer risk (Cotignola et al., 2007; Kessenbrock et al., 2010), 

cardiovascular disease (Luizon et al., 2016; Tanner et al., 2011) or even personality 

(Suchankova et al., 2012). Our studies in mice suggest that genetic differences in MMP-9 

can have strong biologic effects independent of total protein levels. These results argue for 

more functional assays when evaluating polymorphisms in humans, and suggest a potential 

biomarker of response to our new mobilizing regimen.

Coincident with the MMP-9 release and mobilization, we saw a rapid increase in bone 

marrow vascular permeability following GROβ+AMD3100, that was completely blocked 

with an anti-MMP-9 neutralizing antibody. This increase in vascular permeability may open 

the doorway for hematopoietic egress (Itkin et al., 2016) and partly explain the rapid 

mobilization in our studies. Excitingly, the rapid egress results in enrichment of heHSCs that 

have superior engrafting capability. Strongly engrafting stem cells is ideal for all patients, 

but may be particularly useful in clinical scenarios where stem cell competitiveness may be 

impaired, such as gene modified stem cell transplantation. Not only do these heHSCs have a 

distinct engraftment advantage, but they also have a unique transcriptome. Given the lack of 

the CXCR2 receptor on these HSCs, and the fact that the transcriptome is distinct from 

mobilized HSCs exposed ex vivo to GROβ+AMD3100, strongly suggests that heHSCs are 
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an inherently unique population. Intriguingly, this transcriptomic difference in heHSCs 

versus traditionally acquired HSCs shares similarities with those of fetal liver HSCs. These 

similarities should not be interpreted to suggest the presence of fetal liver HSCs in adult 

mouse bone marrow, but rather likely reflect shared properties, some of which contribute to 

the enhanced engraftment capabilities. Further exploration is required to delineate specific 

genetic components governing the high engraftment.

While the existence of heterogeneity within the HSC pool is increasingly being recognized, 

there are few tools that allow prospective isolation of stem cells with differing function, 

particularly in humans. Rapid mobilization with GROβ+AMD3100 now facilitates a 

biologic “panning” approach to stem cell discovery. The differential mobilization process of 

G-CSF versus GROβ+AMD3100 acts as a biologic sieve, allowing for the reliable collection 

of heHSCs with distinct transcriptomics and engraftment. This approach may be a valuable 

tool to explore stem cell function, heterogeneity, and engineering.

STAR METHODS

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Jonathan Hoggatt, Hoggatt.Jonathan@mgh.harvard.edu. GROβ was obtained 

from GSK under MTA. Homozygous MMP-9-deficient C57Bl/6 mice (Vu et al., 1998) were 

obtained from Dr. Zena Werb, UCSF, San Francisco, CA and CXCR4 conditional mice (Nie 

et al., 2004) from Dr. Yung-Ru Zou, Columbia University, NY, NY.

Experimental model and subject details

Animals—SPF BALB/c, C57Bl/6, DBA/2, B6D2F1 (BDF) and ICR/CD1 male and female 

mice (6–8 weeks old) were purchased from Jackson Laboratories or Charles River 

Laboratories, housed in laminar flow micro isolators with continuous access to sterilized 

rodent chow and acidified water and acclimated for 2 weeks before use. Homozygous 

MMP-9-deficient C57Bl/6 mice (Vu et al., 1998) were obtained from Dr. Zena Werb and 

bred at Indiana University School of Medicine (IUSM). Maintenance of the MMP-9-null 

phenotype was monitored by zymography. CXCR2 knockout and control mice and were 

obtained from Jackson Labs. Conditional CXCR4 knockout mice (Nie et al., 2004) were 

obtained from Dr. Yung-Ru Zou, Columbia University, NY, NY, and bred at IUSM. B6.SJL-

Ptprc (BoyJ) mice were purchased from Jackson Labs or bred in the IUSCC In Vivo 

Therapeutics Core facility. For animals bred in house, littermates of the same sex were 

randomized to experimental groups. The animal care and use committee of Indiana 

University School of Medicine and Harvard University approved all protocols involving 

animals at their respective institutions. Unless otherwise stated, in all experiments, each 

mouse was assayed individually.

Healthy Volunteers—The study protocol (SB-251,353/002) and amendments, the 

informed consent, and other information that required pre-approval were reviewed and 

approved by the Independent Ethics Committee (IEC) at SmithKline Beecham. Written, 

dated, informed consent was obtained from each subject prior to the performance of any 
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study-specific procedures. Data for each subject was recorded in an electronic case report 

form (CRF), using the SmithKline Beecham (SB) Phase I information management system 

(PIMS).

