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A B S T R A C T

During inflammation, the covalent linking of the ubiquitous extracellular polysaccharide hyaluronan (HA) with
the heavy chains (HC) of the serum protein inter alpha inhibitor (IαI) is exclusively mediated by the enzyme
tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6). While significant advances have been made re-
garding how HC-modified HA (HC-HA) is an important regulator of inflammation, it remains unclear why HC-
HA plays a critical role in promoting survival in intraperitoneal lipopolysaccharide (LPS)-induced endotoxemia
while exerting only a modest role in the outcomes following intratracheal exposure to LPS. To address this gap,
the two models of intraperitoneal LPS-induced endotoxic shock and intratracheal LPS-induced acute lung injury
were directly compared in TSG-6 knockout mice and littermate controls. HC-HA formation, endogenous TSG-6
activity, and inflammatory markers were assessed in plasma and lung tissue. TSG-6 knockout mice exhibited
accelerated mortality during endotoxic shock. While both intraperitoneal and intratracheal LPS induced HC-HA
formation in lung parenchyma, only systemically-induced endotoxemia increased plasma TSG-6 levels and in-
travascular HC-HA formation. Cultured human lung microvascular endothelial cells secreted TSG-6 in response
to both TNFα and IL1β stimulation, indicating that, in addition to inflammatory cells, the endothelium may
secrete TSG-6 into circulation during systemic inflammation. These data show for the first time that LPS-induced
systemic inflammation is uniquely characterized by significant vascular induction of TSG-6 and HC-HA, which
may contribute to improved outcomes of endotoxemia.

1. Introduction

Hyaluronan (HA) is a linear polysaccharide that at baseline lacks
covalent modifications (sulfation and proteoglycan core protein) char-
acteristic of other members of the extracellular glycosaminoglycan fa-
mily. However, HA fragments can be covalently modified with the
heavy-chains (HC) of the serum protein inter-alpha-inhibitor (IαI),
which primarily occurs during inflammation and inflammation-like
processes such as ovulation [1]. This only known covalent modification
of HA, is exclusively mediated by the secreted protein tumor necrosis
factor α (TNFα)-stimulated gene-6 (TSG-6) [1,2], an enzyme that is
evolutionarily conserved in all vertebrates [3,4]. HC-modified HA (HC-

HA) formation improves survival outcomes in endotoxemic sepsis [5,6],
associated with retention of neutrophils within liver sinusoids [7–9].
However, HC-HA exerted only modest effects against localized in-
tratracheal (IT) endotoxic exposures that cause acute lung injury (ALI)
[10], despite rapid HC-modification of HA that paralleled the kinetics of
lung inflammation. It remains unclear why HC-HA has a distinct impact
depending on the route of lipopolysaccharide (LPS) exposure. Using
TSG-6 knockout (KO) mice, we tested the hypothesis that the significant
protective effect of TSG-6 during systemic exposure to LPS is associated
with more robust formation of intravascular HC-modified HA, which
may be required to control outcomes of inflammation.
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2. Materials and methods

2.1. Reagents

All materials and reagents were obtained from ThermoFisher
(Waltham, MA, USA), unless otherwise specified.

2.2. Animal experiments

All animal experiments were approved by Institutional Animal Care
and Use Committee at National Jewish Health. TSG-6-KO mice (BALB/c
background) were originally created by Dr. Katalin Mikecz [2]. TSG-6-
KO was confirmed by genotyping and demonstration of inability to
form HC-modified HA, using a method previously described [2,10].
Studies were conducted using sex- (male and female) and age matched
(8–12 weeks) TSG-6-KO mice and wild type (WT) and heterozygous
(HT) littermate controls.

2.2.1. Mouse endotoxic shock model
E. coli O111:B4 LPS (L2630, MilliporeSigma, Burlington, MA, USA)

was administered at a dose of 20mg/kg body weight as a solution of
1.7 mg/mL in phosphate buffered saline (PBS) [5] injected via in-
traperitoneal (IP) route in the right lower quadrant. Survival was as-
sessed every 6 h. For lung tissue and plasma analysis, mice were har-
vested at either 8 h or 12 h post LPS administration, as specified.

