
MODELING AND SIMULATION OF LANE KEEPING SUPPORT SYSTEM

USING HYBRID PETRI NETS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Carmela Angeline C. Padilla

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

August 2019

Purdue University

Indianapolis, Indiana

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/222574444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Lingxi Li, Chair

Department of Electrical & Computer Engineering

Dr. Brian King

Department of Electrical & Computer Engineering

Dr. Yaobin Chen

Department of Electrical & Computer Engineering

Approved by:

Dr. Brian King

Head of Graduate Program

iii

To my family, for their love and support.

iv

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Dr. Lingxi Li. The door to Dr. Li’s office

was always open whenever I had questions or ran into roadblocks with my research.

He was also a source for kind words and encouragement. A special thank you goes to

Dr. Brian King, the head of the ECE Graduate Program, for his guidance since the

beginning of my graduates studies. Additionally, I would like to thank my commit-

tee members, Dr. King and Dr.Yaobin Chen for sharing their time and constructive

feedback on my thesis. I would like to thank my friends for their passionate participa-

tion, inputs and advice. I am also grateful for Sherrie Tucker for her time and helpful

reminders. Lastly, I would like to thank all the other faculty and staff of the ECE

department for their help and insights throughout the completion of my studies.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Road Safety through Petri Nets . 2

1.2 Lane Departure Warning . 3

1.3 Lane Keeping Assist . 5

1.4 Thesis Contribution . 6

1.5 Thesis Organization . 6

2 BACKGROUND ON PETRI NETS . 8

2.1 Notations and Definitions . 8

2.2 Petri Net Marking . 11

2.3 Petri Net Dynamics . 12

2.4 Incident Matrix and State Space Equation 18

2.4.1 Incident Matrix . 18

2.4.2 State Space Equation . 19

2.5 Continuous Petri Net . 20

2.5.1 Dynamics . 21

2.5.2 Token Flow Matrix and State Space Equation 21

2.6 Hybrid Petri Net . 23

2.6.1 Notations and Definitions . 24

2.6.2 Dynamics . 25

3 HYBRID PETRI NET MODEL . 27

3.1 System Flowchart . 27

vi

Page

3.2 Discrete Petri Net Model . 30

3.2.1 Version 1 . 30

3.2.2 Version 2 . 32

3.2.3 Final Model . 34

3.3 Hybrid Petri Net Model . 36

3.3.1 Description of Nodes . 38

3.3.2 Functionality of the Model . 40

4 SIMULATION RESULTS . 44

4.1 Simulation Tools . 44

4.2 Results . 47

4.2.1 Case 1 . 49

4.2.2 Case 2 . 52

4.2.3 Case 3 . 57

4.2.4 Case 4 . 60

5 CONCLUSION . 66

5.1 Summary . 66

5.2 Future Work . 67

REFERENCES . 68

vii

LIST OF TABLES

Table Page

3.1 List of transitions in the HPN model . 38

3.2 List of places of the HPN model . 39

viii

LIST OF FIGURES

Figure Page

2.1 Petri Net Notations . 9

2.2 Simple Petri net graph . 10

2.3 Enabling a transition . 13

2.4 Transition not enabled . 14

2.5 Firing of an enabled transition . 15

2.6 Petri net example for reachability analysis 16

2.7 Simple reachability tree . 17

2.8 Petri net with a loop and reachability tree 18

2.9 Example of a continuous Petri net . 22

2.10 Macro marking . 23

2.11 Example of a Hybrid Petri net . 24

3.1 Flowchart for Lane Keeping Support System 29

3.2 Version 1 of Discrete Petri Net Model for LKSS 31

3.3 Version 2 of Discrete Petri Net Model for LKSS 33

3.4 Final Discrete Petri Net Model for LKSS 35

3.5 Final Discrete Petri Net Model for LKSS 36

3.6 Final Hybrid Petri Net Model for LKSS 37

4.1 PN Toolbox GUI . 45

4.2 SimHPN GUI . 46

4.3 Reachable places from MATLAB for Case 1 50

4.4 Coverability Tree from PN Toolbox for Case 1 51

4.5 Reachable places from MATLAB for Case 2 - Turn signal on 53

4.6 Reachable places from MATLAB for Case 2 - Sensor Malfunction 54

4.7 Coverability Tree from PN Toolbox for Case 2 - Turn signal on 55

ix

Figure Page

4.8 Coverability Tree from PN Toolbox for Case 2 - Sensor Malfunction 56

4.9 Coverability Tree from PN Toolbox for Case 3 58

4.10 Reachable places from PN Toolbox for Case 3 59

4.11 Reachability Tree from MATLAB for Case 3 60

4.12 First set of reachable places from MATLAB for Case 4 62

4.13 Second set of reachable places from MATLAB for Case 4 62

4.14 Third set of reachable places from MATLAB for Case 4 62

4.15 Last set of reachable places from MATLAB for Case 4 63

4.16 SimHPN GUI set-up for Case 4 . 64

4.17 Simulation result of major events for Case 4 65

x

ABSTRACT

Padilla, Carmela Angeline C. M.S.E.C.E., Purdue University, August 2019. Modeling
and Simulation of Lane Keeping Support System using Hybrid Petri Nets. Major
Professor: Lingxi Li.

In the past decades, the rapid innovation on technology has greatly affected the

automotive industry. However, every innovation has always been paired with safety

risks that needs to be quickly addressed. This is where Petri nets (PNs) have come into

the picture and have been used to model complex systems for different purposes, such

as production management, traffic flow estimation and the introduction of new car

features collectively known as, Adaptive Driver Assistance Systems (ADAS). Since

most of these systems include both discrete and continuous dynamics, the Hybrid

Petri net (HPN) model is an essential tool to model these. The objective of this

thesis is to develop, analyze and simulate a lane keeping support system using an

HPN model. Chapter 1 includes a brief summary of the specific ADAS used, lane

departure warning and lane keeping assist systems and then related work on PNs is

mentioned. Chapter 2 provides a background on Petri nets. In chapter 3, we develop

a discrete PN model first, then we integrate continuous dynamics to extend it to a

HPN model that combines the functionalities of the two independent ADAS systems.

Several scenarios are introduced to explain the expected model behavior. Chapter 4

presents the analysis and simulation results obtained on the final model. Chapter 5

provides a summary for the work done and discusses future work.

1

1. INTRODUCTION

The car industry has greatly developed over the past few decades in making safer

and more efficient cars. Back then, maneuvering a vehicle was always dependent

on a driver’s current situation and environment. This decision-making process has

led to road accidents caused by miscalculations, fatigue and false predictions of the

driver. Due to such experiences, vehicle operation has no longer been solely dependent

on a driver but is now considered as a three-part system consisting of the driving

environment, driver and vehicle [1].

In recent years, big data from driver-vehicle interactions and past road-related

casualties are analyzed and shared to driver and vehicle industry to improve driving

efficiency and vehicle features. These features are consistently modified and tested

to promote road safety. Collectively, the features are called the advanced driver

assistance systems (ADAS). ADAS is one of the fastest-growing area in the automotive

industry with increasing rates of adoption in the quality. According to one report,

the global ADAS market has accounted for $22.52 billion in 2015 and is expected to

reach $89.09 billion by 2022 [2]. Due to its global popularity, research ventures on

ADAS have produced efficiencies in reducing driver’s load, predicting crash events and

reducing fuel consumption. Some of the ADAS features are adaptive cruise control,

anti-lock braking system, automatic parking, blind spot monitor, collision avoidance

system, parking sensor, tire pressure monitoring, turning assistant, etc. Combining

and utilizing these individual technologies are what we have in smart vehicles and

road traffic models today.

2

1.1 Road Safety through Petri Nets

For quite some time, attention has been directed to discrete event systems for

modeling ADAS and road traffic. The prevalent tool for the simulation and analysis

of these models is the Petri Net (PN). Serving both as a mathematical and a graphical

tool, the PN was shown to be suitable for the analysis of complex systems due to the

numerous ways it can be used. Since traffic flow systems are driven by both continuous

and discrete events, a Hybrid Petri Net (HPN) was used to create the road model. A

HPN is a type of petri net that combines both discrete events, such as the change of

traffic signals, and continuous events like the motion of vehicles. The authors of [3]

have clearly demonstrated the benefits of using this model for traffic optimization.

Yaqub has used Timed Hybrid Petri Nets (THPN) to further improve traffic flow.

The THPN model not only showed the event evolution but also considered externals

events that can only be changed through time. An external event could be interpreted

as traffic during rush hour at a certain time in a day where the percentage of vehicles

heading west is greater than those heading east. [4]. The authors of [5], utilize the

car collision avoidance feature and create a controller using a Fluid Stochastic Petri

Net (FSPN). The dynamics of the fluid flow is similar to that of continuous driven

events such that rate of flow is a non-integer. Utilizing the FSPN, the work has

provided information for predicting driving events based on driving behaviour and

environment. Sensors were used to gather speed, acceleration and distance between

vehicles to verify the functionality of the FSPN controller for collision-free driving.

Finally, the automated parallel parking feature was used in creating an HPN model

to control a vehicle parking autonomously. Distance is considered a flow event while

sensors and camera detecting the surroundings of the vehicle described the discrete

events, making the HPN model perfect for simulation [6]. Nevertheless, sensors have

always been used throughout ADAS for data gathering and decision-making.

