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Abbreviation Full term 

lncRNAs Long non-coding RNAs 

PC  Protein-coding 

BCP-ALL B-cell precursor Acute lymphoblastic leukemia 
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ZUSAMMENFASSUNG 
Einführung: Die B-Vorläufer akute lymphatischen Leukämie (BCP-ALL) ist eine heterogene 

Krebserkrankung mit mehreren definierten Subgruppen. Neue Daten deuten darauf hin, dass lange nicht-

kodierende RNAs (long noncoding RNAs - lncRNAs) eine Schlüsselrolle bei der Entwicklung und 

Progression der BCP-ALL spielen könnten.  Daher führten wir eine Transkriptions- und DNA-

Methylierungsstudie durch, um die lncRNA-Landschaft von drei BCP-ALL-Subgruppen (82 Proben) zu 

charakterisieren und potentielle regulative Konsequenzen zu analysieren. 

 

Methodik: Material wurde zum Zeitpunkt der Erstdiagnose (ID) und im Rezidiv (REL) von erwachenen 

(n = 21) und pädiatrischen (n = 24) BCP-ALL-Patienten entnommen und unter Verwendung von RNA-

Seq und DNA-Methylierungs-Array-Technologien untersucht. Die Subgruppen-spezifischen und 

rezidiv-spezifischen lncRNAs wurden durch differentielle Expressions (DE) Analysen mit LIMMA 

Voom analysiert. Durch die Analyse der Koexpression von lncRNAs mit Protein-kodierenden (PC) 

Genen aus allen Subgruppen schlossen wir unter Verwendung eines ‚Guilt-by-association‘ -Ansatzes auf 

potentielle Funktionen der DE lncRNAs. Zudem haben wir die Subgruppen-spezifischen lncRNAs auf 

einem unabhängigen Datenset von 47 BCP-ALL-Proben validiert. Die epigenetische. Die epigenetische 

Regulation von Subgruppen-spezifischen lncRNAs wurde durch eine differentielle Methylierungs (DM) 

analyse identifiziert. Die Korrelation zwischen DM und DE lncRNAs aus drei Subgruppen wurde 

ermittelt, um den Einfluss der epigenetischen Regulation auf die Expression von lncRNAs zu 

analysieren. 

Ergebnisse: Wir präsentieren eine umfassende Landschaft von lncRNA-Signaturen, die drei molekulare 

Subtypen von BCP-ALL auf DNA-Methylierungs- und RNA-Expressionslevel klassifiziert. Die 

Hauptkomponentenanalyse (PCA) auf den top variablen lncRNAs auf RNA und DNA-

Methylierungsniveau bestätigte eine robuste Trennung von Ph-like, DUX4 und NH-NeH BCP-ALL 

Subtypen. Mit integrativer bioinformatischer Analyse, zusammen 1564 subtyp-spezifische und 941 

rezidiv-spezifische lncRNAs aus den drei Subtypen. Das unüberwachte hierarchische Clustering auf 

diesen Subtyp-spezifischen lncRNAs validierte ihre Spezifität in der unabhängigen Validierungskohorte. 

Unsere Studie zeigt erstmals, dass BCP-ALL-Subtyp-spezifische sowie Rezidiv-spezifische lncRNAs 

zur Aktivierung von Signalwegen wie TGF-β, PI3K-Akt, mTOR und Aktivierung von JAK-STAT-

Signalwegen von DUX4 und Ph-like Subtypen. Endlich wurden die signifikant DM subtyp-spezifische 

lncRNAs profiliert. Darüber hinaus identifizierten wir 23 Subtyp-spezifische lncRNAs, die ein Hypo- 
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und Hypermethylierungsmuster in ihrer Promotorregion zeigen, das signifikant mit ihrer verringerten 

und erhöhten Expression in den jeweiligen Subtypen korreliert. 

Schlussfolgerungen: Insgesamt liefert unsere Arbeit die umfassendsten Analysen für lncRNAs in BCP-

ALL-Subtypen. Unsere Ergebnisse weisen auf eine Vielzahl von biologischen Funktionen im 

Zusammenhang mit lncRNAs und epigenetisch erleichterten lncRNAs in BCP-ALL hin und bieten eine 

Grundlage für funktionelle Untersuchungen, die zu neuen therapeutischen Ansätzen führen könnten. 
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ABSTRACT 
Introduction: B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most prevalent 

heterogeneous cancer in children and adults, with multiple subtypes. Emerging evidence suggests that 

long non-coding RNAs (lncRNAs) might play a key role in the development and progression of 

leukemia. Thus, we performed a transcriptional and DNA methylation survey to explore the lncRNA 

landscape on three BCP-ALL subtypes (82 samples) and demonstrated their functions and epigenetic 

profile. 

Methodology: The primary BCP-ALL samples from bone marrow material were collected from 

diagnosis (ID) and relapse (REL) stages of adult (n = 21) and pediatric (n = 24) BCP-ALL patients, using 

RNA-seq and DNA methylation array technology. The subtype-specific and relapse-specific lncRNAs 

were analyzed by differential expression (DE) analysis method using LIMMA Voom. By analyzing the 

co-expression of the subtype-specific lncRNAs and protein-coding (PC) genes from all subtypes, we 

inferred potential functions of these lncRNAs by applying “guilt-by-association” approach. Additionally, 

we validated our subtype-specific lncRNAs on an independent cohort of 47 BCP-ALL samples. The 

epigenetic regulation of subtype-specific lncRNAs were identified using the Bumphunter package. The 

correlation analysis was performed between DM and DE lncRNAs from three subtypes to determine the 

epigenetically facilitated and silenced lncRNAs. 

Results: We present a comprehensive landscape of lncRNAs signatures which classifies three molecular 

subtypes of BCP-ALL on DNA methylation and RNA expression levels. The principle component 

analysis (PCA) on most variable lncRNAs on RNA and DNA methylation level confirmed robust 

separation of DUX4, Ph-like and NH-HeH BCP-ALL subtypes. Using integrative bioinformatics 

analysis, subtype-specific and relapse-specific lncRNAs signature together determine 1564 subtype-

specific and 941 relapse-specific lncRNAs from three subtypes. The unsupervised hierarchical clustering 

on these subtype-specific lncRNAs validated their specificity on the independent validation cohort. For 

the first time, our study demonstrates that BCP-ALL subtype specific as well as relapse-specific lncRNAs 

may contribute to the activation of key pathways including TGF-β, PI3K-Akt, mTOR and activation of 

JAK-STAT signaling pathways from DUX4 and Ph-like subtypes. Finally, the significantly hyper-

methylated and hypo-methylated subtype-specific lncRNAs were profiled. In addition to that, we 

identified 23 subtypes specific lncRNAs showing hypo and hyper-methylation pattern in their promoter 

region that significantly correlates with their diminished and increased expression in respective subtypes. 
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Conclusions: Overall, our work provides the most comprehensive analyses for lncRNAs in BCP-ALL 

subtypes. Our findings suggest a wide range of biological functions associated with lncRNAs and 

epigenetically facilitated lncRNAs in BCP-ALL and provide a foundation for functional investigations 

that could lead to novel therapeutic approaches. 
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Chapter 1. Introduction 

1.1  History of long non-coding RNAs (lncRNAs) 

The flow of genetic information through and by messenger Ribonucleic acid (mRNA) came into light 

through the paper “Genetic Regulatory Mechanisms in the Synthesis of Proteins,” in 1961 (Jacob & 

Monod, 1961). Since then, a myriad of studies discovered a large variety of RNA of different size and 

shape (Figure 1.2.1). Jacob & Monod postulated in their paper that lncRNAs resemble mRNA, yet they 

do not encode protein. Instead, lncRNAs facilitate a wide variety of mechanisms which regulate the 

production of gene products such as other RNAs or proteins. Today, lncRNAs have emerged as a critical 

layer in the genetic regulatory code. Proceeding studies and biochemical experiments were able to 

characterize the abundant structure and regulatory RNAs by locating their cellular localization and 

sequence similarity. Genetic studies identified a few lncRNAs involved in genomic imprinting and other 

cellular processes. For example, XIST, H19 and AIR (Rinn & Chang, 2012). Collectively, all these 

classical studies identified a diverse range of RNA, but they only superficially looked on the cell surface 

for functions of all those identified RNAs. 

1.2  Definition of lncRNAs 

The new century has started with the completion of the Human genome project and discovered numerous 

new RNA encoding genes but no new protein-coding genes, which revealed a biological mystery about 

human genome: The human genome comprises only about 2% of protein-coding genes, and the rest is 

non-coding RNAs. The non-coding RNAs are subdivided into two types, small non-coding RNAs and 

long non-coding RNAs (lncRNAs). The small non-coding RNAs are microRNAs and other RNAs. The 

lncRNAs were defined as RNA genes >= 200 base pair (bp) in length and either no or short open reading 

frame (ORF). The definition is somewhat arbitrary because some small regulatory RNAs are higher than 

200 nucleotides in length. Although this definition is arbitrary, the threshold separates lncRNAs from 

other small regulatory non-coding RNAs such as microRNAs (miRNAs) or Piwi-associated small RNAs 

(piRNAs) (Encode & Consortium, 2007). 
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The advent of full genome sequencing enabled prospecting for new “genes”, which surprisingly led to 

the discovery of more RNAs than protein-coding genes. For instance, the number of human microRNAs 

(miRNAs) quickly increased from a few to nearly thousands. Transcriptome analysis by arrays and RNA 

sequencing (RNA-Seq) studies have demonstrated that a significant portion of the transcriptome consists 

of lncRNAs. However, by the discovery of next-generation technologies the scenario has been changed, 

and now lncRNAs are being studied widely on both molecular and genetic level because of their 

significant functions in a variety of disease and normal tissues/cells. 

 

1.3  Genomic features and classification of lncRNAs 

Most, but not all lncRNAs are transcribed by RNA polymerase II and are capped and polyadenylated at 

their 5′ and 3′ ends respectively (Rinn & Chang, 2012). LncRNAs are often defined by their location in 

the genome. Most of them are found near protein-coding (PC) genes, e.g. within exons of PC genes, 

introns of genes, and in intergenic regions. The classification of lncRNAs based on their anatomy in the 

genome. The biotypes of lncRNAs are, antisense, the lncRNAs that overlap PC genes in the opposite 

strand, sense intronic lncRNAs that are encoded within introns of PC genes, and sense overlapping 

lncRNAs are termed based on their transcripts overlapping PC genes. The lncRNAs located between PC 

genes are named long intergenic non-coding RNAs (lincRNAs) (Figure 1.3.1) (Atianand & Fitzgerald, 

2014). Most of the lncRNAs have multiple exons and are subjected to alternative splicing, but they have 

fewer exons than PC genes. 

 

Figure 1.2.1: The time flow of the lncRNAs discovery. 

The figure represents the discovery flow of lncRNAs from the time when nucleic acid was discovered until 2011. 

Adapted from (Rinn & Chang, 2012). 
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1.4  Identification of lncRNAs 

Currently, there are no standard criteria for identification of lncRNAs and most researchers use arbitrary 

thresholds to define lncRNAs. A widely accepted definition is based on the ORF size and was defined 

by the FANTOM (Functional Annotation of Mouse) project where they defined a threshold of 100 

codons, to separate lncRNAs from other mRNAs genes (Kawai et al., 2001). However, the classification 

criteria of lncRNAs are straightforward and practical; they are subject to false positives and false 

negatives. For example, the XIST lncRNA in the murine cell line is approximately 15kb in size and 

contains 298 amino acids in ORF, which were mistaken for the protein-coding genes (Borsani et al., 

1991). Various approaches can be applied to rationalize this problem. 

The task of defining and annotating or separating lncRNAs from mRNAs is complex and suffers from 

the lack of specific defining criteria. The methods including machine learning approach and sequence 

conservation methods sonly provides an estimate of the likelihood that an RNA sequence is coding or 

non-coding. Such a dichotomous classification into mRNAs and lncRNAs might have little biological 

relevance as there isn’t necessarily a clear distinction between the two classes. In a real-world point of 

view, the fact that RNAs with an exclusive coding or non-coding function are only the two extremes of 

a continuous process. Therefore, a definitive answer for coding and non-coding potential can only be 

observed by investigating the proteome experimentally in the wet lab. 

 

Figure 1.3.1: The classification of lncRNAs. 

The anatomical definition of long non-coding RNAs (lncRNAs), based on their location within transcriptome. The 

diagram represents, lincRNA, intronic, Antisense and sense overlapping lncRNAs. This diagram is adapted from 

(Atianand & Fitzgerald, 2014). 
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1.5  Technologies used in the identification of lncRNAs 

Identification of lncRNAs are based on all the transcripts obtained from the cell including coding, non-

coding, and mRNAs isoforms. Advanced microarray technologies and RNA-Seq can be used for 

identifying lncRNAs within the cell. RNA-Seq, in contrast, is not only limited to the identification of 

known lncRNAs but also novel unannotated lncRNAs. 

1.5.1  Microarray technologies in lncRNA identification 

Conventional microarray technologies use predestined probes to find the expression level of mRNA 

transcripts and are not able to identify new lncRNAs. Nevertheless, it has been found that a few 

previously defined probe sequences are lncRNAs; therefore, microarray data analysis requires re-

annotation of the probes in order to study the expression of lncRNAs. New specific probes for lncRNAs 

can be designed with the discovery of new and more lncRNAs. For example, some study groups designed 

probes matching conserved regions (intergenic and intergenic region) to identify potential non-coding 

RNA (nc-RNA) transcripts (Babak, Blencowe, & Hughes, 2005). However, micro-arrays are limited due 

to the low expression level of many lncRNAs. 

1.5.2  RNA-Seq in identification of lncRNAs 

The arrival of the deep sequencing technology led to the ability to sequence cDNA (derived from RNA), 

using the technology called RNA-seq, a high throughput and dynamic sequencing method with the 

unparalleled scale of data production. These approaches have been coupled to computational methods 

allowing the reconstruction of transcripts and their isoforms at single nucleotide resolution (Trapnell, 

Pachter, & Salzberg, 2009). The studies have provided an unbiased identification of non-coding 

transcripts across many cell types and tissues (Guttman et al., 2010). RNA-seq is widely used for 

discovery of novel transcripts and gene expression analysis. Advancement of RNA-seq, allowed 

consortia to define all the transcribed genes in the genome and to release broad catalogs. For instance, 

the GENCODE project released one of the complete evidence-based human reference genomes based on 

RNA-seq analysis on multiple cell types. The catalog consists of more than 15787 lncRNAs in the latest 

version (GRCh38) (Mudge & Harrow, 2015). 

RNA-Seq has many advantages in studying gene expression, compared to microarray. RNA-seq more 

sensitive in detecting less-abundant transcripts, identifying novel alternative splicing isoforms and novel 

nc-RNA transcripts. Alternative splicing (AS) is a process by which exons or portions of exons or non-

coding regions within a pre-mRNA transcript are differentially excluded or included, resulting in multiple 

RNA isoforms being encoded by a single gene on the DNA. Taking advantage of the ever-increasing 
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depth of sequencing and read lengths has allowed some of the first steps towards characterizing lncRNAs 

on a global scale. RNA sequencing has been utilized to estimate transcript abundance and to identify 

specific properties of distinct classes of large RNA genes in order to catalog them in a functional atlas by 

incorporating novel lncRNAs (Iyer et al., 2015). For example, a recent study identified 8,000 large 

intergenic non-coding RNAs (lincRNAs) in the human genome by integrating numerous annotation 

sources in combination with RNA sequencing (Arrial, Togawa, & Marcelo, 2009). This study revealed 

several global properties of lncRNAs, including investigating tissue-specific expression patterns, 

determining thousands of orthologous lincRNAs between human and mouse, and locating lncRNAs in 

gene deserts (the regions in the genome without any protein-coding genes) associated with the genetic 

trait. RNA-seq is now the gold standard method to discover lncRNAs, but a significant challenge with 

these data is their interpretation. Sequence reads commonly harbor multi-mapping potential, especially 

for lncRNAs whose DNA sequence is overall less conserved and harbors a higher degree of repetitive 

elements. Thus, stringent filtration and rigorous analysis are required to eliminate spurious transcripts. 