As this study was the first administration of GROβ in humans, the study was conducted in 

young healthy male volunteers. GROβ (SB-251353) was formulated as 25 mg/mL 

SB-251353, 20 mM sodium acetate, 150 mM sodium chloride, 0.02% (w/v) Polysorbate 80 

at pH 4.0. Placebo was formulated as 20 mM sodium acetate, 150 mM sodium chloride, 

0.02% (w/v) Polysorbate 80 at pH 4.0. Each subject had to satisfy the following inclusion 

criteria before entry into the study:

1. Male subjects aged between 18 and 45 years inclusive.

2. Subjects had to have good diameter forearm veins on both arms, so that cannulae 

could be inserted and used for leukapheresis if required.

3. Subjects had to have healthy skin on both forearms so that the skin prick testing 

could be performed on the volar surface.

4. Body weight within 25% of ideal weight for height, according to the 1983 

Metropolitan Life Weight Charts.

5. No abnormality on clinical examination. A subject with a clinical abnormality 

was included only if the principal investigator considered that the abnormality 

would not introduce risk factors and would not interfere with the study 

procedures.

6. No abnormality on clinical chemistry or hematology examination at the pre-

study medical. Subjects with laboratory parameters outside the reference range 

for this age group were only included if the principal investigator considered that 

such findings would not introduce additional risk factors, except for hemoglobin 

levels which had to be within the normal laboratory range.

7. A 48-hour Holter ECG and 12-lead ECG at the pre-study medical, which was 

normal.

8. A negative pre-study urine drug screen.

9. A negative pre-study Hepatitis B surface antigen result within 3 months of the 

start of the study.

10. A negative anti-GROβ antibody test and negative skin prick test at screening.

Exclusion Criteria: A subject was excluded from the study if any of the following criteria 

applied:

1. Had experienced any allergic reaction to an Escherichia coli-derived protein 

before this study.

2. Had a history of asthma and/or atopy requiring medical therapy.

3. Had active arthritis or inflammatory skin conditions including psoriasis or 

eczema in the last 6 months.
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4. Had a history of inflammatory eye disorder within the last year.

5. Had a history of venous thrombosis (deep vein thrombosis), or atherosclerosis.

6. Had a strong family history of myelodysplasia or myeloid leukaemia (in parents, 

children or siblings).

7. Had received prescribed medication within 14 days prior to the first dosing day 

which, in the opinion of the principal/co-investigator, would interfere with the 

study procedures or compromise the study.

8. Had received over the counter (OTC) medicine within 48 hours before the first 

study day. Subjects who had taken OTC medication could still enter the study if, 

in the opinion of the principal/co-investigator, the medication received would not 

interfere with the study procedures or compromise the study. In particular, any 

iron containing-preparations and -multivitamins could not be taken. Aspirin and 

ibuprofen were not permitted due to their anticoagulant affects on platelets. 

Paracetamol was permitted.

9. Had abuse of alcohol defined as an average weekly intake of greater than 21 

units or an average daily intake of greater than 3 units (1 unit is equivalent to half 

a pint of beer or 1 measure of spirits or 1 glass of wine).

10. Had a history or presence of gastro-intestinal, hepatic or renal disease or other 

condition known to interfere with the absorption, distribution, metabolism or 

excretion of drugs.

11. Had exposure to more than 3 new chemical entities within 12 months prior to the 

first dosing day.

12. Had participated in a trial with any drug within 84 days before the start of the 

study.

13. Had participated in a trial with a different new chemical entity within 112 days 

before the start of the study.

14. If participation in the study would result in the subject having donated more than 

1500 mL blood in the previous 12 months.

15. Had donated blood within 8 weeks of beginning the study.

In addition, as the effect of GROβ had not been studied on sperm, subjects were advised not 

to attempt to father a child either during the study or for 3 months after the last dose of 

GROβ.

Method Details

Peripheral blood (PB) mobilization and preparation of cell suspensions—
Several different mobilization strategies were employed. All compounds were administered 

subcutaneously (sc) GROβ 2.5 mg/kg and AMD3100 5 mg/kg were administered as single 

doses or in combination and PB analyzed at the indicated times. G-CSF was administered at 

62.5 ug/kg/day, bid, and sc and peripheral blood analyzed ~ 16 hours after the last G-CSF 

dose. Injections were scheduled so that control and mobilized mice were evaluated at the 
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same time in every experiment. Mice were sacrificed by CO2 asphyxiation and blood was 

obtained by cardiac puncture using EDTA-coated syringes. Plasma was isolated from 

aliquots of blood for each animal and stored at −20°C. Peripheral blood mononuclear cells 

(PBMC) were obtained by separation on Lympholyte-Mammal® (Cedarlane Labs Ltd, 

Hornby, Ontario, Canada) as described (Hoggatt et al., 2014). Marrow cells were harvested 

by flushing femurs with 1.0 mL of ice-cold PBS. CBCs were performed on a Hemavet 

Mascot (CDC Technologies, Oxford, CT). Manual differentials were performed on Wrights-

Giemsa stained (Hema-Tek 1000, Bayer Corp, Elkhardt, IN) blood smears or bone marrow 

cell (bmc) cytospin preparations (Shandon Inc., Pittsburgh, PA).