3

In the work mentioned above, the authors have stated that the use of Petri Nets,

specifically Hybrid Petri Nets for hybrid modeling, provide an apt structure to un-

derstand the relationship between driver and vehicle to improve safety. After gaining

perspective on this type of modeling approach, two ADAS features are selected and

placed in focus to understand the relationship between hardware and software elec-

tronics for the shared goal of road safety and driver comfort.

1.2 Lane Departure Warning

The first half of the ADAS feature used in this work is the Lane Departure Warning

System (LDWS). As the name implies, the electronic system sends out a notification

to the driver if the vehicle departs its lane without intention. This warning can be

an audible sound or visible icon on the dashboard. The LDWS involves three sub-

systems: driver, vehicle and road. The system makes use of the relation of the three

to determine the vehicle-road relationship. Firstly, the vehicle-road state is obtained

through computer vision. Through analyzing the relationship between vehicle and

road, the lane departure detection approach works. In order for the electronic sys-

tem or controller of the ADAS to determine which lane the vehicle is on, sensors

and cameras are needed to take snapshots of the road. Cameras might be additional

hardware mounted on the host vehicle or they maybe built-in the vehicle. For exam-

ple, a single digital camera and a laser range finder has been used in [7] to identify

the lane segments and categorize them as the master and slave lane boundaries. An-

other paper has used a built-in forward-looking camera for distraction-free driving.

An advantage of any ADAS feature is that they can be integrated to increase road

safety. The authors of [8] have combined LDWS with another ADAS feature called

the forward collision warning system. This camera-based driving system was shown

to be an enhanced method that can analyze the video captured and warn the driver

when the host vehicle is too close to the front vehicle. On the other hand, Cualain,

4

Glavin and Jones have added depth into an image by using two cameras: forward and

rear-facing. They have mounted cameras that are configured to capture the height

and angle of the road surface. [9]

The images captured by these cameras are fed into the image processing module of

the LDWS. Although this paper has assumed that post-processed data as input to the

final model, several lane detection methods and algorithms in previous related works

are presented in this section. With any LDWS set-up, image processing is required to

detect lane markings on the road and to measure position of vehicles relative to the

lanes. The cameras capture the ”region of interest” (ROI). The ROI can be extracted

through Hough Transform or canny edge detection [10] [11]. Hough transform detects

lines, circles and other structures dependent upon the parametric equation given.

The edge detection based on canny operation defines the lane boundaries by the

sharp contrast between the road surfaces and the painted lines. Authors of [12] have

improved an algorithm based on ROI segmentation. Hough Transform is applied

after the road lanes are identified and divided into the left and right sub-regions.

Without segmentation, processing an image would produce several Hough lines that

will create ambiguities in lane departure. After the lanes have been identified and

divided, lane departure is determined from the driver-road relationship. An, Wu and

He have proposed a new method based on two existing methods, RRS and Time-

To-Lane-Crossing (TLC) [13]. In their paper, two standards are used to weigh the

lane departure detection methods: Warning Onset Time (WOT) [14] and Nuisance

Alarm Rate (NAR). The former measures how much reaction time the driver has to

prevent the outside tire from crossing the lane, while the latter measures how many

nuisance alarms occur per hour. An ideal LDWS would have low NAR and the WOT

would be sufficiently long. The RRS method triggers alarms when the outside of

the left or right front tire touches the lane. This method has a high NAR and short

WOT. Since some drivers are used to driving along the lane boundary, this method

is mainly for awareness. The TLC method is the measure of the time remaining

before a vehicle with a given path will depart the road. However, it is still the most

5

commonly used method even if it is the sensitive to error. The difference with their

lane detection method is the addition of capturing the angle between lanes. This

can accurately distinguish when the vehicle will depart the lane. From the changing

rate of angle between lanes (CRAL) method, the steering angle was taken specifically

taken consideration into the making of this paper.

1.3 Lane Keeping Assist

In opposition with the LDWS being a mere warning, the second half of this project

proposal is the Lane Keeping Assist System (LKAS). It is an ADAS feature that

detects the driver’s steering effort and decides to assist with right or left steering to

avoid the line boundaries. The general set-up of this system is divided into two parts:

the camera for lane detection and the controls system for the steering reaction force.

The main purpose of the camera is to detect the white line for the current position of

the vehicle. One disadvantage of not using LDWS with LKAS is poor lane detection.

In [15], the authors mentioned issues such as dirty lanes or places where the dynamic

range of the image varies greatly. Examples of these places are tunnel entrances,

exits in bright daylight or any lane marking change. Another example of this type

disadvantage can be found in [16]. This LKAS restricts use of either right or left

steering to avoid the right or left line boundary. However, during the interventions

of this assist-system, the vehicle’s longitudinal velocity should remain constant and

the road lane is assumed to be straight at all times. Lastly, [17] used lateral offset to

be an input in their system to reflect the distance difference of same lane markings

in different frames.

In the papers mentioned above, LKAS is meant to assist the driver to keep the

vehicle in a single lane only. However, the continuous demand for road safety develop-

ment has made the authors of [18] to combine the two systems, LKAS and LDWS, to

create an interactive lane keeping control system. Their proposed system requires a

controller that simultaneously received the turn signal status, vehicle speed, steering

6

torque, steering wheel angle and road information such as curvature, slope and lateral

displacement. Once all data has been processed, the controller sends out a message

to the motor driver and the vehicle’s electronic power steering to assist the driver.

Similarly to how this project has been carried out, the authors have used MATLAB

and Simulink for their simulations. Even though the authors did not mention the

organization and build of their system controller and power steering connection, their

work has significantly contributed to the design of the final model of this project.

1.4 Thesis Contribution

The variety of work in both Petri Nets and ADAS was the general motivation in

the development of a hybrid petri net for the LDWS and LKAS. It has been shown

that a Hybrid Petri Net (HPN) is the most suitable modeling tool for a system that

involves both discrete and continuous events. Most of the papers provided adequate

information about image processing and the mechanical background for steering as-

sists. However, they did not provide the theory behind the controller of the two

ADAS features presented. This thesis incorporates the control theory and the dif-

ference in the inputs from both systems. Some of these inputs include the steering

torque and steering angle from the LKAS and the lane width and velocity sensors

for the LDWS. It combines both functionalities and applies them sequentially. The

assumptions made while creating the system model are mentioned in the next chapter.

1.5 Thesis Organization

This paper began with the introduction for ADAS and followed by a background

on Petri nets. The Petri net section discusses the three types: discrete, continuous

and hybrid. The third chapter describes the steps in modeling the system. It also

contains the flaws and changes done to arrive at the final version of the model. The

7

fourth chapter mentions the programs used for modeling and simulation. This chapter

contains all the model analysis and simulation results done on the final model. The

final chapter summarizes the work done and recommendations for future work.

8

2. BACKGROUND ON PETRI NETS

2.1 Notations and Definitions

In the early 1960’s, Carl Adam Petri developed a mathematical model for describ-

ing relations existing between conditions and events. Engineers have used this model,

now called Petri Nets, for modeling discrete event dynamic systems. It is a graphical

tool that manipulates certain events according to rules that are set. This allows rep-

resentation of general control systems whose operation depend on potentially complex

control algorithms [19]. It is composed by mainly two nodes,

• Transition - associated with an event that will occur. It is represented by a

vertical or horizontal bar.

• Place - associated with conditions that are required for an event or transition

to occur. It is represented by a circle.

A discrete place can contain a discrete number of tokens. This indicates whether

the condition/s necessary for the occurrence of an event is available. Some places are

taken as pre-conditions for a certain event to occur. These are viewed as the “input”

to a transition. While other places are viewed as the “output” of a transition, they

are the post-conditions that are affected when a certain event has occurred. The

two nodes are connected to each other through arcs. The transitions, places and

relationships between them through the arcs makeup the the Petri Net graph. It is

a weighted bipartite graph because arcs cannot connect two nodes of the same type,

i.e. two places or two transitions [20]. Fig 2.1 illustrates the graphical representation

of the components of the graph.

9

Fig. 2.1.: Petri Net Notations

The precise definition of a Petri net graph or Petri net structure is based on four

elements and represented as,

N = (P, T,A, ω) (2.1)

where,

P is a finite set of places and is written as,

P = {p1, p2, ..., pn} , (2.2)

T is a finite set of transitions and is written as,

T = {t1, t2, ..., tm} , (2.3)

A is a set of arcs from places to transitions or vice versa. It is mathematically

written as,

A ⊆ (P × T) ∪ (T × P) , (2.4)

and w is the weight function on the arcs. This denotes the weight for each arc

connected the two different notes. The weight function is represented as,

ω : A→ {1, 2, 3, 4...} . (2.5)

The conventional form of an arc is written as either (pi, tj) or (tj, pi). From this

notation, the set of input places to a transition tj is represented as I(tj) while the set

of output places to a transition tj is represented as O(tj). These sets of places are

mathematically represented as:

I(tj) = {pi ∈ P : (pi, tj) ∈ A} , and (2.6)

10

O(tj) = {pi ∈ P : (tj, pi) ∈ A} . (2.7)

The same notation is used for the input and output transitions to a place pi as

well. They are mathematically represented as:

I(pi) = {tj ∈ T : (tj, pi) ∈ A} , and (2.8)

O(pi) = {tj ∈ P : (pi, tj) ∈ A} . (2.9)

In drawing Petri net graphs, there is a need to differentiate between the two nodes,

circle for places and bars for transitions. The arcs connecting the places and transi-

tions represent the elements of the set A. This tells us that an arc directed from place

pi to transition tj means that pi is an element of I(tj). Moreover, if w(pi, tj) = k, then

there are k arcs from pi to tj. The default value of an arc weight is assumed to be 1

if not shown explicitly. An arc weight greater than one, three for example, denotes

that there are three arcs with a weight of one each between two nodes. Instead of

drawing three arcs, this can be represented as a single arc of weight three. Fig. 2.2

is an example of a simple Petri net graph. The notations and definitions presented

above will be used to describe the example.