Other methods to identify lncRNAs and characterize their function, are: RNA immunoprecipitation (RIP) 

sequencing, RIP-Seq is a protein centric approach used to find the association of specific protein with 

RNAs or non-coding RNAs, which uses a protein as bait to pull-down RNAs. However, the RIP-Seq 

approach has its limitations, for example, the task of differentiating the direct or indirect interactions 

between protein and RNA is difficult. In addition to that, the read length of associated RNAs are too large 

for identifying the actual binding sites. Finally, the assays used for RIP-Seq technology are known for 

having variability. Thus, multiple biological replicates are necessary. 

1.6  Functions of lncRNAs 

In contrast to the significant progress made in identifying and classifying lncRNAs, the functional role 

and mechanisms of lncRNAs remained mostly unknown. However, during the last decade, researchers 

investigating the role and functions of lncRNAs have exceedingly increased and made clear that 

lncRNAs have a broad spectrum of specific functional features in various biological processes. By now 

it is clear that some of these lncRNAs participate in various biological processes such as regulation of 

gene expression both in cis and trans, genome imprinting, X-inactivation, development, differentiation, 

and cell cycle regulation (Kitagawa, Kitagawa, Kotake, Niida, & Ohhata, 2013). 

As of 2016, a literature-based lncRNAs database called lncRNAdb has shown 294 functionally annotated 

lncRNAs (Amaral, Clark, Gascoigne, Dinger, & Mattick, 2011). Below, I summaries the different types 

of functions carried out by lncRNAs using representative examples. 
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1.6.1  LncRNAs regulates the expression of their cis genes 

LncRNAs exert their functions mainly in combination with co-expressing with their nearby (cis) and 

distant (trans) protein-coding genes (Guil & Esteller, 2012) (Ali et al., 2018). LncRNAs interact with 

genes in the same genomic loci are termed as cis-lncRNAs, while trans acting lncRNAs interact with 

genes on same or on different chromosomes. Recently, there were several reports of lncRNAs co-

expression with its nearby protein-coding genes in several diseases and differentiation stages (Delás & 

Hannon, 2017). The cis-regulatory lncRNAs are mainly transcribed from the same promoters and 

enhancers of protein-coding genes, as well as from the antisense transcripts. Among these, antisense 

lncRNAs are epitomized due to their transcription regulatory activity at the cis region. Reports from 

FANTOM consortium suggested about 20% of transcribed PC gene has antisense lncRNAs (Kiyosawa 

et al., 2003). The antisense lncRNAs exert their function on their corresponding sense PC by influencing 

their genes expression at different levels, including transcriptional interference, and translation 

regulation. The following are a few examples of cis-regulatory lncRNAs. 

Transcriptional interference: Transcriptional interference is mainly through epigenetic interaction, and 

through impacting PC genes. One of the best-studied examples is the antisense lncRNA ANRIL, which 

contributes to cancer initiation by reducing senescence through protein interaction contributing to the 

repression of tumor suppressor genes. For example, ANRIL is encoded by CDKN2B-AS1 which is 

expressed at the CDKN2B-CDKN2A gene-cluster locus. The CDKN2B-CDKN2A gene-cluster locus 

encodes three major tumor suppressor genes, P14, P15 and P16, whose expression is subject to Polycomb 

group protein control. The antisense ANRIL has been shown to interact with the CBX7 protein, which is 

a component of the polycomb receptor factor 1 (PRC1), which can recognize H3K27me3 repressive 

marks on the genome. The CBX7 protein uses different regions within its domain for binding to 

H3K27me3 and antisense ANRIL; reports suggest that both interactions are important for sustained 

repression of the CDKN2B-CDKN2A gene-cluster locus (Qiu et al., 2016). 

Translational regulation: Antisense lncRNAs exert their functions as a translational control over the 

sense region of PC genes. For example, the antisense lncRNA BACE1-AS, increases the stability of its 

sense PC gene BACE1 through the formation of RNA duplex in the ~100-nt region. Antisense lncRNA 

BACE1-AS acts as a positive regulator of BACE1 protein by preventing the mi RNA-induced silencing. 

BACE1 is a protein being present at higher levels in brains of Alzheimer's patients (Faghihi et al., 2008). 

On the other hand, the trans-acting lncRNAs may act as signals, guides or scaffolds to chromatin to 

regulate the expression of target genes located in the distant chromosomal domains or even at different 

chromosomes. The following session describes the functional properties. 
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1.6.2  Transcriptional regulatory functions of lncRNAs in trans region 

The actual transcriptional regulatory functions of lncRNAs remain mostly unknown. Currently, based on 

the evidence and functionally characterized lncRNAs, the transcriptional regulation of lncRNAs serve 

mainly as a signal, decoy, guide, scaffold, and enhancer during the transcriptional process (Ma et al., 

2012). 

Signal: The transcription of individual lncRNAs occurs at a particular time and place to incorporate 

developmental evidence, interpret cellular context, or respond to diverse stimuli. Thus, the lncRNAs can 

serve as molecular signals at the transcription process (Figure 1.6.1 A). 

Decoy: The lncRNAs are capable of acting as decoys to DNA-binding proteins such as transcription 

factors, chromatin modifying proteins or enhancers (Groen, Capraro, & Morris, 2014). The mode of 

action is mainly through the sequence homology to the target gene, such as these lncRNAs can prevent 

and bind their interaction with target genes by acting as bait to their specific effector proteins (Figure 

1.6.1 B). 

Guide: These lncRNAs guide the localization of ribonucleoproteins to specific target sites (Figure 1.6.1 

C). 

Scaffold: LncRNAs act as a scaffold by interacting with multiple components and activate or repress 

transcription. LncRNAs can bind with two or more protein partners, in which lncRNAs serve as a device 

to form functional protein complexes (Figure 1.6.1 D). 

Enhancer: Using chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq), it has 

shown that gene-activating enhancers give rise to lncRNA transcripts, known as enhancer RNAs (Visel 

et al., 2009). In addition to that, their expression level positively correlates with that of nearby PC genes, 

predicting that lncRNAs are more likely to regulate mRNA synthesis. Along the same line, another Loss-

of-Function study found that of 7 out of 12 lncRNA knockdowns affects the expression of their 

neighboring primal genes (Ørom et al., 2010). The lncRNAs also function as an activator of nearby genes 

via their “enhancer” function. These lncRNAs are from other genomic regions than enhancers which are 

called as enhancer RNA-like (eRNA) lncRNAs (Figure 1.6.1 E). 
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1.7  Epigenetic gene regulation 

The most studied lncRNAs expression regulation is on the epigenetic level (C. Wang et al., 2017). 

Epigenetic modification is heritable changes in genome leading to change in gene function without 

changing DNA sequences. As RNA is an integral component of chromatin, many regulatory lncRNAs 

can function by interacting with chromatin modifiers and re-modelers to change the epigenetic status of 

the target gene. Chromatin modification is one of the epigenetic processes, in which the chromatin 

architecture is modified. The modification is to allow access of condensed genomic DNA to the 

regulatory transcription machinery proteins, and thereby control gene expression. Rising information 

 

Figure 1.6.1: Molecular functions of lncRNAs 

A. Signal: The figure shows the lncRNA KCNQ1OT1 which induces transcriptional silencing by recruiting histone-

lysine N-methyltransferase (EHMT2) and polycomb repressive complex 2 (PRC2) to a specific active site through 

chromatin methylation. B. Decoy: In the figure, alternative splicing is regulated by the lncRNA MALAT1 by trapping 

the serine and arginine amino acid residues (SR, proteins involved in RNA splicing). C. Guide: FENDRR either 

silences or activate gene expression by forming a complex with PRC2 and with TrxG/All proteins respectively. D. 

Scaffold: Chromatin methylation is modulated by CDKN2B-AS1 (also known as ANRIL) by binding to PRC1 and 

PRC2. E. Enhancer lncRNAs acts through chromosomal looping by an interaction between enhancer and promoter 

regions of genes, and it modulates target gene expression. Abbreviations: HxKy, histone (number x) lysine (number 

y); TrxG/Mll, trithorax-group/mixed lineage leukemia. Figure adapted from (Devaux et al., 2015). 



 

 

9 

 

convey that some lncRNAs ‘guide’ chromatin-modifying complexes (Khalil et al., 2009) as well as other 

nuclear proteins to specific genomic loci to utilize their effects (P. Han & Chang, 2015). Critical 

epigenetic regulations of lncRNAs are highlighted in the following session. 

1.7.1  LncRNAs involved in chromatin-modifications 

Many lncRNAs were initially characterized based on their repressive functions, including ANRIL, 

HOTAIR, H19, KCNQ1OT1, and XIST (Bhat et al., 2016). The repressive function of these lncRNAs is 

achieved by coupling with histone modifying or chromatin re-modeling protein complexes. The most 

common chromatin modifying complexes coupled with these lncRNAs are the polycomb repressive 

complexes 1 and 2 (PRC1 and PRC2). These complexes facilitate the chromatin compaction and 

heterochromatin formation in order to enact repression of gene transcription by transferring repressive 

post-translational modifications to specific amino acid positions on histone tail proteins. (Leeb et al., 

2010). 

Nearly 20% of lncRNAs are estimated to bind with PRC2 (Khalil et al., 2009). However, the biological 

meaning of this observation is not yet clear, it is possible for PRC2 to bind promiscuously with lncRNAs 

in a non-specific way. Nevertheless, if lncRNAs are predominantly functioning in the cis-regulatory 

mechanism, then the PRC2 binding is to facilitate local gene expression through the genome. Examples 

of these category lncRNAs include ANRIL and XIST. Likewise, PRC1 proteins, especially 

heterochromatin protein 1 (or CBX) proteins, have been involved in ncRNA-based biology. 

1.7.2  LncRNAs in genomic imprinting and X chromosome inactivation 

Genomic imprinting is an epigenetic phenomenon where epigenetic marks at specific loci are set, based 

on the sex of the parent of origin of the chromosome, and usually leads to expression of genes from only 

one chromosome. The transcription and post-transcription-based gene regulation by lncRNAs can be 

studied using genomic imprinting. In addition to that, reports suggest that imprinted lncRNAs may fine-

tune gene expression of protein-coding genes to maintain their dosage in the cell (Kanduri, 2015). The 

XIST lncRNA is one of the classical examples in chromatin modifying lncRNAs. The lncRNA XIST 

mediates the chromatin regulation leading to the X chromosome dosage compensation in mammals. 

Briefly, dosage compensation refers to the process of equalizing the gene expression level of two X 

chromosome in the female cell to the single X in male cells (Brockdorff & Turner, 2015). 

1.8  DNA Methylation and lncRNAs 

DNA methylation is a fundamental form of epigenetic modification and serves multiple significant 
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functions, such as repression of gene transcription, maintaining genomic integrity, establishing, and 

repression of transposable elements (Moore, Le, & Fan, 2013). DNA methylation involves the addition 

of methyl group to cytosines. The genome contains CpG-rich regions, known as CpG island, which is 

often located at the promoter and first-exon regions. Usually, these regions are un-methylated, but when 

they are methylated, it blocks the transcription of related genes. LncRNAs have recently discovered as 

novel regulators of gene expression at the epigenetic level (Y. Zhao, Sun, & Wang, 2016). There are 

emerging evidence establishing the interplay between lncRNAs and DNA methylation (Y. Zhao et al., 

2016). Recent studies have demonstrated several similarities in the methylation dynamics between 

protein-coding genes and lncRNAs, including, the TSS methylation distribution, relationship between 

promoter and gene expression (Li et al., 2017). One of the critical steps in epigenetic regulation during 

standard development programs is the establishment and maintenance of methylation patterns resulting 

in modulation of gene expression. Such processes are facilitated by several DNA methyltransferases 

(DNMTs). A recent publication from Chalei and colleagues reports one such example lncRNA which 

they demonstrated the lncRNA termed as Dali. The lncRNA Dali is expressed in the central nervous 

system. This lncRNA is essential for neural differentiation and to regulate neural gene expression 

partially through interacting with DNMT1 (Chalei et al., 2014). This interaction then affects DNA 

methylation at distal target promoters. 

In addition to the functions mentioned above, another molecular mechanism of lncRNAs are, they are 

highly tissued specific compared to PC genes (K. C. Wang & Chang, 2011). Recently, research groups 

have been studying the expression of lncRNAs in the global remodeling of the epigenome and during 

reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). The study revealed certain 

lncRNAs have high cell specificity regarding gene expression (Huo & Zambidis, 2013). Another study 

on loss-of-function of most lincRNAs expressed in mouse embryonic stem (ES) cells showed that the 

knockdown of lincRNAs has a major outcome on gene expression patterns, which are equal to the effects 

of knockdown of known ES cell regulators (Guttman et al., 2011). These studies prefigured that lncRNAs 

might play significant roles in regulating the developmental process. Off late, the ENCODE project 

analysed 31 cell types for finding the tissue specificity of lncRNAs, and they found that many lncRNAs 

have specific expression pattern in brain cells (Quan, Zheng, & Qing, 2017). The emerging lines of 

evidence suggest that any dysregulation of these lncRNAs expression can be linked to a variety of human 

diseases from neuron diseases to cancer or tumours (Tang et al., 2013). All these studies indicate the 

involvement of lncRNAs in human diseases can be more dominant than thought before. 
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Though considerable research development has been made since the discovery of lncRNAs, the challenge 

to elucidate the functions of lncRNAs remains. Unlike PC genes whose mutation would bring a drastic 

change in the phenotype, mutations in lncRNAs often do not cause a significant phenotype (Mattick, 

2009). Also, another cause to it is that lncRNAs are more likely to function at a specific condition or 

specific developmental process, and so condition-specific studies of lncRNAs are necessary. With the 

massive amount of omics data, described lncRNAs are accumulating, and therefore for their functional 

predictions, computational approaches have been used to design the experimental studies and brisken the 

understanding of lncRNAs. 

1.9  LncRNAs in cancer 

Cancer is one of the leading causes of death around the world, which is about for 8.8 million (World 

health organization, WHO) in 2015. Understanding the underlying causes of cancer has drastically 

changed over the last decade. The progress in sequencing technologies has shown that cancer-associated 

loci cannot only be in protein-coding regions, but also in non-coding regions (Schmitt & Chang, 2016). 

LncRNAs are studied widely in solid tumors, especially in breast cancer (Soudyab, Iranpour, & Ghafouri-

Fard, 2016; Xu, Kong, Chen, Ping, & Pang, 2017). In breast cancer, the over expression of lncRNAs 

HOTAIR promotes the metastasis by epigenetically silencing the developmentally essential genes in the 

HOXD cluster (Gupta et al., 2010). LncRNAs are thus known as the functional transcripts which add on 

to the significant characteristics of cancer, and therefore they can be potential therapeutic targets. The 

comprehension of lncRNAs with the development of sequencing technologies has enabled lncRNAs in 

detailing their expression, function, and distribution in the human genome. 