Isolation of mouse and human PMN—Peripheral blood was centrifuged at 500g and 

the cell pellet resuspended in 1 ml EDTA/HBSS/BSA buffer. One mL cell suspensions of 

blood or marrow cells were layered on gradients of 78%, 69% and 52% Percoll® 

(RediGrad™ Percoll, <2 U/ml Endotoxin, Amersham Biosciences, Piscataway, NJ) in 

HBSS, prepared from a stock solution 9 parts Percoll and 1 part 10X HBSS (100% Percoll) 

and centrifuged at 500g for 30 minutes at ambient temperature. The refractive index (RI) of 

each Percoll layer was measured in a refractometer and density (δ) of the layer calculated 

according to the manufacturer’s directions (52% Percoll, RI 1.347, δ=1.083 g/ml; 69% 

Percoll, RI 1.349, δ=1.090 g/ml; 78% Percoll, RI 1.350, δ=1.110 g/ml). Mature neutrophils 

were recovered from the 69%/78% interface and were positive for Gr-1 and Mac-1 by flow 

cytometry. Contaminating erythrocytes were removed by hypotonic lysis. Purity of PMN 

was determined on Wrights-Giemsa stained cytospin preparations. Peripheral blood and 

bone marrow PMN purities of 95.6 ± 4.3 % and 93.8 ± 0.4 %, respectively, were routinely 

obtained. Human PMN were isolated from EDTA blood obtained from healthy volunteers 

after informed consent and IRB approval. Erythocytes were lysed with RBC lysis buffer and 

PMN isolated on 1-Step polymorph (Accurate Chemical and Scientific Corporation, 

Westbury, NY) according to the manufacturer’s instructions. Cytospin analysis confirmed 

that the population consisted of polymorphonuclear cells (>95%).

Preparation of marrow extracellular extracts—Immediately following CO2 

asphyxiation and cardiac puncture, femurs were removed and the contents of 1 femur from 

each mouse flushed with 1.0 mL of ice cold PBS using a 1 cc syringe with a 26g needle. The 

marrow plug was dispersed by refluxing through the 26g needle, centrifuged at 4000 rpm for 

4 min in a micro centrifuge and aliquots of cell free supernates frozen at −20°C.

In vivo depletion of PMN—In order to evaluate the contribution of PMN to stem cell 

mobilization, PMN were depleted by administration of 150 ug/mouse of the monoclonal 

anti-PMN antibody (anti-GR1, clone RB6-8C5) before mobilization. Anti-GR-1 was 

administered 24 hours before GROβ administration. In every experiment, control animals 

were subjected to the identical mobilization regimens and treated with 150 ug/mouse of rat 

anti-mouse IgG2b isotype control mAb (eBiosciences). Flow cytometry and manual CBC 

analysis validated neutrophil depletion (see Figure S2).

MMP-9 antibody neutralization in vivo—In GROβ mobilization studies, mice received 

an IV bolus of either isotype-matched control mAb or 3 mg/kg neutralizing anti-MMP-9 
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antibody 2 hours before receiving 2.5 mg/kg GROβ. Peripheral blood CFU-GM were 

quantitated 15 min after GROβ administration; vascular permeability was assessed 5 

minutes after GROβ injection.

CFU-GM assay—PBMC and unseparated marrow cells were assayed for CFU-GM in 

McCoy’s 5A media with 15% heat-inactivated fetal bovine serum (Hyclone Sterile Systems, 

Logan UT) and 0.3% agar (Difco Laboratories, Detroit, MI) (Pelus et al., 2004). CFU-GM 

content of blood was determined by plating a defined numbed of PBMC and calculating 

based on CBC values, or by plating a defined volume of RBC lysed blood, as we have 

described (Hoggatt et al., 2014). Colonies were manually counted in a blinded fashion.

Analysis of WBC Recovery—Mice were mobilized with G-CSF or GROβ and 

AMD3100 and 2×106 mobilized PBMC transplanted non-competitively into cohorts of 10 

lethally irradiated recipients per group. A cohort of non-irradiated mice was bled on the 

same schedule as the experimental groups. Every other day, 5 mice from each group were 

bled and neutrophils and platelets enumerated using a Hemavet 950FS. Alternate groups of 5 

mice were bled on each successive bleeding time point so that mice were only bled once 

every 4 days. Recovery of neutrophils and platelets to 50% and 100% were determined by 

comparison to the average neutrophil and platelet counts in the control group throughout the 

experimental period as we have previously described (Hoggatt et al., 2013).

Flow cytometry—Isolation of mobilized PBMC, lineage depletion and flow cytometric 

analysis and FACS sorting of mobilized SKL and SLAM-SKL cells was performed as 

previously described (Fukuda et al., 2015; Hoggatt et al., 2013). All flow cytometry analyses 

were performed on an LSRII flow cytometer (BD). Cell sorting was performed on BD 

FACSAria flow cytometers.