2.2.2. Mouse intratracheal LPS-induced ALI model
E. coli O55:B5 LPS (L2880, MilliporeSigma) was administered at a

dose of 20 μg LPS in 50 μL phosphate buffered saline (PBS) that was
intratracheally (IT) instilled as described before [10]. Mouse weight
was assessed daily, for up to four days.

2.2.3. Plasma and perfused lung collection
Mice were euthanized by isoflurane overdose and bilateral thor-

acotomy. Whole blood was collected via puncture of the right ventricle
using 1mL syringe and needle filled with 100 μL concentrated sodium
citrate (S5770–50mL, MilliporeSigma). Lungs were then perfused with
10mL of blood bank saline and snap frozen in liquid nitrogen. Whole
blood was centrifuged (2000g, 10min, 12 °C) to obtain plasma super-
natant.

2.3. Measurements of messenger RNA (mRNA)

Total ribonucleic acid (RNA) was extracted from whole lung as
previously described [10]. 1000–2000 ng of extracted RNA was used for
complementary DNA production (High-Capacity cDNA Reverse Tran-
scription). Real-time quantitative polymerase chain reaction (qPCR)
was run on StepOnePlus and prepared using Taqman Universal PCR
Master Mix and the following Taqman probe: msTNFα
(Mm00443258_m1). Relative mRNA expression was calculated using
the double delta comparative (ΔΔCt) method and 18 s RNA loading
control (Taqman Hs99999901_s1).

2.4. Measurement of HC-HA levels

Lung tissue was homogenized and treated with 1 U of Streptomyces
hyaluronlyticus hyaluronidase (389561, MilliporeSigma) or PBS control,
as previously described [10]. SDS-PAGE and western blot was per-
formed on the samples as previously described [10] using rabbit-anti-
hIαI antibody (A0301, DAKO, Agilent, Santa Clara, CA, USA), which
has been validated for detecting mouse IαI and HC-HA in various mouse
tissues [2,11]. 7.5% Criterion TGX Stain-Free gels (Biorad, Hercucles,
CA, USA) were imaged for total protein using ChemiDoc MP (Biorad).
Densitometry was calculated using Image Studio Lite (Licor, Lincoln,
NE, USA).

Plasma (40 μL) was treated with 1 U of Streptomyces hyaluronlyticus

hyaluronidase or PBS control for 2 h at 37 °C and then 2 h at room
temperature with mechanical agitation. Following addition of Laemmli
buffer, SDS-PAGE and western blot with IαI antibody were performed
as previously described [10].

2.5. TSG-6 activity assay

Endogenous TSG-6 activity in plasma was measured as described
[12] with minor modifications. Plasma (40 μL) samples were mixed
with 3 μg of 10-oligosaccharide HA (HYA-OLIGO10EF-1, Hyalose
AMSBIO, Cambridge, MA, USA) for 2 h at 37 °C and then 2 h at room
temperature with mechanical agitation. For positive controls, 20 ng
recombinant human TSG-6 (R&D Systems, Minneapolis, MN, USA) was
added to plasma. To generate the negative controls, ethylenediamine-
tetraacetic acid (EDTA) was mixed with plasma at a final concentration
of 0.1M before adding 10-oligosaccharide HA, because TSG-6 activity
depends on divalent metal cations Ca2+ and Mg2+ [13–15]. Following
addition of Laemmli buffer, samples were subjected to SDS-PAGE and
western blotting as previously described [10], using an anti-IαI anti-
body which can detect HC covalently linked to 10-oligosaccharide HA
[12].