By now, we know that lncRNAs are a highly heterogeneous group of transcripts, which modulate gene 

expression using different mechanisms. Accordingly, some of them are found to be differentially 

expressed in various solid cancers, and they are directly linked to the conversion of healthy cells into 

tumor cells and thus represent an important factor of tumor biology. 

1.10  Hallmarks of cancer 

According to Hanahan and Weinberg, in their paper, “The hallmarks of cancer.” they proposed six 

hallmarks which collectively contribute towards the fundamental principle of malignant transformation 

(D Hanahan & Weinberg, 2000). These basic hallmarks are: 

• Self-sustained growth signalling 
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• Insensitivity to growth inhibition 

• Avoiding apoptosis 

• Uncontrolled proliferation 

• Promotion of angiogenesis 

• Tissue invasion and metastasis 

Two additional emerging hallmarks according to 2011, are the capability to modify or reprogram, cellular 

metabolism in order to most effectively support neoplastic proliferation. The second one is cancer cells 

to evade immunological destruction, in particular by T and B lymphocytes, macrophages, and natural 

killer cells (Douglas Hanahan & Weinberg, 2011). 

1.11  LncRNAs in cancer hallmarks 

Self-sustained growth signaling: LncRNAs promote self-sufficiency by activating/stabilizing the 

expression of growth factor receptors thereby enhancing signal transduction in response to the growth 

signals/ factors. There are multiple lncRNAs serve as receptors. For example, lncRNA SRA, serves as a 

scaffold to stabilize estrogen receptor (Lanz et al., 1999). In addition to activating signal receptors, some 

lncRNAs affect proliferation by regulating receptor abundance lncRNA, for example, lncRNA PVT1 

(Zhou, Chen, Feng, & Wang, 2016). 

Insensitivity to growth inhibition: LncRNAs can regulate growth inhibition mostly by influencing the 

tumor suppressor genes that regulate cell cycles such as cyclins, CDK inhibitors, and tumor suppressor, 

P53 (Kitagawa et al., 2013). The process is mainly by repression of the transcription through PRC 

complex. Certain other lncRNAs regulate the expression of tumor suppressor gene by influencing various 

parts of transcription and translation. The scaffolding of transcriptional factor complexes can influence 

transcription initiation. Finally, the transcript stability and translation can be modulated post-

transcriptionally by reducing the role of miRNAs. For example, PTENP1 is acting as competitive 

endogenous RNA to inhibit miRNAs repression of PTEN, tumor supressor gene (L. Yang, Wang, Shen, 

Feng, & Jin, 2017). 

Avoiding apoptosis: Apoptosis refers to the controlled cell death, one of the key pathways to control in 

carcinogenesis. Reports showed that some lncRNAs act on regulation of transcription of the essential 

apoptosis gene. LncRNA INXS is an example, it is expressed from the intron of B-cell lymphoma-extra 

large (BCL-X, is an anti-apoptotic protein) gene and regulates its splicing into a pro-apoptotic isoform 
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BCL-XS (Deocesano-Pereira et al., 2014). Another discovery is lncRNA PRAL, which induces apoptosis 

by stabilizing the complex between heat shock protein 90 (HSP90, assist protein to fold correctly) and 

P53. However, their mechanism of action remains unknown. 

Uncontrolled proliferation: Proliferation is the potential of cancer cells for limitless replication. The 

maintenance of telomeres as nucleo-protein structures that stabilizes ends of chromosomes is a key factor 

for the proliferation of cancer cells. In the dividing cells, the telomeres shorten, so it takes a 

ribonucleoprotein complex telomerase to elongate the telomeric repeats through reverse transcription of 

an internal template RNA. The shortening of telomeres induces the production of lncRNA Telomere 

repeat-containing RNA (TERRA) (Redon, Reichenbach, & Lingner, 2010), which is transcribed from the 

sub-telomeric regions. Under normal conditions, TERRA inhbit its own expression through chromatin 

modifications, but recruits protein complexes for homology-directed repair of shortened or damaged 

telomeric sequences when activated. 

Promotion of angiogenesis: Angiogenesis is the process of formation of new blood cells from existing 

ones. Angiogenesis can be a support for tumor cells to grow and migrate (Folkman, 1974). There are a 

few lncRNAs which regulate nutrient supply to tumor, mostly by regulating the expression/ function of 

VEGF (vascular endothelial growth factor), which is essential for the production of blood vessels. 

LncRNAs MIAT are reported to transcriptionally regulate VEGF. Knockdown of MIAT showed that it is 

required for the repression of VEGF, which resulted in microvascular dysfunction and decreased 

metastasis (B. Yan et al., 2015). 

Tissue invasion and metastasis: Metastasis is the process by which cancer cells spread to distant parts 

of the body from its tissue of origin. Several reports showed that multiple lncRNAs increase the capacity 

of the cancer cell to invade new sites and therefore facilitate metastasis. MALAT1 is an example lncRNA 

which facilitates the invasiveness of cancer cells in colorectal and nasopharyngeal carcinoma (M. H. 

Yang et al., 2015). Other example is, lncRNA, lincRNA-RoR which acts as a “sponge” for miR-145 

which regulates ADP-ribosylation factor 6, a protein involved in the invasion of breast cancer cells 

(Eades et al., 2015). 

1.12  Translational Implications of lncRNAs in cancer 

Cancer therapy is facing the challenge of cancer cell specificity and delivering anti-cancer drugs without 

interfering with normal cells functions. Profiling the differential abundance of lncRNAs may assist 

cancer diagnosis and prognosis and furnish useful information regarding potential therapeutics (Qi & 
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Du, 2013). Moreover, lncRNAs are detectable from minute amounts of biological fluids like urine, blood 

and serum using qRT-PCR amplification making it as a diagnostic marker (Geng, Xie, Li, Ma, & Wang, 

2011). For example, the highly up-regulated in liver cancer hepatocarcinoma-associated lncRNA 

(HULC) can be readily detected in the blood of HCC patients using qRT-PCR (Panzitt et al., 2007). 

Another example is PCA3, is a lncRNA that is prostate-specific and markedly over expressed in prostate 

cancer. Although its biological function is unclear, lncRNA PCA3 can be utilized as a biomarker in 

diagnostic assays for prostate cancer (Van Gils et al., 2007). 

Finally, lncRNAs are an attractive therapeutic option considering their tissue-specific or cell-specific 

expression pattern. For example, the expression of the lncRNA, H19 elevated in a wide range of human 

cancers. A plasmid, BC-819 (DTA-H19), has been developed to make use of this tumor-specific 

expression of H19 (Smaldone & Davies, 2010). Intra-tumoral injections of this plasmid induce the 

expression of high levels of diphtheria toxin specifically in tumor, resulting in tumor size reduction in 

human trials. Recent studies have yielded promising results in a wide range of solid cancers including, 

colon, and bladder, pancreatic and ovarian cancers. Therapeutic application of lncRNAs provides an 

attractive treatment prospect, although still more intensive research is required. The current era of 

lncRNA research is giving rise to a new field within the biology of hematopoiesis and blood diseases. 

1.13  Leukemia 

Leukemia is mainly diagnosed based on the number of blasts typically quantified by blood tests. The 

exact cause of leukemia is still unknown. However, it seems to develop from a combination of genetic 

and environmental factors. Studies indicate both inherited, and environmental factors are involved in the 

formation of leukemia. 

Acute leukemia is a type of leukemia occurring mostly in bone marrow characterized by the massive 

accumulation of immature white blood cells. These immature white blood cells are also known as blasts 

or leukemic cells. For instance, the risk factors are smoking, ionizing radiation, prior chemotherapy, and 

Down syndrome. The environmental factors including, artificial ionizing radiation, chemicals and 

smoking influences the genome which leads to different genetic factors leading to leukemogenesis. The 

genetic factors of leukemogenesis are described in the following session. 

1.13.1  Leukemogenesis 

The occurrence of leukemia is due to the uncontrolled proliferation of hematopoietic stem cells in the 

bone marrow when there is an alteration in normal cell regulatory processes (Davis, Viera, & Mead, 
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2014). The most common alterations in genes regulating blood cell development or homeostasis are the 

following: 

DNA translocations: Translocations means that a part of one chromosome breaks off and becomes 

attached to a different part of the same chromosome or in a different chromosome altogether.  

Inversions, or deletions: The deletions of the transcription factors which are essential for the normal 

hematopoietic development. Hematopoietic development is a normal process of immature blood cell 

development into all type of mature blood cells, including white blood cells, red blood cells, and platelets. 

For example, deletion of IKZF1, which is linked to crucial function in hematopoietic system its loss of 

function leads to lymphoid leukemias. 

Mutations: The alteration of the nucleotide sequence of the genome. In leukemogenesis, two types of 

mutations must occur for leukemia formation one is, a mutation which improves hematopoietic cells 

ability to proliferate which includes FLT3 and KIT. The second type is a mutation that prevents the cells 

from maturing including CBFB-MYH11. 

1.13.2  Major types of Leukemia 

Based on the type of bone marrow cells that are affected, leukemia can be classified into different types 

(Table 1.13.1). Leukemia can arise in two different types of white blood cells, myeloid and lymphoid 

white blood cells. When leukemia is affected in lymphoid precursor cells it is called acute lymphoblastic 

leukemia, and when affected in myeloid cells, it’s classified as myeloid leukemia. 

Table 1.13.1: The types of leukemia 

Types of leukemia Definition 

Acute Myeloid Leukemia (AML) AML arose from immature myeloid cells. Myeloid cells are the cells that 

make white blood cells (other than lymphocytes), red blood cells, 

megakaryocytes (platelet-making cells). 

Acute Lymphocytic Leukemia (ALL) ALL arises from the immature forms of lymphocytes, thus known as 

lymphoid or lymphoblastic leukemias. This is one of the most common 

leukemia in children and affects adults. 

B-cell Acute Lymphoid Leukemia 

(BCP-ALL) 

BCP-ALL is a heterogeneous disease associated with different patterns 

of molecular changes including protein fusions, mutations and copy 

number variations 

T-cell precursor lineage (T-ALL) T-ALL is biologically distinct from its counterpart, B-ALL. T-ALL 

shows a different dynamic form of disease response. 

Chronic Myelogenous Leukemia CML is defined by increased proliferation and differentiation of the 
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(CML) granulocytic cell line. It is a myeloid proliferative disorder. 

Chronic Lymphocytic Leukemia 

(CLL) 

 CLL often occurs in adults above or equal to 55 years old. In very few 

cases it affects young adults. 

Table 1.13.1: The table contains the different types of leukemia based on their lineage and the pace of occurrence 

(Vardiman et al., 2009). 

1.14  B-cell Acute Lymphoid Leukemia (BCP-ALL) 

The present thesis is focused on B-cell based acute leukemia affecting the lymphoid cell, B-cell precursor 

ALL. B-cell precursor acute lymphoblastic leukemia (BCP-ALL) remains a major cause of death in 

pediatric patients. BCP-ALL is a heterogeneous disease associated with different patterns of molecular 

changes including protein fusions, mutations and copy number variations. The major chromosomal 

alterations are aneuploidy, the abnormal number of chromosomes, and chromosomal rearrangements, 

which results in oncogene deregulation or expression of chimeric fusion genes (Mullighan, 2012). 

1.15  The subtypes of BCP-ALL 

BCP-ALL comprise of multiple subtypes which are defined based on the structural chromosomal 

alterations, Somatic mutations and DNA copy number alterations that contribute to leukemogenesis. The 

alterations are prevalent in all age groups and so as the various subtypes (Figure 1.15.1). Identification 

of these subtypes is essential for diagnosis, risk classification, and, for some lesions, it enables the 

development of targeted therapy. 

The subtypes investigated to profile their lncRNAs based molecular signature in this project are described 

in the following section. 
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1.15.1  Double homeobox 4 (DUX4) BCP-ALL subtype 

The DUX4 is a recently discovered subtype within BCP-ALL which is characterized by the IGH-DUX4 

gene fusion and is prevalent in both adult and pediatric patients of BCP-ALL. The existence of DUX4 

subtype was first hinted in a microarray dataset study on childhood BCP-ALL patients, where a subset 

of cohort displayed a unique expression profile outside the well-established subtype. The same group 

further performed an integrated genomic analysis on 277 ALL cases to investigate the genetic basis of 

this novel subtype (Yeoh et al., 2002). A recent study (Clappier et al., 2012) revealed that around 50-70% 

of these cases showed deletions in the intragenic region of erythroblast transformation (ETS)-specific-

related gene (ERG). The ERG, a gene coding for a transcription factor in ETS family, with important 

functions in hematopoiesis. The genomic aberration observed was approximately non-existent in other 

BCP-ALL cases. Later other studies found that deletion of ERG is associated with CD2 expression and 

Ikaros family zinc finger protein 1 (IKZF1) deletions with a positive clinical prognosis, which is 

 

Figure 1.15.1: Subtypes in ALL across different age groups. 

The figure represents different subtypes in ALL which is varying with different age groups (Iacobucci & 

Mullighan, 2017). 
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otherwise associated with a poor prognosis (Harvey et al., 2010). 

In the vast majority of cases at least one truncated copy of the DUX4 gene is usually located within 

subtelomeric region and is inserted (D4Z4 repeat array on chromosome 4q and 10q) into the 

Immunoglobulin heavy (IGH) locus. ERG-DUX4 is a less common variant involved in the insertion of 

DUX4 gene into an intron of the ERG gene. In both variants (IGH-DUX4 and ERG-DUX4) a 3’ truncated 

DUX4 transcript with nucleotides added from non-coding regions of IGH or ERG is expressed, resulting 

in a DUX4 protein replaced with random 0-50 amino acids from non-coding partner genes in the same 

region. The relocation of DUX4 attributes to the truncation of C terminal of DUX4 protein and increased 

stability of DUX4 mRNA due to the presence of poly-A signals in the partner region (Lilljebjörn & 

Fioretos, 2017). 

The DUX4 transcription factor is normally expressed in germinal tissues, and its expression is partially 

regulated by the repeat structure of D4Z4 domains, where a certain number of repeats are needed to 

preclude the luxated DUX4 expression. Currently, it is unclear how the expression of DUX4 fusions 

contributes to leukaemia development. In pediatric BCP-ALL 4-5% of the cases harbour DUX4 

rearrangements, making it the sixth largest subtype of childhood BCP-ALL, slightly larger than Ph-

positive subtype (Lilljebjörn & Fioretos, 2017). 

Despite the common ERG deletions, DUX4-rearranged cases might also harbour other common 

aberrations associated with various other subtypes of BCP-ALL, such as deletions in targeting cell cycle 

regulator genes CDKN2A and CDKN2B and lymphoid transcription factor genes such as IKZF1 and 

PAX5. 