RNA Sequencing—For HSC analysis, 200 SLAM SKL cells were directly sorted into 5 

uL TCL lysis buffer (Qiagen, #1031576) in duplicate experiments. Library preparation was 

performed by the Smart-Seq2 protocol with subsequent RNA sequencing by Illumina 

NextSeq500 at the Broad Institute, Cambridge, MA.

Competitive PBMC and BM transplantation—In competitive transplant studies, 

PBMC from mobilized C57Bl/6 (CD45.2) mice were transplanted at a 2:1 ratio with 5×105 

congenic Boy/J whole bone marrow competitor cells (CD45.1) into lethally irradiated (1100 

cGy TBI; 550 cGy split dose, 6 hrs apart) BoyJ recipient mice. Peripheral blood chimerism 

and multi-lineage reconstitution was assessed out to 6 months. After 24 weeks, 1×106 bone 

marrow cells from primary recipients were transplanted non-competitively into lethally 

irradiated Boy/J recipients and peripheral blood chimerism and multi-lineage reconstitution 

monitored for an additional six months.

For analysis of head-to-head stem cell repopulation ability, cohorts of 20 C57Bl/6 mice were 

mobilized with a standard 4 day regimen of G-CSF or single combined administration of 

GROβ + AMD3100, PBMC isolated, lineage depleted, sorted for SLAM-SKL cells, and 

equal numbers of G-CSF or GROβ + AMD3100 mobilized SLAM-SKL cells transplanted 

competitively with 250,000 WBM cells from BoyJ mice into lethally irradiated BoyJ mice. 
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Peripheral blood chimerism was monitored at 16, 24 and 36 weeks. Multi-lineage 

reconstitution was monitored at 24 weeks.

Chimeric mouse strain generation and mobilization—Chimeras were generated 

using DBA/2, B6D2F1 and C57Bl6 donor cells transplanted into BDF1 recipients. Age and 

sex matched B6D2F1 mice were lethally irradiated (1100 cGy, split dose) and transplanted 

with 1×106 WBM cells from either DBA/2, B6D2F1 or C57Bl6 mice. At 8 weeks post-

transplant wild type and chimeric mice were mobilized by GROβ and AMD3100 alone or in 

combination as described earlier. All mice recovered from irradiation following transplant 

and no overt signs of GVHD were seen in these chimeras.

Gelatin Zymography—Gelatinolytic activity in plasma or cell supernates was measured 

by zymography as previously described (Pelus et al., 2004). MMP-9 and MMP-2 bands were 

confirmed by comparison with MW standards and recombinant enzymes (R&D Systems). 

Band intensities were quantitated by densitometry and compared to a standard curve of 

rmMMP-9. Band intensities on digitized gels were quantified in Adobe Photoshop (Adobe 

Systems, San Jose, CA).

Measurement of mouse SDF-1, pro-MMP-9, TIMP-1 and human TIMP-1 by 
ELISA—Mouse pro-MMP-9 was measured using the mouse pro-MMP-9 Quantikine® 

ELISA (R&D Systems) according to the manufacturer’s instructions. Mouse and human 

TIMP-1 were measured by sandwich ELISA per manufacturer’s instructions.

Mouse PMN MMP-9 binding to TIMP-1—Neutrophils were isolated from peripheral 

blood of C57Bl/6 or DBA/2 mice as described above, washed, suspended at a concentration 

of 2×106 cells/ml in PBS and lysed on ice using a Polytron homogenizer. Mouse proMMP-9 

in lysates was determined by ELISA and equal amounts of proMMP-9 were bound to 

hTIMP1 covalently linked to Sepharose beads using the MMP Purification kit (IP970, R&D 

Systems). After washing, active MMPs were released by acidic elution and neutralized per 

the manufacturer’s instructions. Eluted MMP-9 was subsequently determined by ELISA.

Intracellular Ca+2 mobilization—Freshly purified human PMN (2×106/ml) were washed 

with PBS and loaded with 2.5 uM FURA-2 AM (Molecular Probes, Eugene, OR) in Kreb’s 

Ringer buffer supplemented with 1 mg/ml BSA, 1 mM CaCl2 and 1 mM MgCl2 at 37 °C for 

35 min. Cells were washed twice incubated for 15 min at 37 °C, pelleted and suspended at a 

concentration of 2×106 in ice cold Kreb’s Ringer with 1 mg/ml Gelatin, 1 mM CaCl2 and 1 

mM MgCl2 and kept on ice. Cells were placed in a continuously stirred cuvette at 37°C in a 

MSIII fluorimeter (Photon Technology, South Brunswick, NJ). Fluorescence was monitored 

at 340 and 380 nm for excitation and 510 nm for emission. Experiments were performed on 

the fly. Baseline excitation was evaluated for 30 seconds, paused and then cells were 

stimulated with GROβ or rhSDF-1 and recording restarted. In some experiments, AMD3100 

was added at the start of the experiment and additions added at ~45 seconds. All data were 

recorded on printed tracings of relative fluorescence.