Fig. 2.2.: Simple Petri net graph

11

The example is defined as follows,

P = {p1, p2, p3, p4}

T = {t1, t2}

A = {(p1, t1), (p2, t1), (t1, p3), (p3, t2), (t2, p4)}

ω = {1, 1, 1, 2, 1}

I(p1) = I(p2) = ∅, I(p3) = {t1}, I(p4) = {t2}

I(t1) = {p1, p2}, I(t2) = {p3}

O(p1) =O(p2) = {t1}, O(p3) = {t2}, O(p4) = ∅

O(t1) = {p3}, O(t2) = {p4}

2.2 Petri Net Marking

A PN graph is typically used to represent a discrete event system graphically. The

events that drive the system are represented through transitions and the information

that describes the conditions for the events to occur are the places. In order for the

system to operate, a certain medium is required to indicate if the conditions are met

or not. This mechanism is shown through the use of tokens. Each place contains

an integer number of tokens that essentially indicates that the condition described in

the specific place has been met. The way in which tokens are assigned is defined as

a marking. In a PN graph, it is represented as black dot as shown in Fig. 2.1. A

marking x is represented as,

x : P →M = {0, 1, 2, 3, ...} . (2.10)

Similarly, M(pi) or mi denotes the number of tokens in place pi where, i is the number

of the place. Thus, marking x defines a column vector called the marking vector and

the number of elements in the vector is equal to the number of places in the Petri

net. If a place has no tokens in it, then that particular place has 0 in the marking

vector. For example, the marking of Fig. 2.2 is,

12

x =

M(p1)

M(p2)

M(p3)

M(p4)

 =

2

0

0

0

It is noted that the places p2, p3 and p4 have no tokens and hence have a marking of 0.

The marking defines the state of the Petri net. The initial marking of the PN before

any transition has fired is called Mo. The initial marking of Fig. 2.2 is the marking

vector x presented above. It follows that M1 is the next marking after a transition

has fired then M2 is the next marking after another transition fires because of M1 and

so on. For simplicity, a marked PN is the same as a PN. The above definitions do not

clearly describe the medium for the state evolution. The markings only describe the

state of the Petri net. So, state evolution corresponds to marking evolution, which is

caused by firing the transitions. The dynamics of the Petri nets shall be discussed in

detail in the next section.

2.3 Petri Net Dynamics

The dynamics signify the sequence of events that happen in the system. The

transitions denote which events occur at a certain time. In order to simulate the

system behavior, the sequence can be identified by the method of token transfer from

a place to another. This can be shown by enabling and firing transitions. Generally,

a transition is enabled if each of the input places of that particular transition contains

at least one token. The token signifies the condition for that event or transition to

occur. Since, we have mentioned the use of weighted arcs, the definition is slightly

modified below.

A transition tj ∈ T is said to be enabled provided,

M(pi) ≥ w(pi, tj) ∀ pi ∈ I(tj) . (2.11)

13

where I(tj) is the set of input places to transition tj. This equation means that

transition tj is enabled when the number of tokens in each of the input places of tj,

denoted by the marking M(pi), exceeds or equals the arc weight from pi to tj. Once

a transition is enabled, it can fire at any time instance. However, it does not imply

that the enabled transition will immediately fire.

According to [20], once an enabled transition fires, a state transition f can be

defined. This describes the change in the state of the Petri net due to the firing of

the enabled transition. The state transition function f : Nn × T → Nn, is defined

for transition tj ∈ T if and only if the transition is enabled. Mathematically,

M ′(pi) = M(pi)− w(pi, tj) + w(tj, pi), i = 1, 2, ..., n . (2.12)

In other words, we can express the marking of an input place pi after a transition has

fired if f(M, tj) has been defined. Eq. 2.12 denotes that when a transition fires from

the input place pi, tokens equal to the arc weight relating that place to tj, or w(pi, tj),

are removed first. Then, tokens equal to the arc weight relating tj to pi, w(tj, pi), are

added to place pi. Let us consider the following example below.

Fig. 2.3.: Enabling a transition

In Fig. 2.3, the arc weight of both p1 and p2 to t1 is one. Place p1 has three tokens

that are greater than the arc weight while p2 has one token that is equivalent to the

mentioned arc weight. Thus, transition transition t1 is enabled based on Eq. 2.11.

The same graph is used in Fig. 2.4 with the slight difference in the number of tokens.

14

The input place p1 has two tokens which is greater than the arc weight going into t1

while the input place p2 has no tokens. This makes transition t1 not enabled. The

condition for enabling transitions must be satisfied by all input places connected to

that specific transition. This is proven in Fig. 2.3, making transition t1 ready to fire.

Fig. 2.4.: Transition not enabled

Next, the enabled transition t1 is fired. After a transition fires, the number of

tokens added in each output place is equivalent to the arc weight that connects the

transition that fired and the output place. An example of this is presented in Fig.

2.5. In this PN structure, place p1 has three tokens and place p2 has a single token.

When transition t1 fires, two tokens are taken out from p1 while one token is taken

out from p2. Four tokens are then added to place p3 as dictated by the arc weight. It

is observed that the tokens removed from the input places do not need to be equal to

the tokens added to the output places. The removal and addition of tokens are solely

dependent on the arc weights. Hence, conservation of tokens is not considered in the

firing of transitions. Also, it is noted that enabled transitions fire one at a time. This

allows observation and interpretation of a system’s behavior through a sequence of

events.

15

Fig. 2.5.: Firing of an enabled transition

To be able to observe the sequence of transitions that will be fired and their

corresponding marking evolution, a reachability tree is needed. This is a graphical

representation of the reachable states or markings of the system. Mathematically,

R[(P, T,A, ω,m)] := {y ∈ Nn : ∃ ∈ T ∗(f(m, s) = y)} . (2.13)

The equation above defines the set of reachable states where f is the state transition

function and m is the marking. The reachability analysis is based on the construction

of a tree where the nodes are the states and arcs represent the transitions. The key

idea for this analysis is simple and best understood through the example, Fig. 2.6.

The first node of the tree is the initial marking or state. The tree ends when it reaches

16

Fig. 2.6.: Petri net example for reachability analysis

a terminal or repeating node. Each node is considered to be a reachable state from

the initial marking if a sequence of firing transitions exists. The remaining nodes of

the tree is discussed step-by-step below.

1. The initial marking of the Petri net is

mo =
[
1 0 1 0 0

]T
.

2. Transition t1 is enabled and will be fired since it satisfies Eq. 2.11. One token is

removed from p1 and one token will be added to places p2 and p3. The second

marking or state is,

m1 =
[
0 1 2 0 0

]T
.

3. Referring back to Eq. 2.11, both t2 and t3 are enabled. However, both cannot

fire at the same time. This will branch out to two different firing sequences:

S1 = {t1, t2} and S2 = {t1, t3}

4. For sequence S1, one token is removed from p2 and three tokens are added to

p4. This marking is,

m2 =
[
0 0 2 3 0

]T
.

17

5. After t2 fires, t3 will fire for sequence S2 since it follows Eq. 2.11. Two tokens

are removed from p3 and one token is added to p5 and this results to a marking,

m3 =
[
0 1 0 0 1

]T
.

6. The markings m2 and m3 are called the terminal nodes. The node denotes the

end state of the system. It means that no transitions can be enabled/fired after

this state. The reachable states from the initial marking are m1, m2 and m3.

These three states are said to be reachable because a sequence of transitions

that fired connects it to mo. Graphically, it is shown in Fig. 2.7.

Fig. 2.7.: Simple reachability tree

As presented in Fig. 2.6, the reachability tree is easy to create. However, it may be

infinite. An example of which is shown on Fig. 2.8. The underlying task for this

Petri net analysis is to find a finite representation, called the coverability tree. If the

tree is finite, then the reachability tree and coverability tree are the same.

18

Fig. 2.8.: Petri net with a loop and reachability tree

2.4 Incident Matrix and State Space Equation

2.4.1 Incident Matrix

Any Petri net graph, with n places and m transitions, can be analyzed through

its incident matrices. The three incident matrices are an alternative to describing the

size of PN.

• Output Incident Matrix, B+ is an n×m matrix that captures the arc weights

from transitions to output places.

• Input Incident Matrix, B− is an n × m matrix that captures the arc weights

from input places to transitions.

• Incident Matrix, B is the difference of the output and input incident matrices

with the same dimension. It is defined by the mathematical equation,

B = B+ − B− (2.14)

19

We apply the concept to Fig. 2.6 and generate three unique matrices. There are

cases where arc weights are not present between certain places and transitions. Thus,

their entry on either the input or output incident matrix is zero. It is also noted that

these matrices are only structural properties of the PN, they are independent of the

markings or states of the system.