2.6. Flow cytometry analysis of plasma

Whole blood was collected similarly as described above, but instead
of sodium citrate, 100 μL of 0.5M EDTA was used as anticoagulant.
Anticoagulated whole blood (100 μL) was mixed with 900 μL of flow
wash buffer (PBS with 9% FBS and 0.5mM EDTA) and centrifuged
(450g, 4 °C) to remove the supernatant. Remaining packed cells were
diluted with 1mL red blood cell lysis buffer (Pharm Lyse, Becton
Dickinson or BD Biosciences, Franklin Lakes, NJ, USA) and pipetted up
and down to lyse red blood cells. 1 mL of flow wash buffer and 5mL of
PBS was added to dilute the lysed suspension and centrifuged.
Supernatant was discarded and the cell pellet was blocked with CD16/
CD32 (clone 93, eBioscience) and stained with TER-119 (Biolegend, San
Diego, CA, USA), CD45 (30-F11, BD Biosciences), Ly6G (1A8,
Biolegend), CD11b (M1/70, eBioscience), Siglec-F (E50–2440, BD
Biosciences), CD115 (AFS98, eBioscience). Flow data, which included
running a minimum of 20,000 CD45+ leukocyte events for each
sample, were collected using LSR II cytometer (BD Biosciences) and
analyzed using Flowjo software (Ashland, Oregon, USA).

2.7. TNFα ELISA

Mouse plasma TNFα levels were determined using mouse TNFα
DuoSet ELISA (R&D Systems), following the manufacturer's protocol.
Plasma collected from IP LPS mice was diluted 1:5 with reagent diluent
(1% BSA in PBS). Capture antibody was coated on Nunc MaxiSorp 96-
well plates using 0.2M BupH sodium bicarbonate buffer (pH 9.4).

2.8. Cell culture

Primary human lung microvascular endothelial cells (HMVEC-L)
were obtained from Lonza (Allendale, NJ, USA) and cultured in mi-
crovascular endothelial growth medium (EGM-2-MV) (Lonza) following
manufacturer's instructions. Cells were used for experiments between
passages 6–7. Cells were treated for 24 h in EGM-2-MV with vehicle
(0.1% BSA in PBS), 20 ng/mL TNFα (R&D Systems), 20 ng/mL IL1β (R&
D Systems), or 20 ng/mL ultrapure E. coli LPS (LPS-EK, InvivoGen, San
Diego, CA, USA). After collecting conditioned media supernatant
(1000 g, 10min spin), cells were rinsed once with PBS and then lysed
for RNA extraction.

Primary human alveolar macrophages (hAM) culture were obtained
and cultured as described previously [10]. Cells were stimulated for
20 h with vehicle (0.1% bovine serum albumin-BSA in PBS), 20 ng/mL
TNFα, or 50 ng/mL ultrapure E. coli LPS (LPS-EK).
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2.9. hTSG-6 western blot and ELISA

Western blotting for hTSG-6 was described previously [10]. Briefly,
goat-anti-human TSG-6 (AF2104, R&D Systems) was used to probe for
hTSG-6 and hTSG-6-HC, which readily forms in the presence of fetal
bovine serum (FBS) and is absent when FBS is omitted [10]. 4–20%
gradient Criterion TGX Stain-Free gels were imaged for total protein
using ChemiDoc MP. HMVEC-L conditioned media was concentrated
four-fold using 10 kDa cutoff centrifugal filters (Microcon-10, Milli-
poreSigma).

hTSG-6 levels in conditioned media was measured by highly sensi-
tive and siRNA validated sandwich ELISA that was described previously
[10,16]. hTSG-6 standard curve was prepared using FBS to match the
FBS content in conditioned media, because the formation of TSG-6-HC
covalent intermediate interferes with sandwich ELISA detection [10].
HMVEC-L conditioned media was concentrated eight-fold using 10 kDa
cutoff centrifugal filters described above.

2.10. Statistical analyses

Data were analyzed using ANOVA with Tukey's multiple compar-
ison testing using Graphpad Prism (Graphpad Software, La Jolla, CA,
USA). Data points in graphs signify individual mice or independent
experiments, unless otherwise specified. Results were considered sig-
nificant at P < 0.05.