1.15.2  Philadelphia positive (Ph-pos) BCP-ALL subtype 

The Philadelphia chromosome is a result of the molecular fusion between the ABL gene, which is located 

on the chromosome 9 with BCR gene located on the chromosome 22, which results in a fusion protein 

called BCR-ABL (Liu-Dumlao, Kantarjian, Thomas, O’Brien, & Ravandi, 2012). BCR-ABL encodes an 

oncogenic protein with a constitutively activated tyrosine kinase function. The prevalence of BCR-ABL 

positive ALL, also called Philadelphia (Ph)-positive, increases with age and occurs in up to 50% of ALL 

diagnosed in individuals ≥50 years old (Liu-Dumlao et al., 2012). The Ph-positive ALL is characterized 

by poor response to therapy, short remission duration and poor survival. The occurrence of BCR-ABL 

fusions is 2–5% in in pediatric ALL, and is approximately 25% in adults with ALL (El Fakih et al., 2018). 
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1.15.3  Philadelphia-like (Ph-like) subtype 

Recently a high-risk subgroup of BCP-ALL called Philadelphia-like (Ph-like) has been discovered in 

pediatric and adult patients (Herold & Gökbuget, 2017). The Ph-like blasts harbor a similar gene 

expression profile as BCR-ABL1 positive ALL patients but lack the BCR-ABL1 translocation (Tran & 

Loh, 2016). However, instead of BCR-ABL like gene fusion, such patients harbor a wide range of genetic 

alterations activating tyrosine kinase signaling. Most common genomic features of these patients are 

deletions of IKZF1 transcription factor and genetic alterations deregulating cytokine receptor and 

tyrosine kinase signaling (Tran & Loh, 2016). These include translocations and mutation of CRLF2 of 

approximately 50%, 12% translocations of ABL-class tyrosine kinase genes, 7% of rearrangements of 

JAK2 and 3-10% of the erythropoietin receptor gene (EPOR). Furthermore, 11% mutations activating 

JAK-STAT signaling and RAS signaling (NRAS, KRAS, PTPN11, and NF1, 6%) and less common kinase 

alterations (FLT3, NTRK3, BLNK, TYK2, and PTK2B). Kinase fusions continue to keep an intact 

tyrosine kinase domain and typically show a constitutive kinase activation. There is no significant 

difference in frequency of kinase subtypes across different age groups, apart from EPOR and JAK2 

rearrangements which are increased in adult Ph-like ALL. Cytokine receptor-like factor 2 (CRLF2) is 

also known as the thymic stromal-derived lymphopoietin receptor (TSLPR) that forms a heterodimeric 

receptor with the interleukin-7 receptor a chain (IL7Ra) for thymic stromal lymphopoietin (TSLP). 

Dysregulations of CRLF2 includes its translocation into the immunoglobulin heavy chain locus (IGH-

CRLF2) and less common point mutations. All these rearrangements are most common in Ph-like and 

Down syndrome-associated ALL and are dependent on age. For instance, with P2RY8-CRLF2 associated 

with young age and I-CRLF2 associated with older age and Hispanic ancestry. Flow cytometric 

immunophenotyping detects CRLF2 and is over expressed on the leukemic lymphoblasts. CRLF2 

rearrangements are associated with poor prognosis in most studies, particularly in cases with concurrent 

IKZF1 alteration (Iacobucci & Mullighan, 2017). 

The common therapies have shown efficacy in per-clinical models that targets JAK-STAT, PI3K/mTOR, 

and BCL2 signaling alone or its combinations. Another major genetic subgroup within Ph-like ALL 

involves ABL class of rearrangements. For example, fusions to ABL1, ABL2, CSF1R, PDGFRA or 

PDGFRB that are all targetable by inhibitors of ABL1, such as imatinib and dasatinib. Like Ph-positive 

ALL, Ph-like ALL is also associated with high-risk clinical features such as poor response to induction 

chemotherapy, elevated minimal residual disease (MRD) levels, and poor survival. According to world 

health organisation’s classification of myeloid neoplasms in 2016, BCR-ABL1–like or Ph-like ALL acute 

leukaemia was recognized as a new leukaemia entity with clinical importance due to its association with 
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an unfavourable prognosis and reactivity towards Tyrosine Kinase Inhibitor (TKIs). Ph-like ALL 

increases with age and varies from 10% in standard-risk childhood ALL to greater than 20% in adult 

ALL, with a peak prevalence of 27.9% in young adults (age 21 to 39 years) (Iacobucci & Mullighan, 

2017). 

1.15.4  Near haploid/High hyperdiploid (NH-HeH) BCP-ALL subtype 

The abnormal chromosomal number in ALL defines distinct subtypes with different response to 

treatment. High hyperdiploid is a subtype defined based on cytogenetic nomenclature as chromosomal 

count between 47 and 57; the definition criteria are universally accepted. High hyperdiploid is one of the 

common childhood malignancies comprising 30% of all pediatric B cell–precursor ALL. Molecularly, 

high hyperdiploid ALL is characterized by massive aneuploidy (abnormal number of chromosomes), 

authenticating a nonrandom gain of chromosomes. For example, some or all of +X, +4, +6, +10, +14, 

+17, +18, and +21 and other trisomies have been reported. However, the pathogenetic phenomenon of 

chromosomal gains remains poorly understood, but it generally is believed that gene dosage effects are 

of significance (Chilton et al., 2014). Genetic abnormalities like driver fusion gene is not observed in the 

vast majority of high hyperdiploid ALL cases. However, there is a possibility that there is yet unidentified 

primary aberrations present due to the low resolution of most genetic screening techniques. Previously 

such concealed events have been reported in aneuploid tumors, for example, the identification of 

structural dysregulation resulting in rearrangements of cytokine receptor-like factor 2 (CRLF2) in a large 

number of ALL patients with Down syndrome and microdeletions leading to the transmembrane protease, 

serin 2 (TMPRSS2)/v-its erythroblastosis virus E26 oncogene homolog (ERG) hybrid gene in prostate 

cancer (Mullighan et al., 2009). Profiling of a fusion gene in high hyperdiploid ALL would be of prima 

facie clinical importance, which may perhaps simplify the diagnostic procedures and hence provide novel 

treatment options. Clinical features of high hyperdiploid ALL was associated with a relatively low WBC 

count and a B-cell precursor immunophenotype. The prognosis of five-year overall survival rates (OS) 

is close to 90%. 

Recent genome-wide association studies by two independent groups reported linkage to a locus in the 

gene AT rich interactive domain 5B (ARID5B) at the locus 10q21.2, however, it is unclear how this 

region affects the risk of developing high hyperdiploid childhood ALL (Studd et al., 2017) . Despite a 

favourable prognosis in high hyperdiploid childhood ALL, ~20% of the patients suffer a relapse, and 

10% give in to the disease (Paulsson et al., 2010). The finding of extra recurrent changes could subserve 

in the identification of the high-risk cases and would be of great clinical significance. 
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In contrast, Near-haploid ALL is much rarer (<1%) ALL subtype defined based on the cytogenetic 

nomenclature of the 23-29 chromosome, with poor outcome (Safavi & Paulsson, 2017). The Near-

haploid is mainly reported in children and adolescents. Lately, some adult cases are also reported. 

Because of the rarity of near-haploid ALL subtype, relatively very few studies have focused on this 

molecular subtype and no studies on lncRNAs are reported to this date. 

In this present study, we are focusing on the three major subtypes defined above namely, DUX4, Ph-like 

and NH-HeH. In addition to the subtypes mentioned above, BCP-ALL has additional subtypes which are 

described briefly in the following session. 

1.15.5  Pre-B-cell leukemia transcription factor 1 (PBX) fused 

The translocation resulting in the Transcription factor 3 (TCF3) - PBX1 fusion occurs in approximately 

5% of childhood to 6% of adult BCP-ALL cases. With the rise of novel therapies, it is now associated 

with a favorable outcome (Diakos et al., 2014). 

1.15.6  Myocyte enhancer factor 2D (MEF2D) fused 

MEF2D and zinc finger 384 (ZNF384) rearrangements characterize distinct B-ALL subtypes, accounting 

for approximately 3% to 4% and 3% of pediatric patients and approximately 6% and 7% of adult patients, 

respectively. The MEF2D related fusions are recently identified B-ALL subtype with relatively worse 

survival (Zhaohui Gu et al., 2016). 

1.15.7  Mixed lineage leukemia (MLL) translocations 

Mixed lineage leukemia (MLL/KMT2A) gene are common in young patients and are generally 

associated with poor clinical outcomes. The molecular biology of MLL fusion genes remains 

incompletely characterized and is complicated by the fact that more than 100 different partner genes have 

been identified in fusions with KMT2A gene (also known as MLL) rearrangements, particularly the t 

(4;11) (q21;q23) translocation, are most frequent in infants (1 year of age) and are associated with poor 

outcome (Winters & Bernt, 2017). 

1.16  LncRNAs in leukemia 

1.16.1  LncRNAs in normal hematopoiesis 

Hematopoiesis is a process of formation of blood cellular components. All blood cells are derived from 

hematopoietic progenitor cells or hematopoietic stem cells. Hematopoietic progenitor cells are found in 

bone marrow which can form mature blood cells. The lncRNAs reported in normal hematopoiesis are 
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mainly associated with the blood cell development (B. W. Han & Chen, 2013) (Figure 1.16.1 A). Notably, 

two lncRNAs are associated with early blood cell development from hematopoietic progenitor cells. The 

first example is lncRNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1), in the intergenic region 

of the HOXA cluster and transcribed in the antisense direction. HOTAIRM1 renders the expression of 

several genes that are important for myeloblasts differentiation including HOXA1 and HOXA4, which 

encode key transcription factors in hematopoiesis. The second example is lncRNA EGO, which is a 

conserved lncRNA transcribed antisense to ITPR1 and regulates the development of eosinophils (a type 

of white blood cell). Other lncRNAs which are related to the terminal differentiation of hematopoietic 

cells are ncRNA repressor of the nuclear factor of activated T cells (NRON), thymus-specific non-coding 

RNA (Thy-ncR1), and nettie Salmonella pas Theiler's (NeST), which regulate the localization, 

degradation, and expression of pivotal gene products, orderly. Hence, deficiency of any hematopoiesis-

related lncRNAs blocks differentiation and stimulates the apoptosis of blood cell progenitors, 

deregulation of these lncRNAs might contribute to blood diseases, especially those associated with 

ineffective blood cell production, such as myelodysplastic syndrome (MDS) and anemias. Depending on 

the changes in lncRNA regulation, dys-regulation of these could also result in the oncogenic growth of 

the cells, resulting in cancer. 
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1.16.2  LncRNAs in malignant hematopoiesis 

Compared to solid cancers, little is known about lncRNAs in hematopoietic malignancies, especially in 

ALL subtypes. However, a few lncRNAs (Table 1.16.2, Figure 1.16.1B) have been identified in the 

context of leukemia and been directly involved in the tumorigenic processes of blood cell cancers 

(Hughes, Salvatori, Giorgi, Bozzoni, & Fatica, 2014). The before mentioned HOTAIRM1 and ANRIL are 

two well-studied lncRNAs in malignant hematopoiesis. They might serve as potential prognostic 

candidates for leukemia due to their leukemic specific expression pattern. Increased ANRIL expression 

has been reported increased in many AML and ALL patients (Yu et al., 2008), whereas MEG3 and BIC 

 

Figure 1.16.1: LncRNAs in normal and malignant leukemia 

LncRNAs involved in the progression of multiple chromatin remodelling pathways and are involved in hematopoiesis 

and leukemogenesis. A. In healthy blood cells, lncRNAs are involved in recruiting epigenetic regulatory protein 

complexes, including chromatin remodeling enzymes to specific genetic target sites, by inhibiting or promoting 

mRNA translation or degradation, or by promoting or inhibiting the translocation of transcription factors into the 

nucleus, in normal hematopoiesis. B. In malignant cells, abnormally expressed lncRNAs lead to the deregulation of 

hematopoietic factors, resulting in an aberrant expression profile of oncogenes and tumor suppressors that leads to 

the pathogenesis of leukemia. Adapted from (B. W. Han & Chen, 2013). 
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expression were decreased in myeloid leukemia (Eis et al., 2005) and increased in B cell lymphoma, 

respectively. However, there are no lncRNAs reported as a leukemic prognostic marker. 

The TP53 related lncRNAs such as MEG3, lincRNA-p21, are tumor suppressors whereas ANRIL is 

reported to function as tumor-promoting lncRNA. Several other lncRNAs have been shown to regulate 

key transcriptional factors that function in normal hematopoiesis, any dysregulation to these lncRNAs 

could contribute to malignant hematopoiesis. Some lncRNAs control other genes which participate in or 

regulate cancer-associated pathways. For instance, DLEU1 and DLEU2, which are frequently deleted in 

Chronic Lymphoblastic Leukemia (CLL). In some CLL patients, these lncRNAs were shown a consistent 

alteration in methylation with reduced expression at transcriptional start site (TSS). In addition to that, 

they are correlated with transcriptional deregulation of the neighboring genes and reduced expression of 

genes involved in NF-kappa beta pathway (B. W. Han & Chen, 2013). 

These lncRNAs associated with the tumor suppressor TP53, which act as regulators of the cell cycle or 

apoptosis and signaling pathways that are involved in leukemia hint that lncRNAs might take part in 

leukemogenesis either as tumor suppressors or as tumor promoters. Any dysregulation of these lncRNAs 

or others might furnish to the aberrant activity of leukemia-related genes, and that would further lead to 

malignant hematopoiesis. Specific lncRNAs having an association with particular forms of leukemia 

suggests that those lncRNAs may be useful for categorizing leukemia subtypes, and the possibility for 

therapeutic intervention may exist (B. W. Han & Chen, 2013). 

By now we know that BCP-ALL is a heterogeneous blood cancer with multiple molecular subtypes, and 

a high relapse rate. Despite the improvements, we are still far from having a complete understanding of 

the rationale behind these subtypes. LncRNAs have emerged as a novel class of RNAs with diverse 

mechanisms in cancer progression and development. Recently, genome-wide association studies 

(GWAS) have unveiled that more than 80% of cancer-associated single-nucleotide polymorphisms occur 

in the non-coding part of the genome (Cheetham, Gruhl, Mattick, & Dinger, 2013). This suggests that a 

significant fraction of the genetic etiology of cancer is related to lncRNAs. 

Moreover, the association of lncRNAs with various hallmarks of cancer in different cancer types shows 

that lncRNAs can account for cancer heterogeneity and can be used as an independent prognostic factor. 

However, lncRNAs defining molecular subtypes of BCP-ALL and their potential functions and 

epigenetic regulation are not portrayed yet. All previously reported ALL subtypes are well characterized 

and documented for their mRNA based molecular signature (Boer et al., 2015; Nordlund et al., 2012). 

Understanding the molecular signature beyond the protein-coding level that underlies BCP-ALL 
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heterogeneity thus remains as a significant objective in improving diagnosis and therapy. The 

extraordinary advancement in sequencing technology allowed the detection of low abundance transcripts 

on a genome-wide scale. Majority these studies explored the role of a specific single lncRNAs (Ghazavi 

et al., n.d.). However, these lncRNAs have not been precisely related to molecular pathways, and their 

functions have not been investigated. The long non-coding RNA based molecular signature behind these 

subtypes are less studied or characterized. Comprehensive characterization of the landscape of lncRNAs 

in a BCP-ALL subtype has not been achieved because most genome-wide studies have used micro-arrays, 

which have the disadvantage of being biased toward the inclusion of probes that map to the known 

protein-coding and lncRNAs transcriptome. Therefore, a comprehensive genomic delineation of 

lncRNAs alterations in multiple BCP-ALL subtypes not only is urgently needed but may lead to new 

diagnostic and therapeutic strategies for leukemia. 

Table 1.16.2: LncRNAs which are reported as putatively involved in leukemia. 

LncRNA Size Genomic location 

MEG3 ~1.6 Kb 
Intergenic 

 

HOTAIR 2.2 kb Antisense between HOXC11 and HOXC12 

ANRIL ~3.9 kb Antisense of CDKN2B 

Mira 789 not Between Hoxa6 and Hoxa7 

LincRNA-p21 ~3.1 kb Upstream of CDKN1A 

DLEU1 DLEU2 0.9 kb Adjacent to miR-15 and miR-16 family 

XIST ~19kb Intergenic 

HOTTIP ~3.8 kb Bidirectional transcript with HOXA13 

Table 1.16.2: The table defines the lncRNAs associated with malignant hematopeosis and their genomic target of 

action. Adapted from (82). 