B+ =

0 0 0

1 0 0

1 0 0

0 3 0

0 0 1

B− =

1 0 0

0 1 0

0 0 2

0 0 0

0 0 0

and B = B+−B− =

−1 0 0

1 −1 0

1 0 −2

0 3 0

0 0 1

2.4.2 State Space Equation

The examples shown previously are small systems that can easily be represented

graphically. However, it may be difficult to perform analysis on larger and more

complex systems. An alternative is through algebra, the state space equation. It uses

both the concept of incident matrices and the enabling of transitions. This equation

describes how the state of each place changes when a transition is enabled then fired.

It is written as,

Mk+1 = Mk +BXk (2.15)

where,

• Mk+1 is an n× 1 vector that contains the marking when time is at k+1.

• Mk is also an n× 1 vector that contains the marking at a previous time, k.

• B is the incident matrix.

• Xk is the firing vector with dimension m× 1. It contains a single nonzero entry

with value of 1 that indicates which transition is currently firing.

20

Using Fig. 2.6 as an example, we define its state equation. The initial state is

M0 = [1 0 1 0 0]T and when t1 fires the next state is,

M1 =

1

0

1

0

0

+

−1 0 0

1 −1 0

1 0 −2

0 3 0

0 0 1

×

1

0

0

 =

0

1

2

0

0

Similarly, M2 can be defined by using the state space equation. The firing vector

has the nonzero entry on the second row to accommodate for transition t2 and the

marking Mk is now M1. This process is repeated until all enabled transitions fire.

As seen from the calculations, only two variables change in the equations. Thus, the

use of the state space equation makes identifying the reachable states of the system

simpler to determine for larger systems compared to the graphical means of analysis,

the reachability tree.

2.5 Continuous Petri Net

In the previous sections, Discrete Petri nets (DPN) have been discussed in-depth.

This type defines the sequences of discrete events that can occur in a system. However,

most of the the systems in the real-world are not event-driven. The behavior or state

of the system changes continuously, like the flow of traffic and supply chain flow at

a manufacturing factory. These type of systems cannot be graphically represented

by DPN. The solution is to use Continuous Petri nets (CPN) which are driven by

time. Most of the definitions, notations and dynamics coincide for both Petri nets.

However, there are some distinguishing features that are only applicable to the CPN.

• Referring back to Fig. 2.1, continuous transitions are represented as unshaded

boxes rather than shaded bars and the places are represented as two concentric

circles instead of one.

21

• The arc weight connecting places to transitions or vice versa is no longer an

integer but any non-negative real number. This enables the system to fire in a

continuous flow.

• Since the arc weight can be any real number, the number of tokens need not be

an integer as well.

• Each transition has a specific firing quantity, also a non-negative real number.

2.5.1 Dynamics

After differentiating CPN and DPN, we can now define in detail the graph and its

dynamics. According to [21], a Continuous Petri net graph is represented as (N,mo)

where N is the Petri net structure, from Eq. 2.1, and mo is the initial marking of the

system. The enabling and firing of transition is as follows,

• A continuous transition tj ∈ T is enabled at any marking m, if and only if,

∀ pi ∈ I(tj),mi > 0 . (2.16)

• The enabling degree of a particular transition tj is,

enab(tj,m) = min
pi∈I(tj)

{
mi

B−(pi, tk)

}
(2.17)

• An enabled transition tj can fire in any real amount, α, or mathematically,

0 ≤ α ≤ enab(t,m)

2.5.2 Token Flow Matrix and State Space Equation

The incident matrix and state space equation is similar to that of the discrete

Petri net. However, the incident matrix is called a token flow matrix for a continuous

Petri net. The matrix has the same dimension of n × m, given a Petri net with n

places and m transitions.

M ′ = M +BV (2.18)

22

where,

• M is an n× 1 vector that contains the initial marking of the system.

• M ′ is an n × 1 vector that contains the new marking reached from the initial

marking.

• B is the token flow matrix.

• V is the firing vector with dimension m × 1. This contains either a zero or

nonzero firing rate that corresponds to the continuous transitions. This firing

rate can be any real number.

Fig. 2.9.: Example of a continuous Petri net

Applying the concepts to the example in Fig. 2.9, we observe that transitions

t1 and t2 are enabled by Eq. 2.17. From the initial marking is M = [4.1 1.2 2.0]T ,

the new marking reached is M ′ = [3.9 1.2 3.0]T when t1 is fired. Then if t2 fires,

the new marking is M ′ = [4.1 0.2 2.5]. Both transitions are still enabled as long as

the number of tokens in p1 satisfy the conditions mentioned previously. From the

scenario indicated, an infinite number of reachable marking or states can be created

due to the constant firing rate. Thus, limiting the use of the reachability tree. Hence,

23

macro marking is used to represent the possible reachable states in a finite way [22].

Mathematically, for a CPN with n places, the total number of markings will be 2n.

Using the same example, Fig. 2.9 has 3 continuous places. This means that there are

23 = 8 macro markings. These markings are [0 0 0]T , [m1 0 0]T , [0 m2 0]T , [0 0 m3]
T ,

[m1 m2 0]T , [0 m2 m3]
T , [m1 0 m3]

T and [m1 m2 m3]
T . Since the marking of p3 can

never be zero, the macro markings that have m3 or m(p3) are omitted for this case.

The final generalized macro marking for the given example is provided in Fig. 2.10.

Fig. 2.10.: Macro marking

2.6 Hybrid Petri Net

So far, we’ve discussed the similarities and differences between DPN and CPN. By

letting the two systems interact, a dynamic Hybrid Petri net is created. In a DPN,

the marking may correspond to a Boolean state, e.g. door open or close, or an integer

value. It is then followed to find all the reachable states of the system as general

method for analysis. However, in the case of markings that contain a large number

of tokens or when the transitions are time-driven, this method is not practical. This

observation has opened the way to use CPN and Hybrid Petri Nets for refined model

analysis.

24

Fig. 2.11.: Example of a Hybrid Petri net

2.6.1 Notations and Definitions

According to [23], a Hybrid Petri net is a sextuple Q = {P, T, Pre, Post,m0, h}

such that,

• P = {pd ∪ pc} is a finite set of discrete and continuous places.

• T = {td ∪ tc} is a finite set of discrete and continuous transitions.

• Pre denotes the input incident matrix, B−

• Post denotes the output incident matrix, B+

• m0 is the initial marking or state of the Petri net.

• h is a hybrid function that denotes whether a node is discrete, connecting a

discrete place pd and transition td, or continuous for connecting a continuous

place pc and transition tc. Mathematically, h : P ∩ T → {D,C}

25

One important requirement for modeling this type of petri net is that if an arc

connects a continuous transition to an input discrete place, then an arc that is a

reciprocal of this relationship must exist as well. It ensures that the marking of any

discrete place is always an integer for any transition that fires. An example is the

arcs connecting tc1 and pd3 in Fig. 2.11. If there is a discrete place pdi and continuous

transition tcj, this rule can be verified and expressed as,

B−(pdi , t
c
j) = B+(pdi , t

c
j)

.

Using Fig. 2.11, the simple hybrid Petri net is described as follows,

• P = {pc1 , pc2 , pd3 , pd4 , pd5}

• T = {tc1 , td2}

• Pre = B− =

1 0

0 0

1 1

0 0

0 0

• Post = B+ =

0 0

0.2 0

1 0

0 2

0 1

• m0 = [3 0 1 0 0]T

2.6.2 Dynamics

The conditions for enabling and firing the transitions are dependent on the type.

Discrete transitions follow the same rule implied by Eqs. 2.11 and 2.12. Continuous

transitions should satisfy either of the two conditions,

26

• For each discrete input place pdi , m(pdi) ≥ B−(pdi , t
c
j) .

• For each continuous input place pci , m(pci) > 0 , from Eq. 2.16.

The format of the state equation is similar and is written as,

M1 = M0 +Bs . (2.19)

In the equation above, B is the incident matrix, M0 is the initial marking or state

of the system and M1 is the next reachable state after a transition has fired. s is the

characteristic vector that contains a single nonzero entry, which is either an integer for

the number of firings of a discrete transition or a real number for the firing quantity

of a continuous transition. It is also observed that in Eq. 2.15 all the components of

X are integers while s contains either integers non-negative real numbers.

27

3. HYBRID PETRI NET MODEL

The modeling for this thesis was done to combine the performance of Lane Departure

Warning (LDW) and Lane Keeping Assist (LKA) systems. These two systems can

act independently of each other or sequentially depending on the car make. This

specific model follows the sequential mode where LDW occurs before LKA and both

systems are taken as one. It should also be noted that the LKA system is not the

same as Lane Centering Assist [24]. This Petri net model uses an LKA system that

provides steering intervention as the vehicle performs unintentional lane departure

after the warning has been sent. Other assumptions were taken into account before

the model design. They are as follows,

• The vehicle of interest is driving on a straight path.

• The road is even with visible lane markers.

• Post-processed data is readily available for the system to use.

3.1 System Flowchart

The first step in modeling is the creation of a flowchart. It is a sequence of steps

and decisions the system will follow. Since the Lane Keeping Support System (LKSS)

is a decision-based process, it needs inputs from the environment and compare them

with pre-defined values to deduce if the vehicle is safe or not. The flow in Fig. 3.1

begins when the engine is switched on. This powers up the cameras and sensors of

the vehicle. The images are captured and post-processed while the sensors gather the

steering angle, torque, speed and current position of the vehicle. At this instant, the

system has a clearer picture of the situation of the vehicle from all the inputs acquired.