In vitro mutagenesis and retrovirus transduction—In vitro mutagenesis on the 

mouse MMP-9 cDNA was performed as previously described (Fukuda et al., 2004). Full 
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length mouse MMP-9 cDNA that confers open reading frame was amplified by RT-PCR 

from total RNA harvested from bone marrow cells of C57BL/6 mice using random 

hexamers and primers 5′-CTC ACC ATG AGT CCC TGG CAG CCC CTG-3′ and 5′-TCA 

AGG GCA CTG CAG GAG GTC GTA-3′. The cDNA was cloned into the TOPO plasmid 

(Invitrogen, Carlsbad, CA) and used for in vitro mutagenesis. The primers to substitute 

Leucine at position 639 with Proline (L639P) were 5′-phospho-CGG GAA GGC TCT GCT 

GTT CAG-3′ and 5′-phospho-GGA CGA CGC GGG AGA AGC CCG-3′. Primers to alter 

Histidine at position 711 to Proline (H711P) were 5′-phospho-TGA GGT GAA CCA GGT 

GGA CGA-3′ and 5′-phospho-GGG TCC ACC TTG TTC ACC TCA-3′. PCR was carried 

out for 30 cycles using phosphorylated primers to introduce L639P, and the MMP-9 cDNA 

in the TOPO plasmid as a template. The resultant product was digested with DpnI followed 

by self-ligation and transformation into E.coli. Several clones were sequenced and the 

presence of L639P was verified. Subsequently, additional PCR was carried out to introduce 

H711P using MMP9-cDNA containing L639P in a similar manner. The cDNA harboring 

both L639P and H711P was cloned into the IRES-EGFP bicistronic plasmid MIEG3 vector 

by using EcoRI adaptor. Retrovirus transduction of MMP-9 constructs (wild type and 

mutant) into primary mouse bone marrow cells was performed as previously described 

(Fukuda et al., 2015; Fukuda et al., 2004; Fukuda et al., 2009).

Intravital microscopy—Live imaging of the mouse calvarial bone marrow was performed 

using a custom-built hybrid confocal and multi-photon microscope incorporating a fiber-

based femtosecond laser (Cazadero FLCPA, Calmar laser) whose output at 1550 nm was 

extended to 1900 nm by soliton self frequency shifting though a photonic crystal fiber. The 

1550 and the 1900 nm beams are doubled to 775 and 950 nm for simultaneous two-photon 

excitation. A water-immersion 60×/1.00w objective (LUMPLFLN60XW, Olympus) 

provided a 415×415 μm field of view, and Z-stacks were acquired to a depth of 150–200 μm 

at 1–5 μm Z-steps. Mice were maintained under anesthesia (1.35% isoflurane/oxygen 

mixture) and body core temperature was maintained. A U-shaped incision on the scalp 

exposed the calvarium bone, to which 2% methylcellulose gel was applied for refractive 

index matching. Second harmonic generation signal (SHG, excited at 775 nm) was used to 

visualize bone collagen and to locate calvarial bone marrow cavities for vasculature 

permeability measurements. Then, on-stage retro-orbital injection of 70 KDa rhodamine-

dextran conjugate (150 μL of 3.3 mg/mL D-1841, Life Technologies) was performed. Bone 

collagen signal (SHG) and rhodamine-dextran signal (excited at 585 nm) were continuously 

recorded (13 frames/second) for 2 minutes after injection. For the quantification of 

Rhodamine-dextran leakage to the marrow space, videos were analyzed using ImageJ (NIH) 

to measure the increased fluorescent signal in 5 distinct regions of interest outside of blood 

vessels (figures depicting average of 5 ROIs per video).

Statistical analysis

Statistical analysis was made using the Prism software (Prism, GraphPad Software Inc., San 

Diego, CA USA), unless otherwise indicated. Differences between multiple means were 

evaluated by ANOVA with Tukey-Kramer multiple comparison test. In some cases, 

differences between means were evaluated using the unpaired 2-tailed t test function. The 

nonparametric Spearman correlation analysis (Figure 3G) was used for comparison of 
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MMP-9/TIMP-1 ratio and mobilized CFU-GM, and significance was defined as two-tailed 

p< 0.001.

For neutrophil and platelet recovery assays (Figures 7A,B) confidence intervals for the 

difference in time to 50% recovery between groups were obtained using bootstrap 

simulations. These simulations took mean recovery times from smoothing splines fit to the 

data for each group, and assessed the variability of these recovery times by using a mean-

variance relationship estimated from the data. This mean-variance relationship was itself a 

smoothing spline relating standard deviations to means at observed time points.