1.17  The aim of the project 

The overall aim of this thesis was to profile relapse and subtype-specific lncRNAs in three significant 

subtypes of BCP-ALL namely, DUX4, Ph-like and NH-HeH to deepen our understanding of the 

functional role of lncRNAs in molecular processes in BCP-ALL. Furthermore, to investigate lncRNAs 

involvement in classifying the molecular subtypes of BCP-ALL. Finally, to investigate epigenetically 

regulated lncRNAs within the three subtypes. 

In order to define lncRNAs within the BCP-ALL subtypes, we performed the integrative bioinformatics 

analysis on the RNA-seq and DNA methylation datasets of 82 BCP-ALL patient samples from diagnosis 

and relapse stages. This allowed to address the major aims of the thesis: 
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• Construct BCP-ALL subtype-specific and relapse-specific lncRNAs signatures 

• Validate the subtype-specific lncRNAs of BCP-ALL on a independent cohort 

• Define the potential functions of subtype-specific and relapse-specific lncRNAs 

• Explore DNA methylation patterns of lncRNAs within the three BCP-ALL subtypes 

• Unravel epigenetically altered lncRNAs within each subtype. 

Overall, our data uncover the distinct mechanism of action of lncRNAs in BCP-ALL subtypes and 

defining how lncRNAs are involved in the pathogenesis of diseases as well as their relevance in the 

stratification of BCP-ALL subtypes. 
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Chapter 2.  Materials and methods 

2.1  Patient datasets 

The patients used in the current study lacked routinely tested fusion genes (BCR-ABL, MLL 

translocations, ETV6-RUNX1) and were evenly distributed between pediatric and adult patients with 

early and late relapse. The sample was retrieved at initial diagnosis (ID), and relapse (REL) with the 

requirement of a minimal residual disease (MRD) level at complete remission below 0.01. The study 

group consisted of 45 patients with ID (40 samples) and matched REL (42 samples) stages of B-cell 

precursor ALL patients from German Multi-center Study Group ALL (GMALL) and Augmented Berlin-

Frankfurt-Munster (BFM) trials. As the clinical protocol for adult and pediatric patients relapse time were 

different, the samples have been selected to evenly distribute into the categories of early relapse (ER; 

time of REL < 700 days) and late relapse (LR; time of REL => 700 days). Based on mutations, DNA 

methylation, translocations, and insertions or deletions these samples were further categorized into three 

subtypes (Table 2.1.3). These subtypes are, DUX4 (n = 23) (IGH-DUX4 fusions), Philadelphia-like (Ph-

like (n = 21), and Haploid/High Hyperdiploidy (NH-HeH) (n = 16), low-hypodiploid (LH, n = 6) others 

(n = 16). There were 16 other samples are un-assigned because they do not belong to any of these 

subtypes. Patients and their clinical features are defined briefly in Table 2.1.3, which include their 

subtypes. All patients were treated in population-based German study trials (GMALL for adult and BFM 

for pediatric patients). All patients gave written informed consent to participate in these trials according 

to the Declaration of Helsinki. The studies were approved by the ethics board of Charité, Berlin. 

Table 2.1.3: Patient clinical information and their subtypes. 

Subtype Patient Median Age Mean time to relapse 

(months) 

DUX4 Adult 46 26 

Pediatric 9 83 

LH Adult 37 51 

NH-HeH Adult 22 40 

Pediatric 10 108 
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Ph-like Adult 42 59 

Pediatric 14 65 

Others Adult 33 71 

Pediatric 10 25 

Table 2.1.3: The table represents the patient samples (n = 82) used in this study, along with their defined subtypes and 

the mean of the months they were in complete remission, and their median age. Unassigned samples are hereafter 

refereed as others. 

2.2  Major steps in RNA-Seq and DNA methylation array data analysis 

2.2.1  RNA -Seq dataset preparation 

RNA-Seq data preparation consists of following steps: we isolated total RNA from bone marrow 

mononuclear cells (MNCs) from ID, and REL conditions of BCP-ALL patients. We used Trizol reagent 

(Life Technologies, Grand Island, NY) for isolation and followed the manufacturer's protocol with minor 

modifications. Then the amount of RNA degradation is checked with gel, and capillary electrophoresis 

and an RNA integrity number (RIN) was assigned to all the samples. The samples with RIN greater than 

seven were then used for further steps. 

RNA seq was performed on the Illumina HiSeq4000 platform. Paired-end reads were obtained from both 

ends of a fragment (paired-end sequencing). The paired-end reads were 101 base pair in length and bases 

with Phred +33 quality score were used further for analysis. These Phred quality scores Q are set by the 

Base Callers and are defined as Q = −10log10 (P), where P is the probability of the base call being 

incorrect. This value is an assigned quantity value to bases in DNA sequencing trace file by PHRED 

software. For example, if Phred assigns a Q score of 30 (Q30) to a base, this is equivalent to the 

probability of an incorrect base call, 1 in 1000 times, which means that the base call accuracy (that is, 

the probability of a correct base call) is 99.9%. These runs were performed in the high throughput 

sequencing core facility, German Cancer Research Center, Heidelberg, Germany. Overview of 

Bioinformatics analysis 
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We followed the alignment-counting work-flow (Figure 2.2.1) in our analysis pipeline. In order to 

account for the technical constraints of the tools, before finalizing each tool and analyzing method used 

in this project we compared the performance and results with respect to other tools This analysis helped 

us to finalize the most optimized and suitable tools for our dataset and analysis. The tools used for each 

analysis and their versions are detailed in table 2.2.4. The reason behind the selection of each tool is 

defined in their respective sessions. All the analyses were performed in the UNIX environment (Ubuntu 

14 LTS). The main steps involved in both dataset analysis is described in the following section. 

Table 2.2.4: Bioinformatics tools and software used in analyzing RNA-Seq and DNA-methylation 

datasets 

The table represents the tools and software and the programming languages we used in this thesis. 

Tools Description Version 

RNA-Seq data analysis 

Cutadapt Trimming and removing low-

quality reads 

V1.17 

RNA-Seqc Quality metric NA 

Star-align RNA-seq alignment V2.4.0.1. 

StrinTie/PreDE Transcriptome assembly read 

quantification 

v1.3.1 

LIMMA Voom Differential expression NA 

 

Figure 2.2.1: The global bioinformatics pipeline and the samples used in the analysis. 

The diagram defines the DNA methylation and RNA-seq work-flow and important methods and tools in the pipeline. 

The boxes in right hand side defines the number of samples within each subtype and the total cohort used. 
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analysis 

GREAT Cis and trans genes located 3.0.0 

GeneSCF Functional enrichment v. 0.1 

DNA methylation analysis 

Bumphunter Differential Methylation 

analysis 

NA 

HOMER/annotationPeaks.pl Annotation of files NA 

Additional software and programming languages 

R-Bioconductor version (3) 

SHELL and BASH scripting 

Python 2 and 3 

Pandas, Scify, numpy, matalblibplot, Seaborn 

Table 2.2.4: The table represents the bioinformatics tools used in the analysis and their versions. Additionally, the 

R-Bioconductor packages, and the scripting languages used in this thesis. 

2.3  RNA-Seq data analysis 

2.3.1  Preprocessing the Fastq files 

The sequence reads from the Illumina HiSeq4000 machine came out in fastq (. fq) formatted files. The 

FASTQ format was first widely used in the Sanger Institute; it stores both biological sequence and its 

corresponding quality scores in the text-based format in the single file. 

The first step of RNA-seq data analysis is to per-process the FASTQ file by measuring specific quality 

control metrics. The measured quality metrics are low-quality reads, followed by removing the 3’ adapter 

sequence. The adapter sequence was from Illumina TrueSeq, we used the cutadapt tool to perform the 

trimming and removal of low-quality reads with the following parameters: 

For removing the low-quality reads from the end of read sequences we used, -quality-base = 33 (retains 

the Phred 33 quality bases) parameter with a cut-off of 5 (--quality-cutoff = 5). The read sequence which 

retained a length of >= 25 base pair, were filtered using the -m 25 parameters. The adapter sequences 

were removed by adapter = [TACACTCTTTCCCTACACGACGCTCTTCCGATCT, 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT] parameter. The resulted FASTQ files were 

then further used for downstream analysis. 

2.3.2  Read Alignment 

Read alignment is the first, the most time-consuming step in RNA-Seq data analysis. The trimmed and 

quality controlled FASTQ files were then mapped to human reference genome version 19 (hg19) using 
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a mapping algorithm, STAR with options: -twopassMode Basic –sjdbOverhang and the Gencode (a 

project for integrated annotation of gene features) comprehensive GTF files as reference transcriptomes 

(gencode.v19.annotation.gtf.gz,v19) along with other default parameters. The STAR-align performed the 

read alignment steps in two runs, explained as follows: 

In the 1st pass, STAR allows mapping to a genome with unknown junctions and extracts the novel read 

junctions, then insert them into the genomic index. The 2-pass alignment is a more advanced mapping 

strategy for a more accurate spliced alignments, where the reads are then re-mapped using the 

GENCODE annotation file, from the provided novel junctions reads. These novel junction reads were 

detected during the 1st pass alignment process. The Splice junctions are the exon-intron junctions, where 

the splicing takes place. The output from STRA-align tool was aligned FASTQ files in Sequence 

Alignment/Map (SAM) format. The read SAM format files sorted by coordinate were produced after the 

alignment process for each patient samples. 

The SAM file is a TAB-delimited text file which consists of a header session and alignment session. 

However, SAM files are big and consumes more computational resource, mainly disk space, therefore 

they are generally stored as binary alignment mapping (BAM) files. The SAM files were then sorted and 

converted into BAM file using samtools sort. The BAM files store the same information as the SAM 

files in a smaller size due to compression and thus are more suitable for memory-efficient storage. The 

resulting BAMs were later used for further downstream analysis. All the runs are performed in parallel 

using shells scripts from 82 samples on UNIX platform. 

2.3.3  Transcript assembly and read quantification 

The transcript assembly and read quantification were performed using, StringTie, a fast-de-novo 

assembler. We used StringTie with default parameters, along with the -e flag. The -e flag was used to 

generate files which can be used to estimate the raw read counts. We performed StringTie runs input 

BAM file, GTF reference genome (-G, GENCODE annotation V19) along with other default parameters. 

Transcript abundance is first computed and from which the gene expression is inferred. StringTie 

reported read abundances in FPKM units. FPKM is commonly used for paired-end RNA-seq. In paired-

end RNA-seq two reads can correspond to a single fragment. The relative abundances of transcripts are 

described in terms of the expected biological objects (fragments) observed from an RNA-Seq 

experiment. As StringTie assembles the transcripts and estimates its expression level simultaneously, the 

output from StringTie was many files: one contains the assembled transcript and the other contains the 

estimated expression in both FPKM and Transcripts Per Million (TPM) units, one assembles transcript 
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which in gtf format. 

The assembled transcripts are quantified using the PreDE python script provided by the StringTie 

developers. Using the PreDE script we obtained the gene expression counts for each gene. The script 

summarized the FPKM values from all samples and converted it into raw read counts. In order to make 

a matrix of read counts of all samples, we parsed all the sample files using os.path.join module and then 

concatenated all the files based on their gene identifiers (Geneid) and expression values as a count matrix 

using pandas concat function. 

This count matrix was later used for principal component analysis and differential expression analysis 

using the R Bioconductor package. The R Bioconductor packages for differential expression analysis 

takes in raw read count matrix mapped to a particular genome feature (example, gene) as their input. The 

raw read matrix was of gene identifiers (gene ID) as rows and their expression value of each sample as 

columns. 

2.4  Reference genome and annotation files used 

The lncRNAs were annotated using the GENCODE lncRNA annotation (V19), a manually curated and 

evidence-based lncRNA annotation consists of 13,860 lncRNA genes and its 23,898 transcripts. The GTF 

file was converted into the text file with gene identifiers, gene symbols, and gene biotype and their 

chromosomal position, extracted from GTF file using awk shell script. We then used a python script 

(pandas merge) to merge the “Geneid” between our count matrix and text file extracted from reference 

GTF file. The lncRNAs genes defined in GENCODE v19 version consists of 5276 antisenses with 9710 

transcripts, 21 3prime overlapping non-coding RNA with 25 transcripts, 3055 lincRNAs with 3116 

transcripts, 742 sense intronic with 802 transcripts, 202 sense overlapping genes with 330 transcripts and 

515 processed transcript genes with 28082 transcripts, which made a total of 13,3860 lncRNAs. The 

same procedure was followed for identifying PC genes as well. The Gencode v19 version consists of 

20,356 PC genes with 81,814 transcripts. 

2.5  Unsupervised clustering using Principal Component Analysis (PCA) 

We used a dimensionality reduction method PCA for unsupervised clustering on the expression and 

DNA-methylation of lncRNAs across all samples. We performed the principal component analysis on all 

13,365 lncRNAs from all BCP-ALL RNA-seq samples. The PCA was performed using the R function 

prcomp on the FPKM values of lncRNAs. The R function prcomp uses the spectral decomposition 

approach, which examines the covariances or correlations between variables. The 3D PCA plots are 
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constructed using the python library matlabplotlib on the most variable principle components. 

2.6  Identification of differentially expressed lncRNAs 

The subtype-specific lncRNAs were identified from the whole cohort of 82 samples from 20 adult and 

25 pediatric patients from ID and REL stages. We started off by analyzing the differential expression 

(DE) lncRNAs on factors including, age (Pediatric versus adult patients) and disease progression 

(diagnosis versus relapse) which did not result in distinct DE lncRNAs expression profile. 

We next aimed to identify the DE lncRNAs or subtype-specific lncRNAs for the three subtypes, Ph-like, 

DUX4, and NH-HeH. For all samples, we applied a filter by removing the genes which are not expressed 

in at least 25% of samples to eliminate unreliability in the measurements of genes (Figure 2.7.1). 

In the experimental design, we noticed that we have biologically dependent samples, for example, we 

had paired ID and REL samples from 45 patients, with some exceptions. Eight of 45 patients had no 

matching ID or REL. Moreover, the patient and subtypes were confounded. The R Bioconductor package 

LIMMA Voom can model the multi-stage scenario with its in-build duplicate correlation feature. Thus, 

we took advantage of it and used LIMMA Voom for the DE expression analysis. 

We fed the raw read matrix as input to LIMMA Voom, which is then normalized using log2-counts-per-

million (logCPM) approach. The LIMMA Voom uses calcNormFactors function for normalization. In the 

differential expression analysis and all related analysis, the raw count is rarely considered, mainly due to 

the varying library size, the libraries are sequenced at a greater depth and will result in higher counts. 

Thus, it is the norm to convert the raw counts into a scale that accounts for such library size differences. 

Some of the popular conversions are counts per million (CPM), log-CPM, reads per kilobase of transcript 

per million (RPKM), FPKM and TPM. LIMMA Voom started with the normalization of raw expression 

counts. 

Normalization can significantly improve the quality of analysis and will lessen the bias across samples. 

Ideally, all samples are assumed to have similar distribution range of expression values. Normalization 

is used to ensure that the range of expression distributions of all sample are similar across the experiment. 

The normalization method LIMMA Voom employs is a trimmed mean of M-value (TMM) (Robinson & 

Oshlack, 2010). In LIMMA Voom, the normalization is performed by the calcNormFactors function. We 

used boxplots to visualize the difference of expression distribution of all samples’ unnormalized count 

matrix (Figure 2.6.1 A) versus normalized count matrix (Figure 2.6.1 B).  For our samples the effect of 

TMM-normalization is subtle, as shown in the magnitude of the scaling factors, which are all relatively 



 

 

34 

 

close to 1 (Figure 2.6.1 B). Normalization helps to make intuitive sense out of the data. Also, scaling 

enabled our data to be incorporated into the LIMMA method to conduct the DE analysis. The boxplots 

are constructed using R graphical package boxplot. 