3. Results

3.1. Effect of TSG-6 on survival during severe endotoxemia

Consistent with previous reports [5,6], we observed that TSG-6
knockout (KO) mice had a more rapid onset of mortality following
systemic LPS administration (20mg/kg weight; IP) with 18 h median
survival, compared to wild type (WT) mice that had 21 h median sur-
vival (Fig. 1A). As previously reported [17], systemic endotoxemia was
associated with increased TNFα expression in the lung tissue (Fig. 1B)
consistent with lung injury, that preceded the onset of mortality and
was similar in WT and KO mice. TSG-6 KO mice that were exposed to
LPS via intratracheal (IT) instillation exhibited similar survival out-
comes and loss and recovery of total body weight as WT littermates
(Fig. 1C). Following IT LPS instillation, but preceding the peak of
weight loss, we noted marked TNFα induction which was also similar in
WT and KO mice (Fig. 1D). These results suggest that the HC-HA effect
on the outcomes of injury is dependent on the route of endotoxic ex-
posure, which may be linked to a distinct localization of HC-HA for-
mation.

3.2. Lung HC-HA during severe endotoxemia

To understand the distinct effects of HC-HA formation during sys-
temic vs. lung-localized LPS exposure, we first investigated the induc-
tion of lung parenchymal HC-HA in the two models. Since both IP and
IT LPS administration caused lung injury, we hypothesized that lung
HC-HA formation would be increased in both models, perhaps even
more robustly following IT LPS. We assessed HC-HA formation in whole
lung tissue, harvested after circulating cells were removed by perfusion
with saline. Lung homogenates were exposed ex vivo to hyaluronidase,
which cleaves HA into disaccharides [18] and thus releases HA-linked
HC detectable by western blot. We noted extensive HC release in lungs
at 12 h following IP LPS, compared to IP PBS control (Fig. 2A, SFig. 1A),
suggesting robust HC-HA formation in lung parenchyma. As controls,
we measured HC release in lung tissue from TSG-6 KO mice that re-
ceived IP LPS and noted no HC when compared to WT control (Fig. 2B,
SFig. 1B), consistent with the known role of TSG-6 as exclusive med-
iator of HC-HA formation. When compared to mice injected with IP
LPS, mice receiving LPS directly into lungs (IT) showed a similar

amount of HC released by hyaluronidase treatment (Fig. 2A). Together
with the findings of similar whole lung TNFα expression between TSG-6
KO and control (Fig. 1B and D), this suggested that lung HC-HA did not
critically drive outcomes following either localized or systemic LPS
exposure.

3.3. Plasma HC-HA and TSG-6 during severe endotoxemia

When compared with controls, the intravascular HC-HA measured
in the circulating plasma fraction was induced only after IP LPS, but not
after IT LPS administration (Fig. 3A, SFig. 2A). Since circulating HA
undergoes rapid turnover in the liver sinusoids with a half-life of
2.5–5min [19,20], HC-HA would not significantly accumulate unless it
was continuously generated. Thus, such marked induction of in-
travascular circulating plasma HC-HA suggested robust and persistent
endogenous TSG-6 secretion in the circulation. To determine if the
presence of intravascular HC-HA was associated with increased circu-
lating TSG-6 enzyme activity, plasma was incubated with 10-oligo-
saccharide HA (HA10), and HC-modified HA10 was detected by western
blot. As positive control, we used excess recombinant TSG-6 (Fig. 3B,
SFig. 2B). Since TSG-6 mediated HC-modification of HA requires di-
valent metals Ca2+ and Mg2+ [13–15], we used as negative control
samples incubated with excess of the irreversible divalent metal che-
lator EDTA (Fig. 3B, SFig. 2B). When compared to IP PBS control, we
found significant induction of intravascular TSG-6 activity following IP
LPS, but not after IT LPS (Fig. 3C, SFig. 2C), suggesting that only sys-
temic LPS exposure causes intravascular HC-HA formation. To sub-
stantiate that the model of systemic LPS exposure used caused sig-
nificant inflammation, we measured circulating inflammatory cells and
levels of TSG-6 inducing cytokine TNFα (Fig. 4). When compared to IP
PBS control, the percentage of circulating neutrophils (Ly6G+ /
CD45+) of total white blood cells and levels of plasma TNFα were in-
creased following IP LPS administration in control (WT or HT) mice
(Fig. 4B-D). Although not powered to detect the effect of TSG-6 on
sepsis outcomes, we found that these markers of systemic inflammation
tended to be higher and percentage of circulating mononuclear cells
lower in TSG-6 KO mice (Fig. 4B-D). These results suggested that only
systemic, but not lung-localized, LPS exposure induced plasma HC-HA
formation and TSG-6 secretion.