For healthy volunteer CD34+ cell levels (Figure 1A), we formally estimated and tested for 

the effect of the drug on AUC in a statistical model that allowed for random effects across 

subjects and allowed for the effect of drug to differ between high (>=60 ug/kg) as opposed 

to low concentrations. Although we did not expect an effect of the drug at times later than 4 

hours, we used the data past the four-hour timepoint to give a better estimate of the 

underlying variability. Specifically, we split the data into three periods – early (0–4 hours), 

middle (4–12 hours), and late (12–24 hours). We calculated log2(AUC) for each subject in 

each time period for each treatment regimen, and normalized each value by subtracting by 

the average log2(AUC) over all subjects and regimens for the same time period. Then we 

estimated the following model using the lmer function from the lme4 package in R (version 

3.3.1):

where Drug = 1 for drug, 0 for placebo; HighConc = 1 if in the high concentration group, 0 

if otherwise; TimePeriod = Early, Middle, Late (categorical variable). Also, we allowed for a 

subject random effect. We used the model built in R to conduct a likelihood ratio test for the 

effect of Drug using the anova function in base R to compare it to the model without any 

terms involving Drug. The p-value was 0.001.

For the sorted stem cell transplantation assays we estimated the following statistical model 

using data for weeks 16, 24, and 36:

where β1 captures the effect of Therapy (GROβ + AMD3100 combination or G-CSF), εa is a 

normally-distributed mean zero animal random effect (one value for each animal, with 

standard deviation σa), εe is a normally-distributed mean zero experiment random effect 

(one value for each experiment), εew is a normally-distributed mean zero experiment-week 

random effect (one value for each experiment and week, allowing for differences across 

weeks within an experiment), εewt is a normally-distributed mean zero experiment-week-

therapy random effect, capturing deviations in the effect of the therapies across weeks within 
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an experiment, and ε is a normally-distributed mean zero random effect with standard 

deviation σ, capturing variability for individual measurements.

In order to reduce the influence of outliers on the result, we re-estimated the model after 

truncating the low value of Pct_Chimerism at 10% and reducing the value of the large 

positive outlier for the GROβ + AMD3100 group in the 50-cell experiment in week 16 to 65. 

Both of these adjustments favor the finding no difference against the treatments, so that p-

values calculated from the resulting data are conservative.

We estimated the model with the lmer function in the lme4 package in R (version 3.1.1). 

From this output we took our estimates of β1 and the standard deviations of the variance 

components, and we obtained the lower confidence bound for β1 using the confint.merMod 

function. We obtained the p-value for the test of β1=0 using the anova function in the 

lmerTest package. Finally, it’s worth pointing out that we have used one-sided rather than 

two-sided tests and confidence bounds in considering the null hypothesis the two therapies 

are equally good. This is justified by the fact that the alternative hypothesis going into the 

study was that the GROβ + AMD3100 combination would be better.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• GROβ is well tolerated and induces mobilization in first in human study.

• Combination treatment with GROβ+AMD3100 results in rapid stem cell 

mobilization.

• Mouse strain nucleotide polymorphisms in MMP-9 alter biologic activity.

• Rapid mobilization releases a highly engraftable hematopoietic stem cell.
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Figure 1. Peripheral blood CD34+ cells in a single blind, placebo controlled tolerability study
(A) CD34+ cells in PB following IV infusion of GROβ (N=12 subjects). Each subject 

received a matched placebo administration in a prior session at least 4 weeks prior to GROβ 
administration (grey bar; mean±SEM). P=0.001 by ANOVA.

(B) Individual maximal CD34+ cell counts after placebo or GROβ infusion. P=0.0014 by 

Students t-test.
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Figure 2. Timing and kinetics of single and combination mobilization in mice by GROβ and 
AMD3100
(A) Mean±SEM CFU-GM/ml blood mobilized at: 15 min post GROβ; 60 min post 

AMD3100; or 60 min post injection of AMD3100, with GROβ injected 15 min before blood 

harvest (45 min post AMD3100). * P<0.001 compared to control; † P<0.001 compared to 

AMD3100; ns = not significant, ANOVA.

(B) Mean ± SEM CFU-GM/ml blood at 15 min post GROβ; 15 and 60 min post AMD3100; 

and at 15, 30, 60 and 120 min post administration of GROβ+AMD3100. # P<0.05 compared 

to control; * P<0.001 compared to control; † P<0.001 compared to AMD3100; § P<0.001 

compared to GROβ; ns = not significant, ANOVA.

(C) Mean ± SEM CFU-GM/ml blood at 15 min post GROβ, 60 min post AMD3100; and 15 

min post GROβ+AMD3100, compared to mice treated with G-CSF bid, for 4 days. # P<0.05 

compared to control; * P<0.001 compared to control; † P<0.001 compared to AMD3100; § 

P<0.001 compared to GROβ; ns = not significant vs. GROβ or G-CSF, ANOVA.
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Figure 3. Combination treatment with GROβ+AMD3100 increases MMP-9 release
(A) Representative zymogram and combined relative intensities of gelatinolytic activity in 

plasma from Balb/c mice collected at 60 min post AMD3100; 15 min post GROβ; and 15 

min post GROβ+AMD3100. Mean ± SEM from n = 8–12 mice from 2–3 experiments. * 

P<0.001 compared to control; ANOVA.