 

2.6.1  Analysis matrix and contrasts 

After normalizing the samples, the next step was to develop a design matrix. We studied three different 

subtypes of BCP-ALL: DUX4 (n = 23), Ph-like (n = 21), and NH-NeH (n = 16). The DE analyses on 

these three subtypes were performed separately where each subtype was compared to the all other 

samples (Figure 3.7.10). For example, when the DUX4 subtype is used for DE analysis, treatment group 

was formed by all DUX4 samples (n = 23) and the rest of the cohort (n = 59) as a control group. The 

same design was followed for the other two subtypes. For dysregulated relapse -specific lncRNAs, we 

used REL samples as the treatment group and ID samples as the control group within each subtype. 

Firstly, we started with setting up a design matrix using the model. The design matrix was formed by 

providing the information about the samples, including condition, control, and time (ID or REL). 

Contrasts for pairwise comparisons between paired samples can be set up in LIMMA using the make 

contrasts function. In our study design, we needed to include the following two complexities into the 

contrasts in order to avoid the bias including, biological dependence and time-dependence. We, therefore, 

needed to account for biologically dependent samples using the duplicateCorrelation function by 

 

Figure 2.6.1: Box Plots of log-CPM values showing expression distributions for unnormalized data on the 82 

BCP-ALL samples. 

A. The unnormalized 82 BCP-ALL samples. B. The boxplot represents same dataset after TMM-normalization, 

showing a uniform expression distribution across all 82 samples. 
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specifying patients as block argument. The duplicateCorrelation takes the expression matrix, the design 

variable, and specified block argument, that is, in our case-patient information. We then included time 

information also in contrast. 

2.6.2  Examine DE genes from LIMMA 

The differential expression analysis was done on two models. Firstly, between each subtype versus others 

(for subtype-specific lncRNAs) and secondly, within each subtype we looked for DE lncRNAs between 

ID and REL samples (for relapse-specific lncRNAs). The output from LIMMA Voom consisted of genes 

and its corresponding P-values, which was determined using moderated t-statistic test, false discovery 

(FDR) value determined using Benjamini and Hochberg's method and log fold change of each gene. 

 

Next, the significantly differentially expressed genes were classified based on the following cutoffs: P-

value <=0.01 and fold change ⇔+-1.5. That is, the genes above the fold change of +1.5 are up-regulated 

and below -1.5 are down-regulated. 

In order to filter the lncRNAs from the output file using the above-mentioned cut-offs we wrote a python 

script using pandas.DataFrame.query function and for the annotation between the output matrix and 

GENCODE file we used pandas merge function. In order to find overlaps between subtype-specific 

lncRNAs, we used Venn3 package from matplotlib-venn. The significant up and down-regulated 

lncRNAs are hereafter refereed to as subtype-specific and relapse-specific lncRNAs and these were then 

 

Figure 2.6.2: The DE subtype-specific lncRNAs identification workflow 

The work-flow defines the steps taken to identify subtype-specific DE lncRNAs from the matrix of raw read count. 
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used for the further downstream analysis. 

2.7  Validation of the subtype-specific lncRNAs 

An independent validation cohort of predefined BCP-ALL samples was used to validate our subtype-

specific lncRNAs. The independent validation cohort consisted of 47 patients from the ID stage (age: 

median 32 years, range 1-80 years) (136). The samples were previously defined based on their genomic 

and molecular profile as DUX4 (n=17), Ph-like (n=27), and NH-HeH (n=3). We used our 1534 subtype-

specific lncRNAs from our discovery cohort and performed an unsupervised clustering using 

complexheatmap R package using correlation-based clustering on lncRNAs expression and samples 

using the Spearman method. The column barplot represents the subtypes within the cohort, which was 

defined using HeatmapAnnotation function with complexheatmap R package. 

2.8  Hierarchical cluster analysis 

The graphical representation of high dimensional data sets is key for straightforward explanatory analysis 

and hypothesis generation. With genomics dataset, the most commonly used methods are heatmaps 

combined with hierarchical clustering. The hierarchical clustering builds a dendrogram (a tree-like 

structure) where the leaves are the samples or variables. The algorithm consecutively pairs together the 

samples showing the highest degree of similarity. These samples are then collapsed into a cluster and 

treated as a single object in all the following steps. 

For the hierarchical cluster analysis and heatmap illustration, we used the subtype-specific and relapse-

specific lncRNAs (Fold change <> +-1.5, P-value <= 0.01). The LIMMA Voom normalized expression of 

those both sets of lncRNAs were then transformed into row-based Z-scores. 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 = 𝑥 − 𝜇 ÷ 𝜎 

Where x is the normalized gene expression count, μ is the mean of the gene expression across the samples, 

and σ is the standard deviation of the gene expression. Hierarchical clustering (HC) was done on DE 

lncRNAs, the method is based on calculating the distance and correlation between each samples 

(columns) the genes (rows). The most correlated genes and samples from clusters visible in the heatmap. 

The distance-based correlation was performed using the Spearman method. We used the “complete” 

method to calculate the distances between clusters; this method uses the farthest distance between objects 

from the first cluster and objects from the second cluster. For the lncRNAs or rows we implemented km 

=3, the K-mean clustering split the rows for 3 clusters to define row-clusters or lncRNAs clusters. We 

used R function FUNcluster using method = "silhouette" method to define the optimal number of 
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clusters. The same approach was used for all subtypes and DNA methylation hierarchical clustering. 

Heatmaps provide large-scale qualitative views of the transcriptomic landscape by representing the 

quantitative differences in gene expression levels measured from RNA-seq or microarray technologies. 

We used R Bioconductor package ComplexHeatmap to plots our DE heatmaps and DNA methylation 

results (Zuguang Gu, Eils, & Schlesner, 2016). 

2.9  Functional analysis by the guilt-by-association approach 

LncRNAs can also positively or negatively regulate the expression of these cis genes located nearby, 

overlapping, or within protein-coding genes. We next aimed to determine functions of lncRNAs based 

their positive correlations with cis and trans lncRNAs. In our study, we used the “guilt-by-association” 

approach by establishing the correlations between the expression of lncRNA genes and their cis and trans 

PC genes. This method is most used and validated method regarding finding functions of lncRNAs. We  

 

located the cis and trans protein-coding genes for our subtype-specific lncRNAs, a set of 1564 lncRNAs 

from the three subtypes using the GREAT tool (McLean et al., 2010). GREAT is a graphical user interface 

(GUI), which accepts a list of background genes and test genes (Figure 2.10.1). Both the background 

 

Figure 2.9.1: The work-flow used for functional predictions 

Guilt-by-association approach used in functional predictions of differentially expressed lncRNAs from BCP-ALL 

subtypes. The circle indicates the lncRNAs and the yellow triangles are neighboring protein-coding genes. The purple 

triangles indicate trans protein coding genes which located in genomic location >100 kb distance or in another 

chromosome. Both cis and trans protein coding genes were located using GREAT interface. Then in the next step we 

calculated pairwise correlation using Pearson's correlation method, and the most significant genes were then used for 

functional enrichment analysis using GeneSCF tool. 
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genes (~20,000 PC genes) and all subtype-specific (test genes) (n = 1534) lncRNAs were fed into the 

GREAT database in Browser Extensible Data (BED) file format. The input BED file contained the 

information of chromosomal position (chromosome, start, and end) then the gene symbol (Ensemble 

gene symbol) of lncRNAs and protein-coding (PC) genes. This BED file was constructed from the 

filtered subtype-specific lncRNAs text file using sed and awk one-liners on the command line. In the 

GREAT tool, we checked “two nearest gene” option with the “Associating genomic regions with genes 

session”. Where we defined 100 kilobase (kb) for the cis PC genes, which are located within a proximity 

of from the lncRNAs transcription start site (TSS) site. In order to determine the trans PC, we defined 

greater >100 kb from the TSS of the lncRNAs in the checkbox. And then we submitted our query to the 

GREAT algorithm. The GREAT run resulted in a list of cis and trans located PC to their corresponding 

lncRNAs as text files with their genomic distance. Firstly, we used regular expression [regex = 

r'(?P<PC>\w+.*).*\((?P<Strand>[+-])(?P<Distance>.*)\)'] and extracted all lncRNAs and their 

corresponding cis and trans PC genes using python lambda extract and groupby functions into a tab 

separated file. Once we had all the list of cis and trans PC genes as tab separated file, we again filtered 

out the cis PC genes from trans list using query function from python panda’s library. 

2.9.1  Co-expression analysis between subtype-specific and relapse-specific lncRNAs and their 

cis and trans located PC genes 

Computing Pearson correlation quantifies correlations between genes. In order to test the significance of 

correlation we used 2-tailed test. The Pearson correlation analysis was performed using python's 

scipy.stats.pearsonr mathematical algorithm from python. We calculated a pairwise correlation on 

subtype-specific lncRNAs to their cis and trans protein-coding genes. For instance, for each subtype, we 

computed a pairwise correlation matrix between all DE lncRNA and between their cis and trans coding 

gene to produce two matrices of lncRNAs × cis protein coding. We obtained both positively and 

negatively correlated cis and trans protein-coding genes for each DE lncRNAs. We considered only 

positive correlations to characterize the lncRNAs of interest in our study. The significantly correlated 

protein-coding genes were ranked for each lncRNA by the correlation coefficient (Pearson's 

correlation >= 0.55, P-value <= 0.05) as co-expressed genes or positively correlated genes for each 

subtype. This filtering was done python script written using query function. The resulted gene list enabled 

us to generate hypotheses regarding the function of a given lncRNA based on how they are enriched in 

pathways. The same procedure was followed for functional characterization of dysregulated lncRNAs 

for relapse-specific DE lncRNAs within all subtypes. 
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2.9.2  Functional enrichment of significantly correlating genes using GeneSCF tool 

We used Gene Set Clustering based on Functional annotation (Subhash & Kanduri, 2016) (GeneSCF 

version 1.0) for our functional enrichment analysis for the subtype-specific DE lncRNAs and relapse-

specific DE lncRNAs. The GeneSCF is a command line tool. We had a plain text file with all our PC 

gene symbols which were significantly correlated with the subtype-specific lncRNAs. gtype=sym). The 

functional enrichment analysis was performed by the following parameters: defined the input text file 

with significantly co-expressed PC genes using -i=input plain text file, defined the input gene symbol 

using -t=sym and source database using -db=KEGG. After that, the tool outputs the gene hits along with 

the corresponding functional pathways as a table. The significant pathways were filtered based on P-

value <=0.05, the same procedure is followed for all subtype in order to maintain consistency in the 

analysis process. We used awk to filter out the functional pathways falling within the cut-off. 

2.10  DNA methylation analysis 

We next, sought to comprehensively define the DNA methylation profile of BCP-ALL subtypes in patient 

samples. In order to define the DNA methylation profile, we isolated genomic DNA (0.5 μg) from BCP-

ALL (n = 82) samples at ID and REL conditions from the same 45 patients. These samples were then 

hybridized onto an Illumina 450k methylation array. The beta values representing the signal density of 

CpG sites were obtained from DNA methylation array for all samples. 

2.10.1  DNA methylation dataset preparation and normalization 

A beta value refers to the measure of the degree of methylation at each measured locus. Beta values are 

powerful for large-scale studies as it can be transmitted and compared across samples. The obtained beta 

(β-values) values from each CpG sites, were then normalized using SWAN method. Normalization is 

used to remove the technical variation between measurements, by maintaining the true biological 

difference between samples and probes. SWAN normalization was used as this method improves the 

correlation between biological or technical replicate, while the increasing the detection of some 

significantly differentially methylated probes. In addition to that, we can use them with any R package 

further for detection of differentially methylated probes. SWAN normalization method has two parts; the 

first part determines the average quantile distribution using a subset of probes defined to be biologically 

similar based on CpG content. The second step is to then adjust the intensities of the remaining probes, 

mainly from Infinium II than I, by insertion onto the distribution of the subset probes. This is done for 

each probe type separately using linear insertion between the subset probes to define the new intensities. 

Gradually, while the distribution of the subset is same, the intensity distribution of Infinium I probes is 
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still vastly different from the distribution of Infinium II probes (Maksimovic, Gordon, & Oshlack, 2012). 

The obtained SWAN normalized value was saved in a matrix for further bioinformatics analysis. The 

data matrix consisted of CpG's identifications as rows and beta values for all 82 BCP-ALL as columns. 

2.10.2  DNA methylation profile of lncRNAs across samples 

The positions of each CpG's from the SWAN normalized data matrix was identified using R package 

IlluminaHumanMethylation450kanno.ilmn12.hg19 using “@data$Locations. Which resulted in the 

genomic position information, including, chromosomal positions, and gene symbols for each CpG sites 

for our input matrix. Annotation of the CpG signals represented in SWAN normalized beta values 

obtained from the array resulted in the identification of 60,021 CpG probes corresponding to 7190 

lncRNA genes and 120,000 CpG probes corresponding to around 15,000 PC genes. DNA methylation 

analysis started by looking into the level of DNA methylation profile between lncRNAs and PC genes 

across 82 BCP-ALL samples. The density plots were plotted using python. plot function, on M-values 

(β-logit2 transformed). The logit transformation was performed by python scipy.special.logit algorithm. 

 

2.10.3  PCA on the lncRNAs DNA methylation profile 

We then used the same matrix to see how the samples are clustered based on their DNA methylation 

profile using PCA analysis using the R function prcomp on the SWAN normalized values for lncRNAs 

associated CpG sites (n = 60,021). The 3D PCA plots are constructed using the python library 

 

Figure 2.10.1: The DNA methylation analysis work-flow fro defining the differentially methylated subtype-

specific lncRNAs 

Work-flow used for DNA methylation analysis for each subtype. 
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matlabplotlib. 

2.10.4  Differential methylation analysis 

We performed differential methylation analysis using the R Bioconductor package, Bumphunter using 

the most variant quartile of CpG probes, searches for differentially methylated regions in an annotation-

unbiased manner (Jaffe et al., 2012). We separated the ID and REL samples for each DUX4, Ph-like, and 

NH-HeH subtype in order to account for the biological replicate dependency. To determine differentially 

methylated regions (DMRs), we used R to apply 1000 permutations with the Bumphunter algorithm and 

considered significant regions of P-value < 0.05, CpGs differently methylated. Each subtype was 

compared with other samples for differential methylation analysis (Figure 2.12.1). In order to define 

statistically significant hyper-methylated genes and hypo-methylated genes we then used previously 

defined criteria by Bumphunter package [http://genomicsclass.github.io/book/pages/epiviz.html].The 

significant hyper-methylated genes were defined if the differential methylation value > 0.2 and P-value 

<= 0.05 and the significant hypo-methylated genes were defined if the differential methylation value is 

< 0 and P-value <= 0.05. The hyper-methylated genes are the ones who showed an elevated methylation 

rate compared to other samples, and the hypo-methylated genes are the ones which a decreased 

methylation rate compared to the others. 