The initialization stage comes after. This stage checks three requirements for LKSS

28

to be activated. The first condition is that the turn signals are off, which means that

there are no intentions of lane departure. The current speed of the vehicle should

be in a safe or cruising range secondly. The last condition is that the steering angle

denotes that the car is currently driving in a straight path. If all three conditions

are met, then the initialization stage is complete and the LKSS is activated. If one

requirement is not met, the system will continue gathering data and checking for all

three requirements before system activates. This gives the driver more control over

the vehicle and is able to show the clear intention of possible lane change.

Once the LKSS turns on, input data is refreshed and the system checks if the

vehicle in driving in a safe range defined in the system. The three values checked are

the speed, steering torque and position of the vehicle with respect to the lane markers.

If any of the three parameters is out of the safe range, the timer is checked if two

seconds have passed. If the timer has not started, this is the system’s first encounter

of unwanted lane departure. Based on the data gathered, the system decides if it’s

a right or left lane departure and immediately sends out the warning by means of

an audible sound, vibration of the steering wheel and/or a visible warning on the

dashboard. As soon as the warning is sent, the timer begins. This period freely gives

the driver the control to return inside the lane boundaries. While the driver is making

the minor changes to his steering, the system continuously checks if any of the three

mentioned parameters, speed, steering angle and position, are still out of the safe

range or not. If any condition has been met and that timer has passed a second,

the lane keeping assist sub-system takes over. It gently steers the vehicle back to its

through a torque command and brakes are applied dependent on the gravity of the

vehicle’s situation. The sub-system takes control of the vehicle for a few seconds. The

vehicle is once again in a safe driving mode, the timer resets, all warnings removed

and the LKSS flow repeats. From this flowchart, the detailed procedure for modeling

the system is discussed in the next sections.

29

F
ig

.
3.

1.
:

F
lo

w
ch

ar
t

fo
r

L
an

e
K

ee
p
in

g
S
u
p
p

or
t

S
y
st

em

30

3.2 Discrete Petri Net Model

The beginning stage of the Petri net model was designed by using only discrete

transitions and places. This provides an easier representation since most of the deci-

sions that occur in the system are high-level and event-triggered. Two versions of the

discrete Petri net model are described and include the drawbacks and improvements

made to reach a final model. The notation introduced in Section 2.6.1 for distin-

guishing continuous and discrete Petri nets has been omitted in this section. The

superscripts are taken out for simplicity.

3.2.1 Version 1

The first version is divided into two areas, data acquisition and system operation.

The modeling was done separately and later combined. Fig. 3.2 begins with the

starting the engine in p1 that activates all cameras and sensors in the vehicle. The

functionality of the sensors are taken as on place, psensor to signify if they are working

properly. This is a condition for data acquisition. Initialization stage follows after

and checks all three conditions. If these are met, the Lane Keeping Support System

(LKSS) turns on. The system identifies if one of the three parameters, steering angle

speed and width, are in the safe range. If one of these parameters, represented as

the places paref , pvref , pwref respectively, show an unintentional lane departure then

a token is sent to the other half of the model. As soon as the vehicle is considered in

an unsafe condition, the LDW sub-system verifies if it’s a lane departure on the left

side, right side or a false alarm. A warning is sent to the driver as soon as it confirms

the current state of the vehicle. This warning also sets the timer to begin counting

up. Once p37 receives a token, LKA system immediately takes over and steers the

vehicle back to the center of the lane and returns to data acquisition.

31

F
ig

.
3.

2.
:

V
er

si
on

1
of

D
is

cr
et

e
P

et
ri

N
et

M
o
d
el

fo
r

L
K

S
S

32

Flaws of the Model

This version has posed several flaws. One is the complex timer logic. The function

of the timer does work, however it unnecessarily increases the size of the incident ma-

trix. Also, there are extra transitions that can be merged into one when lane departure

is checked. Multiple input arcs, with a weight greater than one, and corresponded

to an output arc weight of one have produced unbounded places for simulation. Un-

bounded places mean that a certain place can have an infinite number of tokens. This

may give false information to the system for making time-based decisions. The model

also included redundant places that can be combined to a single place such as p13,

p15 and p33. All these flaws were removed in the next version of the model.

3.2.2 Version 2

The flow of the second version is kept original, based on the flowchart in Fig.

3.1. The modeling was done as a whole that combines both LDW and LKA systems.

Referring to Fig. 3.3, the flow begins at p1. The system powers all cameras and

sensors in the vehicle. All places for determining an unintentional lane departure has

been retained as well as the places for describing if the vehicle in in a safe condition

or not. The three major changes for this model are the timer, the arc weights, and

the introduction of system looping. Firstly, the timer was simplified to creating a

small loop with just two places rather than four. All of the arcs have a weight of one,

except for the placeholder for the timer, p15. Lastly, output arcs from two discrete

transitions, tsafe and tunsafe, have been added to incorporate a system looping. In

reality, the places psensor, pblinker, paref , pwref and pvref will receive tokens only if

the vehicle encounters each event. This set-up does not produce accurate results for

continuous simulation. Hence, the arcs were added to force these places to receive a

token every single time.

33

F
ig

.
3.

3.
:

V
er

si
on

2
of

D
is

cr
et

e
P

et
ri

N
et

M
o
d
el

fo
r

L
K

S
S

34

Flaws of the Model

Overall, this model has greatly reduced the size of the incident matrix by remov-

ing redundant places and simpliying the timer. It has also changed the Petri net

firing dynamics with arcs weighted at one. However, the system looping presented a

more difficult task of analyzing the results. A successful and well-described simula-

tion requires introducing various cases, represented by tokens in different places, and

intentionally placing a loop on the model will yield to unreliable results. This has

posed a new challenge to the model that led to the final version of the discrete Petri

net model.

3.2.3 Final Model

The last and final Discrete Petri net model of the Lane Keeping Support System

has retained the same functionality with the previous versions. The timer for the

second version has also been kept the same. Referring to Fig. 3.4, the place, p13, has

an initial token of one to compensate for the reduced arc weights. The solution for the

forced system looping in the previous version is to remove the extra arcs and instead

create different scenarios for simulation purposes. The scenarios are distinguished

by the tokens that are initially place to signify a possible situation during vehicle

operation. These scenarios are discussed in detail in the succeeding section.

35

F
ig

.
3.

4.
:

F
in

al
D

is
cr

et
e

P
et

ri
N

et
M

o
d
el

fo
r

L
K

S
S

36

Fig. 3.5.: Final Discrete Petri Net Model for LKSS

3.3 Hybrid Petri Net Model

The final discrete Petri net model is sufficient to show the different cases a driver

may encounter and activate the LKSS. Still, we can optimize the model by reducing

redundant discrete places and introducing continuous places for a real-time system

such as this. The continuous dynamics taken into account for this model is the time.

The integration of the continuous Petri net is shown in Fig. 3.5. The continuous

place, pc1 denotes the threshold time before the LKA system takes over the vehicle

while pc2 keeps collecting the tokens from the threshold, denoting the time elapsed.

The continuous transition, tc1, keeps firing. When the marking of pc2 reaches two,

a discrete transition fires and deposits a token at the assigned output place. This

indicates that the timer has reached two seconds and the system should check if there

is still unintentional lane departure after the warning has been sent. The period

between zero and two seconds is the chance given to the driver to steer back the

vehicle to the center of the lane. If the driver has failed to do so, a token will be sent

to the LKA system to perform steering assist and guide the vehicle back to safety.

Once this happens, the timer will be reset to zero by the system internally. The

hybrid petri net model for a Lane Keeping Support System is shown in Fig. 3.6.

37

F
ig

.
3.

6.
:

F
in

al
H

y
b
ri

d
P

et
ri

N
et

M
o
d
el

fo
r

L
K

S
S

38

3.3.1 Description of Nodes

The transition to a Hybrid Petri Net has reduced the number of discrete places to

twenty-four. The nomenclature for differentiating the continuous and discrete nodes

illustrated in Fig. 2.11 is used. The description for each place and transition is

provided in Tables 3.1 and 3.2.

Table 3.1.: List of transitions in the HPN model

Beginning of Table

Transition Description

td1 Engine is on, sends signal to turn on cameras and sensors.

td2 Cameras and sensors are on.

td3 System acquires post-processed data from sensors.

td4 Data acquisition is done, triggers system initialization.

td5 Initialization done, begin with signal and in-range checks.

td6 LKA is active, sends steering torque command to engine.

td7 Transition indicates that turn signal is off.

td8 Transition indicates that vehicle’s velocity is not in range.

td9 Transition indicates that the right side boundary is safe then

proceeds to check the left side.

td10 Transition indicates that vehicle’s lateral position is out of

range.

td11 Transition indicates that vehicle’s steering angle is out of

range.

td12 Transition indicates that front right tire is on the right line.

td13 Transition indicates that front left tire is on the left line.

td14 Lane departure warning has been sent to driver and triggers

timer.

tc15 Transition for continuous time flow.

39

Continuation of Table 3.1

Transition Description

td16 Transition indicates that there is no lane departure.

td17 Transition indicates that time for correction is done and the

LKAS will take over the vehicle.