3.4. Microvascular endothelial TSG-6 expression and secretion

Circulating cells of myeloid origin are likely cellular sources of TSG-
6 secretion into circulation during sepsis [10,21,22], However, the
ability of endothelial cells to secrete TSG-6 in response to inflammatory
stimuli is unknown. To address this knowledge gap, primary human
lung microvascular endothelial cells (HMVEC-L) were stimulated with
LPS or inflammatory cytokines (TNFα or IL1β), which are known to be
increased during endotoxic shock [23]. Using western blot (Fig. 5A)
and ELISA (Fig. 5B) of conditioned media, we noted that while LPS did
not directly induce TSG-6 secretion from lung endothelial cells, both
TNFα and IL1β enhanced TSG-6 secretion. In particular, IL1β potently
stimulated the secretion of TSG-6 (35 kDa) and the presence of the
covalent intermediate TSG-6-HC (120 kDa, Fig. 5A). Since cells are
maintained in media containing FBS, a source of bovine IαI used by
secreted TSG-6 to remove an HC [10], the presence of the covalent
intermediate TSG-6-HC indicates not only secretion of TSG-6, but also
functionally active TSG-6 [14]. As expected [10], myeloid cells secreted
TSG-6 in response to both TNFα and LPS (Fig. 5C). These results im-
plicate endothelial cells as sources of active TSG-6 secretion in the
circulation.

4. Discussion

Our studies are the first to describe the intravascular induction of
TSG-6 enzyme and HC-modified HA during IP LPS-induced endotoxic
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shock but not during IT LPS-induced ALI. In contrast, both IP and IT
LPS-induced injuries induced lung parenchymal HC-HA. These findings
suggest that intravascular HC-HA induction may be a key mediator of
TSG-6's protective survival effects during endotoxic shock and help
explain TSG-6's modest role during localized ALI. In support of this, we
found that inflammatory cytokines associated with sepsis stimulate
cultured microvascular endothelial cells to secrete TSG-6 that can
contribute to intravascular HC-HA formation.

Our finding that TSG-6 promotes survival against IP LPS-induced
endotoxic shock is consistent with published studies that TSG-6 and IαI
KO mice exhibit greater mortality after IP LPS-induced endotoxic shock
[5,6]. We expanded on previous reports that focused exclusively on
lung tissue and differences in lung macrophage polarization [5] to

present novel evidence that systemic IP LPS-induced endotoxic shock is
associated with intravascular induction of TSG-6 and HC-HA. In-
travascular HC-HA is strategically positioned to have protective effects
against systemic inflammation due to its role in liver sinusoids, which
have the highest intravascular concentration of HA [7], for retaining
neutrophils during systemic LPS or gram-negative E. coli exposure
[8,9]. While the role of retaining neutrophils in the hepatic sinusoids
during bacteremia remains unclear, the sinusoidal vasculature is a key
location for neutrophil extracellular trap (NET) release [24], which
contributes to systemic bacterial clearance. Additionally, resident si-
nusoidal macrophages known as Kupffer cells clear damaged and
apoptotic neutrophils [25], which may minimize off-target neutrophil-
mediated vascular and end-organ damage to protect against endotoxic
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shock.
What remains unclear is the contribution of TSG-6 and HC-HA in the

bone marrow to promoting survival during endotoxic shock. We and
others have previously shown that exogenous TSG-6 supplementation
can improve hematopoietic progenitor cell function after cigarette
smoke-induced myelosupression [16] and alter bone marrow stromal
cell differentiation [26,27], respectively. Additionally, a recent study
revealed that CD44-HA binding interactions promote bone marrow
progenitor proliferation and increase engraftment following irradiation
[28]. Taken together, these findings emphasize the need for future
studies to investigate the potential contributions of TSG-6 and HC-HA in
the bone marrow during systemic inflammatory conditions that stress
and mobilize the bone marrow compartment.