(B) MMP-9 and (C) TIMP-1 ELISA of mouse plasma collected at 60 min post AMD3100; 

15 min post GROβ; and 15 min post combination. (D) The molar ratio of proMMP-9/

TIMP-1. Data are expressed as Mean±SEM of 4–6 Balb/c mice/group, in 1–2 experiments. * 
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P<0.001 vs. control or AMD3100; † P<0.001 vs. GROβ or AMD3100; ns = not significant; 

ANOVA.

(E) Molar ratio of proMMP-9/TIMP-1 and (F) CFU-GM in blood assessed at various time 

points after administration of AMD3100 and GROβ alone or in combination. Mean±SEM 

from n=4 Balb/c mice/group/time point. * P<0.01 vs. GROβ or AMD3100; ANOVA.

(G) Spearman’s rank correlation between CFU-GM mobilized to blood and proMMP-9/

TIMP-1 molar ratio after (left) GROβ or (right) GROβ+AMD3100 treatment. Each symbol 

represents a single mouse.
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Figure 4. Crosstalk between CXCR4 and CXCR2 receptors on neutrophils enables MMP-9 
release and hematopoietic mobilization
(A) Potential interaction of CXCR4 and CXCR2 signaling in neutrophils leading to MMP-9 

release and hematopoietic mobilization.

(B–F) Mice were treated with GROβ, AMD3100 or combined administration as indicated. 

Blood was collected at 15 min post injection and CFU-GM determined.

(B) Control IgG vs. anti-GR1 antibody treatment. Mean±SEM from n=6 mice/group/2expts.

(C) Wild-type and conditional CXCR4 knockout mice. Mean±SEM from n=8 mice/group/

2expts.

(D) CXCR2 wild-type and knockout mice. Mean±SEM from n=8 mice/group/2expts.

(E) MMP-9 wild-type and knockout mice. Mean±SEM from n=8 mice/group/2expts.

(F) Control IgG or anti-MMP-9 antibody to block MMP-9 activity. Data are Mean±SEM 

from n=4 mice/group.
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In each graph, * P< 0.05, † P<0.01, ‡ P<0.001 for GROβ or GROβ+AMD3100 compared to 

the same groups in control or wild-type mice; ANOVA.
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Figure 5. CXCR4 and CXCR2 signaling in human neutrophils
(A) Calcium mobilization in human neutrophils stimulated with SDF-1, GROβ (left), or 

AMD3100 prior to stimulation by SDF-1 and GROβ (right). One of 6 expts. using 4 

different donors.

(B) Gelatinolytic activity in supernates of human peripheral blood neutrophils stimulated 

with PTX and/or Mastoparan prior to addition of mobilizing agents. Results are 

representative of 3 independent expts. using 3 different donors.
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(C) Pro-MMP-9 and TIMP-1 in supernates described in (B) were determined by ELISA and 

molar ratio of MMP-9/TIMP-1 calculated. Mean±SEM of ELISA measurements of triplicate 

samples from each of 3 donors. * P<0.001 vs. PBS; † P<0.001 vs. GROβ, ANOVA.

(D) Gelatinolytic activity in supernates from neutrophils stimulated with GROβ, CTX or 

incubated with CTX for 15 min prior to stimulation with GROβ. Results are representative 

of 3 independent experiments using 3 different donors.

(E) Pro-MMP-9 and TIMP-1 in supernates described in (D) were determined by ELISA. 

Mean±SEM of triplicate samples from each of 3 donors. * P<0.001 vs. PBS; † P<0.001 vs. 

GROβ; ANOVA.

(F–K) Human PB neutrophils were incubated with the indicated intracellular signaling 

inhibitors for 15 min followed by stimulation with vehicle, GROβ or AMD3100 alone or in 

combination for 30 min. Cell free supernates were collected and MMP-9 and TIMP-1 

determined by ELISA. Data represent Mean±SEM of quadruplicate cultures for each group. 

Each experiment was performed using freshly isolated neutrophils from a single donor, with 

3 independent donors.

* P< 0.05, † P<0.01, ‡ P<0.001 vs. control. In each graph, GROβ+AMD3100 was compared 

to GROβ alone at each concentration of inhibitor and P values shown over brackets; 

ANOVA.
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Figure 6. Strain differences in MMP-9 activity alter mobilization response
(A) Fold change in CFU-GM/ml blood at 15 min post GROβ; 60 min post AMD3100; and 

15 min post GROβ+AMD3100, compared to PBS, in C57Bl/6, BDF1 and DBA/2 mice. 

Mean±SEM of N=4 mice/group; ANOVA.

(B) Representative zymogram of gelatinolytic activity in plasma isolated from mice 

collected at 15 min post vehicle (V) or GROβ (G); 60 min post AMD3100 (A) and 15 min 

post GROβ+AMD3100.
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(C) CFU-GM/ml blood mobilized over control. Mean ± SEM of N=4 mice/group. * P<0.05, 
† P<0.01; ANOVA.