End of Table

Table 3.2.: List of places of the HPN model

Beginning of Table

Place Description

P d
1 Engine is on.

P d
2 Cameras and sensors are on.

P d
3 Data gathering begins.

P d
4 Vehicle controller processes data gathered and sets all initial con-

ditions.

P d
5 Vehicle controller checks if turn signal is on or off.

P d
6 Vehicle controller compares actual and reference vehicle speed.

P d
7 Vehicle controller compares actual and reference steering angle.

P d
8 Place indicating the final status of the turn signal.

A token signifies that turn signals are off.

P d
9 Lane Keeping Support System is activated. A token inside sig-

nifies that the vehicle is in an safe condition.

P d
10 A token inside signifies that the vehicle is in an unsafe condition.

P d
11 Vehicle controller checks for right line boundary.

P d
12 Vehicle controller checks for left line boundary.

P d
right Vehicle controller has determined that front right tire has crossed

right white line.

40

Continuation of Table 3.2

Place Description

P d
left Vehicle controller has determined that front left tire has crossed

left white line.

P d
ldw Place indicating that unintentional lane departure has been de-

tected and warning is sent to driver.

P d
lka Place indicating lane keeping assist feature takes over.

P d
sensor Place indicating that all sensors are working properly.

P d
turn Place indicating the current status of turn signal.

A token means signals are off.

P d
speed Place indicating if current speed is safe or unsafe. A token means

speed is outside the safe range.

P d
angle Place indicating if current steering angle is safe or unsafe. A

token means angle is outside the safe range.

P d
lane Place indicating if current position of vehicle is safe or unsafe.

A token means that position is outside the safe range.

P d
data Place indicating that sufficient data has been gathered.

P c
13 Place indicating the time duration.

P c
14 Place indicating the time elapsed.

End of Table

3.3.2 Functionality of the Model

For accurate and reliable simulation results, the forced system looping from the

previous version of the model has been removed. The solution for this is to test the

model based on four different scenarios the driver and vehicle may encounter. The

working of the model is discussed in detail based on the scenario or case.

41

Case 1: LKSS activates and vehicle is safe

The first scenario depicts that all three conditions are met for the initialization

stage to be successful and the vehicle is in a safe condition. The flow begins when

the engine is started at p1. The sensors and cameras are activated and denoted by a

token in p2. Data gathering is initiated by p3. When all the sensors are functioning

as expected, indicated by a token in psensor, and enough data has been gathered,

t4 fires to p4. This part of the model is where the reference values are set and the

three parameters, turn signals, speed and angle are checked. The places p6, p7 and

p8 denote that these three parameters have passed the requirements and tokens are

sent to the transition, tsafe. Once enabled, a token is then fired from this transition

to p9 which activates the Lane Keeping Support System (LKSS). Since this scenario

denotes that there is no unintentional lane departure detected, the same transition

sends a token back to p3. The process then repeats and continues checking if the

same three parameters pass the requirement or not. The flow is only involved with

the activation of LKSS which describes the first scenario. The next scenario explains

the case system not reaching activation.

Case 2: LKSS never activates.

The second scenario shows the two causes of why the system fails activation. The

first reason being if the turn signal is one. In reality, if the driver decides to depart

from the current lane then the left or right turn indicator is lit up. There is no reason

for the system to activate for this case. Starting from p1, and with the sensors working

as expected, the system gathers and processes data. Once the initialization stage is

reached, the first parameter fails the requirement. The tokens remain at places, p5, p6

and p7, until pturn contains a token reflecting that turn signals are off. The transition,

tsafe will never fire therefore not activating LKSS feature.

42

The other reason for the system not being activated is any of the sensor or cameras

malfunction. As soon as the engine is started, the sensors and cameras are turned

on and denoted by a token in p2. However, if one of these devices have failed to

turn on or gather data, the place psensor has no tokens. Effectively, transition t4 will

never be enabled and cannot fire to begin the initialization stage. Hence, LKSS never

activating as well. The flow does not continue to checking specific lane departure and

timer countdown because this scenario does not include that. The next two cases

present unintentional lane departure.

Case 3: LKSS activates and unintentional lane departure was corrected.

This scenario goes through with LKSS activation like the first case. Once the

engine starts, the sensors and cameras begin data gathering, data post-processing

and goes through with the initialization stage.The places p5, p6 and p7 have a token

each. Continuing at the enabled transition, tsafe, the system suddenly encounters

an unsafe operating condition. This may be represented by a token in either, pspeed

which indicates that the current speed of the vehicle is unsafe, pangle which indicates

that the steering angle of the vehicle is not at zero degrees, or plane which indicates

that the current position of the vehicle is outside the lane boundaries. This will

enable transitions t8, t9, or t11 respectively. The enabled transition depicting that

the vehicle is unsafe sends a token to p10 which then enables transition, tunsafe. This

transition fires a token to p11 which begins the process for determining a left or right

line boundary. During this time, there is a possibility that the driver notices the

vehicle drifting away from the lane and has responded quickly to steer the vehicle

back to the center of the lane. This action does not yield any token on either pright or

pleft. Thus, sending the token from p11 to p12 and then back to p3 for data gathering.

In this case, unintentional lane departure was identified by the LKSS, however the

warning was never sent due to the driver’s quick action.

43

Case 4: LKSS activates and takes over the vehicle.

The last case presents the instance where the driver fails to correct the unin-

tentional lane departure before timer’s done. The LKSS activates and the system

recognizes an unsafe condition denoted by a token in p11. The system now checks

which specific direction the vehicle is drifting away, denoted by a token in pright or

pleft. In the case of a right line boundary, transition t12 is enabled. A left line bound-

ary allows t13 to be enabled. Once either transitions are enabled, a token is fired to

place pldw and a warning is immediately sent to the driver. The enabled transition

t14 fires to the continuous place p13. With the continuous transition, t15, surrounded

by arc weights of 0.5, there is a continuous flow similar to that a timer counting up.

Since the previous enabled transition, t16, the system begins with the data gathering

and checks if the vehicle has been steered back to safety during this time. If there is

unintentional lane departure, another token is fired from t14 to the continuous place

p13 to continue counting. As soon as the place p14 contains two tokens, t17 is enabled

and fires to plka. This gives permission for the LKSS to take over and steer the vehicle

back to center of the lane. The system does not end here and a token is fired to p3

again to initiate data gathering.

44

4. SIMULATION RESULTS

In order to determine if the four scenarios in the previous chapter can be observed

in the model, simulations should be carried out. Firstly, the simulation tools, PN

Toolbox, MATLAB and SimHPN, are discussed in this section. The results obtained

from each scenario is then presented and justified.

4.1 Simulation Tools

This section provides a background on each tool that was used for simulation.

The purpose, interface and operation of each is also discussed. One tool was used

only for modeling and simulating the discrete Petri net model while the other tool

was used for simulating the hybrid Petri net model. Both tools are embedded in the

MATLAB environment. The same environment was used to support and justify the

results for the former tool.

PN Toolbox

The first tool, short for Petri Net toolbox, is a third-party software tool incor-

porated in the MATLAB environment. It is a tool used for modeling discrete event

dynamic systems [25]. It has two main features - draw and simulate. The former

allows the user to draw, store and retrieve Petri nets while the latter feature permits

simulation and analysis of the created PNs. It has a simple graphical user interface

(GUI), seen in Fig. 4.1 that has pre-defined nodes and arcs. As mentioned, this tool

was used only for modeling and analysing the DPN model. It was used to acquire

the incident matrix and the reachability tree.

45

Fig. 4.1.: PN Toolbox GUI

SimHPN

SimHPN is another embedded package in the MATLAB environment. The sim-

ulator supports infinite server and product server semantics for the firing of both,

discrete and continuous, transitions. Data related to hybrid Petri net model and

the output results are stored as MATLAB variables. Fig. 4.2 shows the GUI of the

simulator. The inputs describing the net structure are named as follows,

• Pre is an n×m matrix, where n is the number of places and m is the number

of transitions, which contains the arc weights from places to transitions.

• Post is an n × m matrix which contains the arc weights from transitions to

places.

• Mo is an n× 1 vector that contains the initial marking.

• Lambda is an m× 1 vector that contains the firing rates of the transitions.

46

• T.Type or Trans.Type is an m x 1 vector that indicates the type of transition.

It is c for continuous transition, d for stochastic discrete and q for deterministic

discrete transitions [26].

Fig. 4.2.: SimHPN GUI

The output of the tool is saved as a .mat file. It may be represented as either the

marking evolution or the flow (transition) evolution of the HPN model considered.

This tool was used for observing the behaviour of the final HPN model when the four

scenarios are introduced. It graphically presented the initial to final marking of all

the places.

47

MATLAB

The last tool is the general environment for the entire simulation. The simulation

results from each toolbox was supported by creating an algorithm that finds the

reachable states by using the state space equation. This provided a mathematical

representation of the behaviour of the HPN model based on each scenario.