As an inflammation-induced enzyme, TSG-6 is minimally expressed
at the transcript level and not detected as a secreted protein during
homeostatic conditions [29]. The inflammatory cytokines TNFα and

IL1β are potent inducers of TSG-6 secretion in non-hematopoietic cells,
whereas both TNFα and LPS induce TSG-6 secretion in myeloid cells
[10,21,22]. However, while RNA evidence of endothelial TSG-6 has
been noted [21], the ability of endothelial cells to secrete TSG-6 had not
been reported. Our finding that cultured primary HMVEC-L secrete
TSG-6 when stimulated with TNFα or IL1β, but not LPS is consistent
with previous reports that showed similar responses in other non-he-
matopoietic cells [10,22]. Therefore, during systemic inflammation,
microvascular endothelial cells together with circulating myeloid cells
may contribute to the intravascular circulating plasma TSG-6 secretion
and HC-HA formation. We have not directly measured endothelial
glycocalyx-bound HC-HA, an important pool of intravascular HC-HA,
which was previously visualized in liver sinusoids using intravital mi-
croscopy [8]. Interestingly, since endotoxic shock causes thinning of
glycocalyx and releases glycosaminoglycans, including HA, into circu-
lation [30,31], the circulating HC-HA we detected in plasma may also

Fig. 4. Effect of TSG-6 on circulating neutrophils and TNFα. A. Flow cytometry strategy for distinguishing neutrophils (PMN), mononuclear cells, and eosinophils.
Hematopoietic cells (depicted in center) were identified using CD45+TER-119-. PMN were identified as Ly6G+SiglecF-. Mononuclear cells were identified as
SSCloLy6G-SiglecF-. Eosinophils were identified as SSChiLy6G-SiglecF+. B-D. Plasma from TSG-6 KO and littermate control (WT & HT) mice was collected 8 h after IP
LPS or PBS injection. Plasma was analyzed for PMN (B) and mononuclear cells (C), expressed as percentage of CD45+ cells, and for TNFα cytokine levels assessed by
ELISA (D). n=3–11 mice per treatment group. Data analyzed with ANOVA and Tukey's multiple comparisons.
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contain shedded, previously glycocalyx-bound HC-HA.
The TSG-6-mediated HC modification of HA is strategically posi-

tioned in the extracellular matrix, from a spatial and temporal stand-
point, to signal and direct inflammatory responses [1,2,32]. HC-HA has
the capacity to bind and to interact with many cellular effectors of in-
flammation, because the HA receptor CD44 is either constitutively ex-
pressed or inducible on most hematopoietic cells [33]. The findings that
all HA fragments, from high molecular weight to 8-oligosacharides, can
be readily modified with the large HC protein [34] and that in sepsis HA
fragments of all sizes are increased in the circulation [35] suggests that
the intravascular glycocalyx and circulating HA may undergo dramatic
changes during endotoxic shock. While the functional implications of
these changes remain to be defined, they may be linked to IαI HC
chains’ ability to regulate the complement pathway [36,37] and neu-
trophil activation [38]. The covalent modification of high and low
molecular weight HA in circulation may serve as a scaffold that attracts
CD44 receptor expressing cells to bind HA and undergo HC-mediated
effects.

The presence of TSG-6 in serum from patients with bacterial sepsis
was noted as unpublished observation [39] and supports the clinical
relevance of our novel finding of intravascular TSG-6 and HC-HA in-
duction in an experimental sepsis model. The precise mechanisms by
which intravascular modification of HA with HC of the serum protein
IαI exerts protective effects in sepsis remain to be elucidated. Such an
understanding could lead to the development of therapeutic approaches
to ameliorate this prevalent condition that remains a major cause of
morbidity and mortality following infection.
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