(D) CFU-GM/ml blood in BDF1 chimeric mice transplanted with C57Bl/6, BDF1 or DBA/2 

bone marrow and treated with GROβ or AMD3100 alone and in combination at 2 months 

post-transplant. Mean±SEM of N=4 mice/group. * P<0.05, † P<0.01; ANOVA.

(E) Nucleotide sequence and amino acid differences in the hemoxpexin domain of the 

MMP-9 gene from C57Bl/6 and DBA/2 mice.

(F) Recovery of C57Bl/6 or DBA/2 MMP-9 from TIMP-1 sepharose beads after elution with 

acetic acid. MMP-9 was measured by ELISA. Mean±SEM of quadruplicate samples/group 

assayed in duplicate from one of three identical experiments. Statistical analysis by 

Student’s T-test.

(G) Study design for transplant and transduction study in panels (H) and (I).

(H) CFU-GM/ml blood mobilized over control in MMP-9 knockout mice and wild-type 

C57Bl/6 and DBA/2 mice. Mean±SEM of N=4 mice/group. * P<0.05, † P<0.01, ‡ P<0.001 

compared to PBS or GROβ; ANOVA.

(I) CFU-GM/ml blood mobilized over control in MMP-9 knockout mice transplanted with 

2000 LSK cells transduced with DBA or C57 MMP-9 transgenes or a scrambled sequence. 

Mean±SEM of N=5 mice/group. * P<0.05, † P<0.01, ‡ P<0.001 compared to PBS or GROβ; 

ANOVA.

(J) Representative intra-vital snapshots of mouse calvaria vasculature immediately following 

injection of rhodamine dextran (left panels) and then 2 min later (right panels) in mice 

previously treated with vehicle control (top panels) or GROβ+AMD3100 (bottom panels) 5 

min prior to rhodamine dextran administration (see supplemental videos 1 and 2).

(K) Representative intensity of rhodamine dextran signal outside of calvaria bone marrow 

vessels in mice treated with GROβ, AMD3100, GROβ+AMD3100, or mice treated with 

anti-MMP-9 antibody prior to administration of GROβ+AMD3100. Representative data 

from 2–5 mice/treatment group.
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Figure 7. GROβ+AMD3100 mobilizes a hematopoietic graft with enhanced engrafting capacity
(A) Neutrophil and (B) platelet recovery in mice transplanted with PBMC from mice 

mobilized by G-CSF or GROβ+AMD3100. Mean±SEM of N=5 mice/group/time point, 

n=10 mice total/group.

(C) PB chimerism at 24 weeks post-transplantation in BoyJ mice transplanted competitively 

with G-CSF or GROβ+AMD3100 mobilized PBMC from C57Bl/6 mice with congenic 

Boy/J whole bone marrow competitors. Mean±SEM of N=11 mice/group/2expts. Statistical 

analysis by Student’s T-test.
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(D) Secondary transplantation chimerism at 24 weeks in BoyJ mice transplanted with whole 

bone marrow from primary recipients described in (C) taken at 24 weeks post primary 

transplant. Mean±SEM of N=4 primary recipient mice/group each transplanted into 

duplicate secondary recipients (N=8 recipients/group), with each secondary recipient 

assayed individually. Statistical analysis by Student’s T-test.

(E) Representative LSK and SLAM-LSK frequency analysis of lineage negative PBMC 

from mice mobilized by G-CSF or GROβ+AMD3100.

(F) Percentage of LSK and (G) SLAM-LSK cells in peripheral blood of mobilized mice. 

Mean±SEM of N=13 mice from 3 independent experiments, each mouse assayed 

individually. Statistical analysis by Student’s T-test.

(H) PB chimerism at 16, 24 or 36 weeks in BoyJ mice transplanted with 195 (Exp 1), 50 

(Exp 2) or 100 (Exp 3) FACS sorted SLAM-LSK cells from PB of C57Bl/6 mice mobilized 

by G-CSF or GROβ+AMD3100. PB SLAM-LSK cells from GROβ+AMD3100 treated 

donors resulted in a 2-fold increase in competitiveness (P<0.0004).

(I) Tri-lineage reconstitution in mice from (H) Exp 2; N=8 and (J) in mice from Exp 3; N=6 

mice. Mean±SEM, each assayed individually.

(K) SLAM LSK cells were sorted from GROβ+AMD3100 or G-CSF treated mice as 

performed in panel (H), and total RNA was isolated. GSEA was conducted based on the 

log2 fold expression ratio between GROβ+AMD3100 and G-CSF stem cells. Gene sets were 

taken based on data from (Ivanova et al., 2002) selecting 300 most up-regulated based on 

comparison of FLSca+ and BMRh°l°w samples. Statistical significance was determined 

based on one million randomizations.
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