4.2 Results

Before the results are presented, all the inputs to the MATLAB software are dis-

cussed. Recalling from Chapter 2, difficulties may arise when a large Petri net is

analyzed. Since the model includes twenty four places and nineteen transitions, the

state space equation, found in Eq. 2.19, is used for analysis and simulation. The first

element required is the incident matrices. The PN toolbox was used to generate the

matrices for the discrete Petri net model. Then, a few changes were done to transition

the incident matrices for HPN analysis. The input and output incident matrices for

the final HPN are,

B−
=

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48

B+
=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Using Eq. 2.14, the incident matrix is,

B =

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 0

0 0 0 0 0 0 0 −1 0 −1 −1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49

4.2.1 Case 1

The first case depicts a situation wherein the LKSS successfully activates but there

is no unintentional lane departure detected. The turn signals are off and the cameras

and sensors are assumed to be working properly. So, there is one token in p1, psensor

and pturn. The initial marking is,

Mo =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

]T
Since this case only affects the discrete components of the HPN model for the

LKSS, the toolbox was used to generate the coverability tree of the system. The

same marking served as input to the MATLAB program for finding the reachable

states of the system. Figs. 4.3 and 4.4 show the results obtained.

50

Fig. 4.3.: Reachable places from MATLAB for Case 1

51

F
ig

.
4.

4.
:

C
ov

er
ab

il
it

y
T

re
e

fr
om

P
N

T
o
ol

b
ox

fo
r

C
as

e
1

52

Referring to Fig. 4.3, the program identifies a single firing sequence and the

reachable states are saved in a matrix. The first column represents the initial marking,

followed by the next marking on the second column and so on. When transition, t1,

fires, the cameras and sensors are activated. This is indicated by the second column

having a token on the second row. When the enabled transition, t2, fires to begin

data gathering the next marking in the third column occurs and the process continues

for the rest of the matrix. We can confirm that we observe the expected behavior by

looking at the last two columns. When transition t019, which is tsafe, fires, a token

is sent to the the 3rd row, p3 that data gathering has begun again. Also, a token in

p15 tells us that the vehicle is safe and LKSS has activated. The last transition that

fires shows that the system has enough data gathered to recheck the current status

of the vehicle again. Finally, both tools have given eight reachable markings. Thus,

verifying that the expected behavior of the model for the first scenario has occurred.

4.2.2 Case 2

The second case is a situation wherein the LKSS is not able to activate due to

either of the two reasons. The first being that the a turn signal is on and the cameras

and sensors are assumed to be working properly. So, there is one token in p1 and

psensor. The initial marking is,

Mo =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

]T
Once more, only the discrete components of the HPN model are affected. The

toolbox and the program were used to generate the coverability tree. From Fig. 4.5,

the program generates a single firing sequence. When the last transition t5 fires, a

token in p5, p6 and p7 that indicates initialization stage has begun to check the three

parameters - turn signal, speed and steering angle. Although the speed and steering

angle places, 22nd and 23rd row in the last column of the matrix respectively, are in a

safe range, the turn signal is on. Hence, the marking temporarily ends there and the

53

Fig. 4.5.: Reachable places from MATLAB for Case 2 - Turn signal on

system waits until the turn signals are off. Comparing Figs. 4.5 and 4.7, both tools

have generated the same reachable places. Therefore, the first reason for the second

case has been verified.

The other reason for the LKSS not activating is if a camera and/or sensor is

malfunctioning. It is indicated by the place psensor having no tokens. The initial

marking is,

Mo =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

]T

54

The program produces a single firing sequence. Looking at Fig. 4.6, the flow is

similar to Fig. 4.5 except that there are only three reachable places excluding the

initial marking. The last enabled transition has fired and sent a token to begin data

gathering. However, the system has detected a sensor or camera malfunction. This

may result to unreliable data and false alarms. Hence, the system halts operation

until the sensor is fixed. Both tools have generated the same and expected reachable

places which confirms the behavior for this case.

Fig. 4.6.: Reachable places from MATLAB for Case 2 - Sensor Malfunction

55

F
ig

.
4.

7.
:

C
ov

er
ab

il
it

y
T

re
e

fr
om

P
N

T
o
ol

b
ox

fo
r

C
as

e
2

-
T

u
rn

si
gn

al
on

56

F
ig

.
4.

8.
:

C
ov

er
ab

il
it

y
T

re
e

fr
om

P
N

T
o
ol

b
ox

fo
r

C
as

e
2

-
S
en

so
r

M
al

fu
n
ct

io
n

57

4.2.3 Case 3

The third case branches out from the first. Once the LKSS activates, one of the

key parameters is detected to be out of the safe range. The turn signals are off and the

cameras and sensors are assumed to be working properly. Any of the key parameters,

lane position, speed or steering angle can be used to simulate an unsafe condition for

the vehicle. Fortunately, the driver has steered the vehicle to the center of the lane

before the lane departure warning is sent. For the results shown below, the angle is

considered to be out of range. So, there is one token in p1 and pangle while two tokens

are set for psensor and pturn. This ensures that the simulation is continuous and the

assumptions for turn signal, cameras and sensors are maintained. The initial marking

is,

Mo =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 0

]T
Figs. 4.9 and 4.10 shows the a graphic version of the coverability tree and the

reachable places generated the PN toolbox. The program has generated three firing

sequences which indicates that two transitions are enabled are the same time and

can lead to two different reachable places. This is found on Fig. 4.11. We focus on

the last nodes at the bottom of the tree in Fig. 4.9. All possible final markings are

generated after firing either transition t3, which indicates data gathering or t7, which

means that data has been gathered and the initialization stage begins. Preceding

these markings is firing of either the mentioned transitions or t16, which indicates

that the vehicle is considered unsafe and lane departure is being checked. This is the

expected behavior of this model since this scenario involves the driver correcting an

unwanted lane departure before the warning is sent. Hence, the resulting markings

and the enabled transitions that can fire provided a loop for the system. The loop

intends to continue and repeat data gathering until an unwanted lane departure has

been detected. This verifies the expected behavior of the model for this scenario.

58

Fig. 4.9.: Coverability Tree from PN Toolbox for Case 3

59

F
ig

.
4.

10
.:

R
ea

ch
ab

le
p
la

ce
s

fr
om

P
N

T
o
ol

b
ox

fo
r

C
as

e
3

60

Fig. 4.11.: Reachability Tree from MATLAB for Case 3

4.2.4 Case 4

The last test scenario for this LKSS model is when the system activates and there

is unintentional lane departure detected. The driver is not able to correct it in time,

so this case allows the warning to be sent and the system takes over after a certain

period of time. This scenario makes use of the entire HPN model. Firstly, the final

discrete version of the model from Fig. 3.4 was simulated using the PN toolbox.

For variation, the lateral position of the vehicle is out of the safe range and the lane

departure is detected from the left side of the vehicle. Similarly, the assumptions for

turn signal, cameras and sensors are maintained from the third case. This means that

there can be as many of tokens in psensor and pturn to support the assumption. There is

one token in p1 and p13, two tokens in pleft and three for plane. The initial marking is,

Mo =
[
1 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 2 0 0 3 3 0 0 0

]T

61

Although this simulation was successful, the toolbox generated half a thousand

reachable places. It is a huge feat to create the coverability tree from the tool. Hence,

the program was used to generate the 95 reachable places for the HPN model for the

second testing. The initial marking for this case is,

Mo =
[
1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 3 3 0 0 0

]T
All the arc weights were considered to be integers to reduce the reachable places,

found in Figs. 4.12 to 4.15. The program has generated a total of ten firing sequences

because multiple transitions are enabled at a certain time during the simulation.

These results are easier to follow due to the reduced markings. This scenario is con-

nected with the third case which has proven the model to behave as expected. With

this in mind, we can direct our analysis towards the last reachable places found on

Fig. 4.15. The last columns of the matrix are the possible final markings produced

by the simulation. Looking at the nineteenth row, which indicates the marking evo-

lution of p19 or plka, there are three columns with a token in this place. When the

time elapsed, indicated by p14 or the fourteenth row, has received two tokens, the

succeeding marking is denoted by the token in plka. This shows that the system takes

over when the driver was not able to steer the vehicle back to the center of the lane

after the warning has been sent. However, the number of markings is still large to

create a reachability tree. It is a demanding task that requires a grueling and lengthy

period of analysis. Also, the interaction of the discrete and continuous parts are not

verified in this simulation because the arc weights are similar to a petri net that is

only discrete. The solution is to test the model using SimHPN. As mentioned in

the previous section, SimHPN has a simple GUI that requires inputs similar to the

MATLAB program. A .mat file was created for efficient loading of the HPN model.

The GUI automatically displays the file read as seen on the bottom area of Fig.

4.16. From the same figure, the file describing the HPN includes the input and

output incident matrices, the initial marking, the firing rate (lambda) and the types

of transition. The firing rates vary per transition, depending upon the priority of

firing. A firing rate of 1 depicts that the transition will fire in a second. If the rate is

62

Fig. 4.12.: First set of reachable places from MATLAB for Case 4

Fig. 4.13.: Second set of reachable places from MATLAB for Case 4

Fig. 4.14.: Third set of reachable places from MATLAB for Case 4

63

Fig. 4.15.: Last set of reachable places from MATLAB for Case 4

less than 1, e.g. 0.2, then the transition will fire in a fifth of a second. The smaller the

rate, the higher the priority of firing. There are 18 deterministic discrete transitions,

labeled as q, and one continuous transition, c. By clicking the button Simulate, we

see the marking evolution for all the places of the model. We can refine the results by

choosing to display the places of importance, pc13, p
c
14, p

d
15, p

d
18 and pd19. The first two

continuous places indicate the time set and time elapsed while the remaining discrete

places are the vehicle safe status, lane departure warning and lane keeping assist

respectively. Fig. 4.17 shows the simulation result containing the marking evolution

of the major events. When the pd18 receives one token, the lane departure warning is

sent. The place pc13 begins with 3 tokens and counts down quickly by sending tokens

to pc14. As soon as two seconds has elapsed, lane keeping assist takes over. This action

64

is reflected through the token in pd19 or plka. After some time, the vehicle is safe once

again. Hence, the result verifies that when a similar scenario happens, the model

operates with the expected behavior.