2.10.5  Association of subtype-specific DM with different genomic regions and finding subtype-

specific DM lncRNAs 

We associated the differentially methylated regions from three BCP-ALL subtypes using hypergeometric 

optimization of motif enrichment (HOMER) suite of tools 

[http://homer.ucsd.edu/homer/ngs/customGenomes/index.html]. We performed annotation of DM sites 

using 'annotationPeaks.pl.' tool using the encode.v19.annotation.gtf reference file. In order to get all 

information about the genomic regions including, the gene symbol, gene type, distance from the 

promoter-TSS region, and genomic regions (intron, exon, promoter-TSS, Transcription Termination site, 

etc.), gene type, and the distance from the promoter-TSS of each gene, we used the -gene parameter. The 

input for 'annotationPeaks.pl' tool was BED files defining the chromosomal potions of each significant 

DM regions obtained from Bumphunter and the reference file (encode.v19.annotation.gtf ) which was 

converted into a tab-delimited gene data file using awk command line script. With these inputs 

'annotatePeaks.pl’ provided us with all the essential information about the genomic region corresponding 

to each CpG sites for our DM genes. Using this information, we identified lncRNAs from our DM list 

and their genomic regions. 

http://genomicsclass.github.io/book/pages/epiviz.html
http://homer.ucsd.edu/homer/ngs/customGenomes/index.html
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The genomic regions were defined as promoter-TSS and gene body. The gene body was defined if the 

CpGs are annotated in exonic, intronic or transcription termination site (TTS). We used the list of all 

lncRNAs biotype to filter the lncRNAs from the output file. The awk and grep commands were used to 

filter out the lncRNAs. The promoter-TSS is assigned based on the genomic window of -2000 base pairs 

downstream and 2000 base pair upstream to the TSS region. The regions mapped to lncRNAs were then 

used for analysis. These filtered DM lncRNAs were further used for remaining comparison analysis. 

2.10.6  Correlation analysis between DM of lncRNAs and their expression levels 

We used the results from Bumphunter and LIMMA Voom for DM and DE subtype-specific lncRNAs 

signatures to compare the DNA-methylation and expression. First, we overlapped the promoter-TSS 

methylated lncRNAs and the DE lncRNAs. Out of these, we used the overlapped promoter-TSS 

methylated lncRNAs for comparative analysis. Next, the reverse correlation was determined between 

DNA-methylation and expression level by correlating the DNA methylation values (β-logit2 

transformed) with the log2 transformed FPKM values of each lncRNAs. The correlation was determined 

by the previously mentioned Pearson correlation method using python scipy. stats. Pearson library. The 

significantly correlated DM and DE promoter methylated lncRNAs are determined based on a 2-tailed 

P-value<=0.05. 
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Chapter 3. Results 

3.1  The expression and DNA methylation profile of lncRNAs 

To systematically identify subtype-specific lncRNAs from three BCP-ALL subtypes we analyzed 

transcriptome and DNA methylation profiles from paired ID and REL samples of 25 pediatric and 20 

adult BCP-ALL patients lacking known chromosomal translocations like BCR-ABL. Based on 

expression signatures of PC genes, fusion genes, mutations, deletions and DNA methylation profile 

detected by RNA expression and DNA methylation profiles, the samples (n = 82) were classified into 

different molecular subtypes, namely, DUX4 (n = 23), Ph-like (n = 21), NH-HeH (n = 16), and low-

hypodiploid (LH; n = 6). The DNA methylation data were extracted from the same samples using DNA 

methylation array platform, which accounted for 60,022 CpG's located annotated as lncRNAs (n = 7160) 

in the genome. 

 

We started by comparing the distributions of expression and DNA methylation profile between lncRNAs 

and protein-coding (PC) across all BCP-ALL. Consistent with the previous reports (Casero et al., 2015), 

we observed the lncRNAs (n = 13460) were less abundantly expressed than the PC genes (n = 20,135) 

(Figure 3.1.1 A). Whereas, when the DNA methylation profile of CpG sites (n = 60,021) associated with 

7,160 lncRNAs was compared with CpG sites associated with PC genes (n = 120,000) across all BCP-

 

Figure 3.1.1: The expression and DNA methylation profile of lncRNAs and protein coding genes across all 

samples. 

A. The level of distribution of expression between 13460 lncRNAs and 20,135 PC genes across 82 BCP-ALL samples. 

B. The level of distribution of DNA methylation rate between 60,022 CpGs probes associated with lncRNAs region and 

120,000 CpGs probes associated with PC genes across 82 BCP-ALL samples. The x-axis represents the DNA 

methylation values, log-transformed Methylation values. 
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ALL samples (Figure 3.1.1 B), we identified a similar DNA methylation profile between lncRNAs and 

PC genes. 

3.2  Unsupervised hierarchical clustering of lncRNAs expression identified robust 

clusters of BCP-ALL subtypes 

In order to identify the ability of lncRNAs to stratify BCP-ALL samples as the PC genes, we performed 

unsupervised clustering using principal component analysis (PCA) on the normalized (FPKM) 

expression values of 13,860 GENCODE lncRNAs. The PCA analysis revealed three distinct robust 

clusters of BCP-ALL subtypes, DUX4, Ph-like and NH-HeH (Figure 3.2.1 A). 

 

This observation was in concordance with the predefined molecular classification of BCP-ALL 

subtypes. In order to validate the ability of lncRNAs in distinguishing subtypes, we extended the 

same PCA approach on the lncRNAs expression (13860 lncRNAs FPKM value) on an independent 

cohort, that we termed as “independent validation cohort”. The samples within the independent validation 

cohort were predefined based on their molecular profile into DUX4 (n = 17), Ph-like (n= 27) and NH-

HeH (n = 3) subtypes. We identified a similar observation as with our discovery cohort (Figure 3.2.1 B) 

 

Figure 3.2.1: Unsupervised clustering of lncRNAs expression in BCP-ALL samples on the discovery and 

validation cohort. 

A. The unsupervised clustering (PCA) on the lncRNAs expression of BCP-ALL samples of the discovery cohort (n=82), 

representing distinct clusters of DUX4, Ph-like and Nh-HeH subtypes. The PCA plot constructed from expression 

FPKM values of lncRNAs from 82 BCP-ALL samples obtained from RNA-Seq from the original discovery cohort. B. 

The unsupervised clustering on the independent validation cohort of 47 BCP-ALL samples, representing the distinct 

clusters of DUX4, Ph-like and Nh-HeH subtypes. The PCA plot constructed from expression FPKM values of lncRNAs 

from 47 BCP-ALL samples obtained from RNA-Seq from the validation cohort. Each point represents a BCP-ALL 

sample. DUX4, Ph-like, NH-HeH, LH subtype and others are represented by orange, rose, blue, green and grey 

respectively. 
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in the independent cohort. We, therefore, sought to identify lncRNAs signatures which are differentially 

expressed within these three subtypes in our discovery cohort. 

3.3  Differentially expressed lncRNAs across multiple BCP-ALL subtypes 

To identify the subtype-specific differentially expressed (DE) lncRNAs signatures in the BCP-ALL 

samples we analyzed each subtype (DUX4, Ph-like, and NH-HeH) versus the rest of the cohort. A total 

of 1564 (P-value <= 0.01 and Fold change <=> -+1.5) subtype-specific lncRNAs were identified as DE 

from the three subtypes (Figure 3.3.1 A). By comparing subtype-specific DE lncRNAs (n = 1564) from 

these three subtypes, we found 59% (n = 930) of lncRNAs are specific to each subtype, the remaining 

lncRNAs were shared in at least two subtypes (Figure 3.3.1 B). We identified 24 lncRNAs whose 

expression was significantly altered in DUX4, Ph-like and NH-HeH BCP-ALL subtypes (Figure 3.3.1 

B). 

The large size of the DUX4 subtype signature distinguishes the DUX4 subtype as particularly perturbed 

at the level of lncRNAs gene expression. The subtype-specific DE lncRNAs based hierarchical clustering 

revealed distinct and robust clusters for each BCP-ALL subtype (Figure 3.1.1 A-C), defining lncRNAs 

driven molecular signatures in BCP-ALL subtypes. 

 

 

Figure 3.3.1: Number of subtype-specific lncRNAs 

A. The barplots represents the number of significantly up and down regulated subtype-specific lncRNAs. B. The Venn 

diagram represents the overlap between subtype-specific lncRNAs. 
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We next compared our subtype-specific DE lncRNAs signature with different cancer types from a 

comprehensive genomic characterization of lncRNAs across cancers (CGC) (X. Yan et al., 2015). We 

found about 59% (n = 712, Figure 3.3.1 D; Hypergeometric test P-value = 9.2e-29) of our subtype-

specific lncRNAs were more specific to the investigated three BCP-ALL subtypes (Figure 3.1.13 A-C). 

Out of the overlapped DE lncRNAs (n = 523), 23 (Appendix 1) lncRNAs were previously defined as 

cancer-related lncRNAs from the lnc2cancer database (Ning et al., 2018). For example, oncogenic 

lncRNAs PVT1 (Tseng & Bagchi, 2015) and GAS5 (Mazar et al., 2016) are differentially up-regulated in 

the DUX4 subgroup, and CRNDE (Huan, Xing, Lin, Xui, & Qin, 2017) is DE is down-regulated in the 

Ph-like subtype. Together, this demonstrates that the dysregulated expression of lncRNAs in for BCP-

ALL subtypes. 

 

3.4  Further validation of the subtype-specific lncRNAs with an independent BCP-

 

Figure 3.3.2: BCP-ALL subtype-specific differentially expressed lncRNAs. 

A-C. The hierarchical clustering representing lncRNAs clustering and expression differences of the compared subtypes DUX4, Ph-like and NH-HeH; 

corresponding to 736, 383, and 445 subtype-specific DE lncRNAs in DUX4, Ph-like and NH-HeH subtypes, respectively. In the DUX4 subtype, 100% of 
samples clustered together based on the DE lncRNAs signature. The hierarchical clustering of the subtype-specific DE lncRNAs revealed that 90% (19 out 

of 21 samples) of Ph-like samples clustered within the predefined Ph-like subtype. For the NH-HeH subtype, 69% (11 out of 16 samples) of samples correlated 

and clustered together using the respective DE lncRNA signature. The BCP-ALL samples box representing the number of samples within each subtype and 

versus (vs) the other samples used as a control group in DE analysis. D The overlap between DE subtype specific lncRNAs from three subtypes versus a 

public list of dysregulated lncRNAs from 12 different cancer types comprehensive cancer genome (CGC).  
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ALL cohort 

We observed distinct clusters for three subtypes based on unsupervised HC on the 1235 subtype-specific 

lncRNAs (299 out of 1534 is present at least in one of the three subtypes) (Figure 3.1.14 A) in the 

discovery cohort (n = 82). To confirm subtype-specificity of these dysregulated lncRNAs, we made use 

of the previously defined independent validation cohort. Unsupervised hierarchical clustering on the 

expression of 1235 subtype-specific lncRNAs on the independent validation cohort identified three 

robust clusters confirming the (Figure 3.1.14 B) subtype-specificity of our 1235 subtype-specific 

lncRNAs. Taken together, the results with independent validation cohort demonstrated better and 

reproducible subtype-specific lncRNAs in stratifying the BCP-ALL samples. 

 

 

 

Figure 3.4.1: Validation of subtype-specific lncRNAs on independent validation cohort. 

A. Heatmap illustrates hierarchical clustering (HC) DE subtype-specific lncRNAs (absolute Fold change >= +- 1.5, P-value <= 0.01) signature based on z-

score transformed LIMMA normalized expression values on 1235 subtype-specific lncRNAs from DUX4 (n = 450), Ph-like (n = 193), and NH-HeH (n = 

287) subtypes. The spearman correlation-based clustering is done on the lncRNAs. B. The heatmap represents the expression pattern of 1235 subtype-specific 

lncRNAs in the independent validation cohort. The unsupervised HC defines three distinct clusters within the independent validation cohort. 
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3.4.1  Identification of subtype-specific lncRNAs functions 

We next asked whether these 1235 subtype-specific lncRNAs might be globally related to the alteration 

of different biological functions and molecular pathways. Since lncRNAs exert their actions by regulating 

the PC genes in cis and trans regions, we performed functional enrichment analysis using the previously 

defined guilt-by-association approach on both cis and trans PC genes (Table 4.4.1). This enabled us to 

generate hypotheses regarding the function(s) of a given subtype-specific lncRNAs. Functional 

enrichment analysis was performed based on the correlation between neighboring (cis) and distally 

(trans) located protein-coding (PC) genes (within ± 100 kb cis and >± 100 kb window for trans) of the 

subtype-specific lncRNAs from the subtypes. The significantly co-expressed cis and trans PC genes 

based on their positive correlation rate (Pearson correlation >= 0.55 and two-tailed P-value <= 0.05) were 

then used for functional enrichment analysis. Consistent with other reports (Casero et al., 2015), we 

observed the higher number of positive correlations (Pearson correlation rate >= 0.55 and two tail P-

value <= 0.05) than the negative correlated cis and trans genes. The table represents the number of 

positive correlated PC genes (Table 3.4.5). 

Table 3.4.5: Number of BCP-ALL subtype specific co-expressed lncRNAs with it's cis and trans PC genes. 

Subtypes 
Cis PC genes 
(n = 929) 

LncRNAs co-

expressed with cis PC 

genes 
(n = 621) 

Trans PC 
genes 

(n = 753) 

LncRNAs co-expressed with 

trans PC genes (n = 552) 

DUX4 669 451 (736) 492 379 (736) 

Ph-like 260 170 (383) 261 173 (383) 

Table 3.4.5: The table represents the number of subtype-specific lncRNAs with cis (<100 Kb proximity) and trans 

(>100 Kb) protein-coding genes and the number of their co-expressions. The numbers shown within the bracket is the 

otal number of DE lncRNAs corresponding to the respective subtypes. The percentage of cis co-expression is, 68%, 

44.3%, in the DUX4 and Ph-like subtypes respectively. The percentage of trans-co-expression is, 51.5%, 45.2%, in the 

DUX4 and Ph-like subtypes respectively. 
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Out of these cis (n = 451) and trans (n = 379) co-expressed lncRNAs from DUX4 subtype, we identified 

58 and 127 lncRNAs significantly co-expressed with 45 cis and 49 trans PC respectively. In Ph-like 

subtype, we identified 24 (Appendix C) and 20 subtype-specific lncRNAs co-expressed with 25 cis and 

37 trans located PC genes respectively. These genes were enriched in signaling pathways, including, 

Janus kinase and Signal Transducer and Activator of Transcription (JAK-STAT), cytokine-cytokine 

kinase receptor, and phosphoinositide 3-kinase (P13K-Akt) signaling pathways (Figure 3.4.3, Figure 

3.4.4 C) based on the cis PC gene co-expression-based analysis. 

Figure 3.4.2: The molecular pathways of lncRNAs involved in the DUX4 subtype. 
The plot depicts the molecular pathway analysis from the functional enrichment analysis for nearby (<= 100 kb proximity) cis protein-

coding genes correlated (Pearson correlation coefficient >= 0.55 and 2-tailed P-value <= 0.05) with DE lncRNAs in the DUX4 subtype. 

The barplot in the right-hand side represents the number of genes involved in each pathway. The KEGG pathways or biological functions 

presented in the plot are with P-value <= 0.05 and > 2 genes within each pathway. The hypergeometric P-values are obtained from 

GeneSCF tool for the pathways. 

 

Figure 3.4.3: The molecular pathways of lncRNAs involved in the Ph-like subtype. 
A. The plot depicts the molecular pathway analysis from the functional enrichment analysis for nearby (<= 100 kb proximity) 

cis protein-coding genes correlated (Pearson correlation coefficient >= 0.55 and 2-tailed P-value <= 0.05) with DE lncRNAs 

in the Ph-like subtype. The barplot on the right-hand side represents the number of genes involved in each pathway. The 

KEGG pathways or biological functions presented in the plot are with P-value <= 0.05 and > 2 genes within each pathway. 