Fig. 4.16.: SimHPN GUI set-up for Case 4

65

Fig. 4.17.: Simulation result of major events for Case 4

66

5. CONCLUSION

5.1 Summary

This thesis is an effort to combine lane departure warning and lane keeping assist

functionalities into one system using a Hybrid Petri net. Also, it is an attempt to

simulate the behaviour of the system based on different scenarios. Chapter 1 intro-

duced the concept of Petri nets and how they are used for graphical representation of

dynamic systems. In addition, related work to the modeling approach such as road

traffic, adaptive cruise control and automated parallel parking. The same chapter

described the individual operation of the two systems of interest.

Chapter 2 provided the background on discrete, continuous and hybrid Petri nets.

Examples were presented for all the types mentioned to simplify theoretical notations

and dynamics. The detailed process of modeling was discussed in Chapter 3. Initially,

a flowchart was created to identify the high-level events in the system. Then, the

events were translated into places and transition that made up the initial version of the

discrete Petri net model of the system. Several versions were created after identifying

drawbacks emerged one after the other. Once the drawbacks were resolved, a final

version discrete petri net was integrated with a simple continuous petri net to form

the hybrid petri net model. Four scenarios were made and the expected behaviour

was discussed in detail.

The final Petri net models were tested using MATLAB in Chapter 4. Firstly, the

final discrete Petri net model was tested by created an algorithm on MATLAB to

determine the reachable states of the system for all the cases. Then, an embedded

tool, called PN Toolbox, was used to generate the coverability tree to support and

verify the results from the algorithm. The chapter concludes with simulating hybrid

Petri net model using SimHPN, another embedded tool, and justified the expected

67

behaviour. Overall, this thesis has aimed to demonstrate the practical applications

of the modeling approach. In particular, hybrid Petri nets are a very useful tool for

modeling and analysis for the study of complex dynamic systems, specifically road

and vehicle safety systems. Further control algorithms can be added to improve such

systems to reduce road accidents and promote safer driving experience. Potentially,

this type of approach can be used to assess most control systems. Troubleshooting

and debugging algorithms and simulation can be made simpler through this graphical

representation.

5.2 Future Work

This thesis has opened several areas of future work to further improve the system’s

functionality. At the beginning, the assumptions before modeling included a straight

and even road with a straight-line driving condition. New variables for uneven and

curved roads can be incorporated for real-life driving. With the fast-paced progress

on technology, the concept of vehicle-to-vehicle communication can be adapted to the

model. This will help replace redundant functionalities and reduce the size of the

model. Another direction to expand the work is in relation to the current sensors

used. Sensor measurements such as steering angle, speed and lateral position can

be converted to continuous places and transitions to improve the decision-making

process of the system. This will introduce more detailed scenarios to improve the

simulations.

In relation to improving the model itself, a control strategy can be implemented.

This aims to resolve conflicts between multiple enabled transitions. Also, it may be a

new Petri net controller or adding decision transitions in the existing model. Lastly,

the model can be converted to timed hybrid Petri nets or probabilistic Petri nets.

These types would account for timed firing of transitions and the probabilities of

events. Not only will these recommendations improve the functionality, but also they

are geared towards system optimization.

REFERENCES

68

REFERENCES

[1] H. Takahashi and K. Kuroda, “Intelligent vehicle control considering driver’s
visual perception,” Proceedings 199 IEEE/IEEJ/JSAI International Conference
on Intelligent Transportation Systems, 1999.

[2] W. Reports, “Advanced driver assistance systems market 2018 global analysis,
opportunities and forecast to 2023,” (Last Date Accessed: 4 February 2019).
[Online]. Available: https://bit.ly/2IotGEA

[3] Z.-L. L. Li-Gui Zhang and Y.-Z. Chen, “Hybrid petri net modeling of traffic flow
and signal control,” 2008 International Conference on Machine Learning and
Cybernetics, vol. 4, pp. 2304–2308, 2008.

[4] O. Yaqub, “Modeling, analysis, and simulation of two connected intersections
using discrete and hybrid petri nets,” Master’s thesis, Purdue University, Indi-
anapolis IN, 2012.

[5] S. Yazdanpanah and R. Kourdy, “Presenting a model to car collision avoidance
using fluid stochastic petri net,” 2009 WRI Global Congress on Intelligent Sys-
tems, vol. 2, pp. 283–287, 2009.

[6] K. Ramesh, “Modeling and simulation of an automated parallel parking system
using hybrid petri nets,” Master’s thesis, Purdue University, Indianapolis IN,
2015.

[7] S.-S. H. W.-C. K. C.-C. H. Pei-Yung Hsiao, Kuo-Chen Hung and Y.-M. Yu,
“An embedded lane departure warning system,” 2011 IEEE 15th International
Symposium on Consumer Electronics (ISCE), pp. 162–165, 2011.

[8] E. Salari and D. Ouyang, “Camera-based forward collision and lane departure
warning systems using svm,” 2013 IEEE 56th International Midwest Symposium
on Circuits and Systems (MWSCAS), pp. 1278–1281, 2013.

[9] M. G. D. Cualain and E. Jones, “Multiple-camera lane departure warning system
for the automotive environment,” IET Intelligent Transport Systems, vol. 6, pp.
223–234, 2012.

[10] L. L. Yue Dong, Jintao Xiong and J. Yang, “Robust lane detection and track-
ing for lane departure warning,” International Conference on Computational
Problem-Solving (ICCP), pp. 461–464, 2012.

[11] J. G. Jia He, Hui Rong and W. Huang, “A lane detection method for lane depar-
ture warning system,” International Conference on Optoelectronics and Image
Processing, pp. 28–31, 2010.

69

[12] V. Gaikwad and S. Lokhande, “An improved lane departure method for advanced
driver assistance system,” International Conference on Computing, Communi-
cation and Applications, pp. 1–5, 2012.

[13] M. W. Xiangjing An and H. He, “A novel approach to provide lane departure
warning using only one forward-looking camera,” International Symposium on
Collaborative Technologies and Systems, pp. 356–362, 2006.

[14] T. J. Mei Chen and D. Pomerleau, “Aurora: a vision-based roadway departure
warning system,” Proceedings 1995 IEEE/RSJ International Conference on In-
telligent Robots and Systems. Human Robot Interaction and Cooperative Robots,
pp. 243–248, 1995.

[15] H. Takahashi, “Various perspectives for driver support systems in japan,” The
6th International Conference on Soft Computing and Intelligent Systems, and
The 13th International Symposium on Advanced Intelligence Systems, pp. 1627–
1632, 2012.

[16] G. H. Daniel Hoehener and D. D. Vecchio, “Design of a lane departure driver-
assist system under safety specifications,” IEEE 55th Conference on Decision
and Control (CDC), pp. 2468–2474, 2016.

[17] G. L. Abdelhamid Mammeri and A. Boukerche, “Design of lane keeping assist
system for autonomous vehicles,” 7th International Conference on New Tech-
nologies, Mobility and Security (NTMS), pp. 1–5, 2015.

[18] J.-H. W. Jing-Fu Liu and Y.-F. Su, “Development of an interactive lane keeping
control system for vehicle,” IEEE Vehicle Power and Propulsion Conference, pp.
702–706, 2007.

[19] R. David and H. Alla, Discrete, Continuous and Hybrid Petri Nets. New York:
Springer, 2005.

[20] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. New
York: Springer, 2004.

[21] L. R. Jorge Julvez, Manuel Silva and C. Mahulea, “On control of continuous
petri nets,” (Last Date Accessed: 22 February 2019). [Online]. Available:
http://www.diee.unica.it/ seatzu/slides Mahulea.pdf

[22] L. Ghomri and H. Alla, “Modeling and analysis using hybrid petri nets,” Non-
linear Analysis: Hybrid Systems, pp. 141–153, 2007.

[23] R. David and H. Alla, “On hybrid petri nets,” Discrete Event Dynamic Systems:
Theory and Applications, vol. 11, pp. 9–40, 2001.

[24] N. H. T. S. Administration, “Driver assistance technologies,”
(Last Date Accessed: 4 February 2019). [Online]. Available:
https://www.nhtsa.gov/equipment/driver-assistance-technologies

[25] M.-H. M. Cristian Mahulea and O. Pastravanu, “Learning about petri net
toolbox,” 2016, (Last Date Accessed: 20 February 2019). [Online]. Available:
http://www.pntool.ac.tuiasi.ro/help/index.html

70

[26] J. Júlvez, C. Mahulea, and C.-R. Vázquez, “Simhpn: A matlab toolbox for sim-
ulation, analysis and design with hybrid petri nets,” Nonlinear Analysis: Hybrid
Systems, vol. 6, no. 2, pp. 806 – 817, 2012, (Last Date Accessed: 30 January
2019).