The hypergeometric P-values are obtained from GeneSCF tool for the pathways. 
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These 45 cis and 49 trans located PC genes were enriched in pathways involved in proliferation, 

apoptosis, and differentiation in leukemia. For example, the DUX4 subtype we identified signaling 

pathways including, Transforming growth factor Beta (TGF-Beta), P53, Endocytosis, and hippo 

signaling pathway, and Proteoglycans in cancer pathways (Figure 3.4.2, Figure 3.4.4 A-B). 

  

 

Figure 3.4.4: Comparison of molecular pathways from cis and trans based analysis on subtype-specific DE 

lncRNAs. 

 A. Molecular pathway analysis from functional enrichment analysis for distant (>100 kb) trans protein-coding genes 

correlated (Pearson correlation >0.55 and P-value <=0.05) with DE lncRNAs in the DUX4 subtype. B. The molecular 

pathways overlapped between cis (<100 kb proximity) and trans (>100 kb) based functional enrichment analysis in the DUX4 

subtype. C. Molecular pathway analysis from functional enrichment analysis for distant (>100 kb) trans protein-coding genes 

correlated (Pearson correlation >0.55 and P-value <=0.05) with DE lncRNAs in the Ph-like subtype. 
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3.4.2  The lncRNAs based and mRNAs based functional enrichment analysis showed the same 

pathways in the subtypes 

In order to validate our predictions, we then linked the functions predicted for subtype-specific lncRNAs 

to those predicted for respective subtype-specific mRNAs. The comparisons were done between the DE 

PC based and DE lncRNAs based functional pathways from DUX4 and Ph-like subtypes. Interestingly, 

we observed all signaling activated in DUX4 DE PC based analysis are activated or inhibited in the DE 

DUX4 specific lncRNAs based analysis (Figure 3.4.5 A). Whereas, in the Ph-like subtype, we identified 

60% (9 out of 15 pathways) overlap between the two sets of predicted functions (Figure 3.4.5 B). For 

example, JAK-STAT, Cytokine-cytokine receptor and endocytosis pathways had overlapped between 

both analyses; yet, there were cases where subtype-specific lncRNAs appeared to be more strongly 

associated with a function or pathway than subtype-specific PC genes. The key signaling pathways 

mTOR and P13K-Akt signaling pathways were more exclusive for lncRNAs based analysis in the Ph-

like subtype. 

3.4.3 DUX4 Subtype-specific lncRNAs represented in functional pathways predictions 

One of the key functions of lncRNAs is its ability to regulate the expression of its neighboring protein-

coding genes in the genome. In order to investigate to what degree this general concept may be applied 

 

Figure 3.4.5: Subtype-specific lncRNAs and PC genes displayed enrichment of same pathways in DUX4 and Ph-like 

subtypes. 

A. The heatmap depicts the concordance between the protein-coding and lncRNAs based predictions for DUX4 subtypes. B. 

The heatmap depicts the overlapping pathways from both lncRNAs and protein-coding in the Ph-like subtype. The KEGG 

pathways or biological functions presented in the heatmaps and barplots show with P-value <= 0.05 and > 2 genes involved 

in each pathway. The hypergeometric P-values are obtained from GeneSCF for the pathways. CAMs: Cell adhesion molecules, 

CML: Chronic myeloid leukemia, AML: Acute myeloid leukemia. 
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to the BCP-ALL subtypes-specific lncRNAs, we looked into genes which are present in different 

predicted signaling pathways from each subtype. Firstly, we started with identifying PC genes involved 

in activated signaling pathways associated with cellular processes including proliferation, differentiation, 

migration and cell survival. Secondly, we looked for subtype-specific lncRNAs which are co-expressed 

and located at the same locus of these PC genes. 

Among the co-expressed DUX4 specific lncRNAs (Pearson correlation > 0.55 and P-value <= 0.05, 

Appendix B) with cis-PC genes we identified 58 lncRNAs are correlated with their cis-PC genes that are 

involved in key signaling pathways. Some of these cis-PC genes are oncogenes involved in leukemia 

progression. For example, TGFB2 gene, SMAD1 is and ITGA6. Among these, the TGFB2 gene is 

enriched in key signaling pathways, including, Hippo and TGF-Beta signaling pathway and endocytosis. 

The antisense lncRNA RP11-224O19.2 which is encoded at TGFB2 locus aligning at the 5’ end showed 

a strong significant co-expression (Pearson correlation = 0.96, P-value = 2.6e-45) with the TGFB2 

(Figure 3.4.6 A). Interestingly, both TGFB2 and its antisense lncRNA RP11-224O19.2 are significantly 

up-regulated in the DUX4 samples (Figure 3.4.6 B, Table 4.4.2). 

Figure 3.4.6: The subtype-specific lncRNA RP11-224O19.2 co-expressed with TGFB gene in DUX4 subtype 

 The lncRNA RP11-224O19.2 and its cis oncogene TGFB2 is significantly co-expressed. Antisense RP11-224O19.2 

and its cis oncogene TGFB2 are encoded in the same locus (left panel).  Antisense RP11-224O19.2 (absolute fold-

change = 2.786, P-value = 9.74E-08) and TGFB2 (absolute fold-change = 3.84, P-value = 2.74E-10) genes are 

significantly up-regulated in DUX4 samples (Right panel). 

 

The SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling 

pathways. The SMAD protein mediates the signals of the bone morphogenetic proteins (BMPs), which 

are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, 

development, and immune responses (Blank & Karlsson, 2011). We observed the antisense lncRNA, 
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SMAD1-AS2 positively correlated (Pearson correlation = 0.75; 2 tailed P-value = 2.9e-16) with its sense 

gene, SMAD1. Other example, ITGA6 gene is enriched in the PI3K-Akt signaling pathway, cell adhesions 

molecule and focal adhesion. The antisense lncRNAs AC093818.1 (Pearson correlation = 90; P-value = 

2.1e-30) and AC078883.3 (Pearson correlation = 0.68; P-value = 2.8e-12) are co-expressed with their 

sense PC gene, ITGA6. Interestingly, both ITGA6 (absolute Fold change = 9.5; FDR = 9.1e-10) and the 

novel lncRNAs were co-expressed and significantly up-regulated in the DUX4 samples. 

3.4.4  Ph-like Subtype-specific lncRNAs represented in functional pathways 

Dissecting the pathways appeared in the Ph-like DE lncRNAs based analysis, we identified 24 Ph-like 

specific lncRNAs co-expressed with CDK6 and IL2RA oncogenes. These oncogenes were enriched in 

pathways, including, PI3K-Akt and JAK-STAT signaling pathways, and Cytokine-cytokine receptor 

interaction and endocytosis pathways. Twenty-four (Appendix C) Ph-like lncRNAs are co-expressed 

with these oncogenes. In Ph-like subtype, CDK6 gene is enriched in the PIK3-Akt pathway in the Ph-

like subtype, a pathway which prevents apoptosis. The CDK6 is a gene which appears to be frequently 

up-regulated in the malignant hematopoiesis (Scheicher et al., 2015) with a critical role in AML and ALL 

driven by mixed lineage leukemia fusion proteins (Van Der Linden et al., 2014). We then looked for 

lncRNAs associated with the CDK6 protein and identified seven novel lncRNAs (Figure 3.4.7 A, Table 

3.4.6), including its antisense lncRNA, AC002454.1 (-42918 bp, Pearson correlation = 0.72, Figure 3.4.7 

B). The role of antisense lncRNA AC002454.1 had previously been reported, including the ability to 

regulate CDK6 by inducing the cell cycle disorder (Y. Wang, Li, Yang, Liu, & Wang, 2015). The 

association of CDK6 and AC002454.1 are referred to as “head-to-head” association, as the 5’ end, both 

genes are aligned. The antisense lncRNAs are widely reported to be linked with multiple functions such 

as they regulate protein-coding genes positively or negatively. 

 Table 3.4.6: Novel lncRNAs co-expressed with oncogene CDK6, TGFB2, and IL2RA 
Subtype-specific 

lncRNAs 
Pearson coefficient P-value Subtype Oncogene 

RP11-347C18.3 0.56 3.25E-008 

Ph-like CDK6 

RP11-461F16.3 0.62 5.21E-010 

RP11-96H19.1 0.62 3.89E-010 

RP11-228B15.4 0.64 7.68E-011 

MME-AS1 0.56 3.68E-008 

CTB-39G8.3 0.57 1.78E-008 

AC002454.1 0.72 2.21E-014 
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RP11-582J16.4 0.55 8.08E-008 

AC009970.1 0.64 6.23E-011 

RP11-229P13.20 0.66 1.44E-011 

LINC00114 0.57 3.06E-008 

CTB-118N6.3 0.61 9.70E-010 

SOCS2-AS1 0.62 4.94E-010 

CTD-2561B21.10 0.61 9.91E-010 

RP11-413E1.4 0.56 4.36E-008 

KB-1460A1.1 0.55 7.77E-008 

AC012309.5 0.59 4.10E-009 

RP11-37B2.1 0.59 4.76E-009 

ASB16-AS1 0.65 3.86E-011 

LINC00426 0.62 6.32E-010 

LINC01071 0.57 2.46E-008 

RP11-536K7.5 0.74 5.11E-15 IL2RA 

RP11-224O19.2 0.98 1.08E-061 

DUX4 TGFB2 

AC004837.5 0.83 6.11E-023 

RP11-251M1.1 0.79 7.39E-019 

CTD-2571L23.8 0.75 2.94E-016 

RP11-35O15.1 0.65 3.36E-011 

AC139100.3 0.58 1.00E-008 

RP11-158M2.3 0.58 1.50E-008 

RP11-672A2.5 0.56 4.68E-008 

CTD-2357A8.3 0.55 7.46E-008 

RP11-677M14.3 0.55 6.68E-008 

Table 3.4.6: The subtype-specific lncRNAs from DUX4, Ph-like associated with different signalling pathways. The 

table represents the lncRNAs and correlation rate between subtype-specific lncRNAs and PC genes enriched in various 

signaling pathways. 

Another example is the IL2RA, a gene which is involved in diverse biological functions such as cell 

proliferation, apoptosis, cell surface immune response, and MAPK cascade. Recently, IL2RA is found to 

be specifically up-regulated by pre-B cell receptor (pre-BCR) signaling during early B cell development 

(Sadras et al., 2017), and cells with activated tyrosine kinases by a manifold to pre-BCR signaling in 

both in Ph+ALL and in Ph-like ALL (Roberts et al., 2012). The IL2RA gene locus encodes some non- 
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coding genes; antisense RP11-536K7.5 is an example (Qureshi, Mattick, & Mehler, 2010). The antisense 

lncRNA RP11-536K7.5 and IL2RA gene are up-regulated (absolute fold change= 2.79; P-value = 3.07e-

08) in the Ph-like samples. Furthermore, the expression of RP11-536k7.5 shows a significant positive 

correlation (Pearson correlation = 0.73, P-value = 5e-14) with the expression of IL2RA gene (Figure 3.4.7 

C, Table 3.4.6). The antisense lncRNA AC002454.1, is up-regulated (absolute fold change = 1.7; P-value 

= 0.00015) in the Ph-like samples (Figure 3.4.7 right panel) compared to others. 

Table 3.4.7: Subtype-specific novel DE lncRNAs co-expressed with oncogenes, which are associated with 

important molecular pathways. 

 

 

Figure 3.4.7: The subtype-specific lncRNAs co-expressed with oncogenes involved in key signaling pathways in Ph-

like subtypes 

A Seven novel lncRNAs co-expressed with CDK6 gene. B. The expression of cis antisense lncRNA AC002454.1 significant 

co-expressed with its cis oncogene CDK6 in Ph-like subtype. Both CDK6 (Absolute fold change = 1.01, P-value = 0.0005) 

and antisense lncRNA AC002454.1 (Absolute fold change = 1.79, P-value = 0.00015) are up-regulated in Ph-like samples. 

C. Expression of antisense lncRNA RP11-536K7.5 showed significant co-expression with expression of its cis oncogene 

IL2RA. Both RP11-536K7.5 (absolute fold-change = 2.79, P-value = 3.07E-008) and IL2RA (absolute fold-change = 3.11, 

P-value = 3.97e-1) are up-regulated in Ph-like samples  
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LncRNAs Cis PC Pearson correlation 

coefficient 

Associated pathways 

RP11-224O19.2 

AC004837.5 

RP11-251M1.1 

CTD-2571L23.8 

TGFB2 0.98 

0.83 

0.79 

0.75 

Hippo 

TGF-β 

Endocytosis 

AC093818.1 

AC078883.3 

ITGA6 0.95 

0.68 

PI3K-Akt 

U62631.5 CD22 0.78 CAMs 

B cell receptor signaling pathway 

CTD-2267D19.2 

RP11-486L19.2 

RARA 0.89 

0.70 

Pathways in cancer transcriptional mis-regulation 

in cancer pathways 

Table 3.4.7: The table represents the novel subtype-specific DE lncRNAs co-expressed with its cis genes such as 

TGFB2, ITGA6, CD22, and RARA genes, which were enriched in vital molecular pathways in BCP-ALL. 

 

In summary, global co-expression analysis and gene-expression profiling suggest an important and 

previously unappreciated role for lncRNAs in BCP-ALL subtypes. Our analyses highlight important 

putative functions for subgroups of the subtype-specific lncRNA genes whose expression correlates 

tightly with leukemic oncogenes. 

3.5  Dysregulated relapse-specific lncRNAs as markers of BCP-ALL subtypes 

LncRNAs are reported to be linked with clinical outcome of several diseases (Herrera-Solorio et al., 

2017). Relapsed ALL, refers to the return of ALL in patients, and are mainly due to the poor outcome of 

conventional therapy. In order to investigate the relapse-specific DE lncRNAs, we performed differential 

expression analysis between initial diagnosis (ID) and relapse (REL) samples within each subtype. The 

DE analysis resulted in 941 dysregulated lncRNAs, in which, we identified 192 lncRNAs whose 

expression are up-regulated (Absolute fold change > +- 1.5; P-value <= 0.01) in relapsed samples 

compared to diagnosis samples from three subtypes. 
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Figure 3.5.1: Relapse-specific DE lncRNAs from BCP-ALL subtypes. 

A-C. Heatmap depicting the hierarchical clustering on relapse-specific DE lncRNAs signature on Z-score transformed 

LIMMA normalized expression values from DUX4, Ph-like and NH-HeH subtypes. Each heatmap shows the up and 

down-regulated lncRNAs specific to ID and REL samples. D. Molecular pathway analysis with the number of genes 

involved in each pathway from the enrichment analysis of the nearby (< 100 kb proximity) cis protein-coding genes 

correlated (Pearson correlation > 0.55 and P-value <= 0.05) with relapse-specific DE lncRNAs in the DUX4 subtype. 

The legend box indicates the number of ID and REL samples within each group. CAMs: Cell adhesion molecules. E. 

The overlap between relapse-specific and subtype-specific lncRNAs from three subtypes. 
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These relapse-specific lncRNAs signature consisted of 14 lncRNAs up-regulated in the Ph-like subtype 

and 26 DE relapse specific lncRNAs in the NH-HeH subtype, whereas in the DUX4 subtype we found 

146 relapses specifically up-regulated lncRNAs (Figure 3.5.1 A-C). The majority of dysregulated 

relapse-specific lncRNAs observed in our analysis are novel lncRNAs. However, we found 10 lncRNAs 

from our dysregulated set that had been reported in another disease including a different type of cancers 

(Table 3.5.8, Figure 3.5.2 A-C). In addition to that, we identified 61 relapse-specific (Appendix D) 

lncRNAs are significantly overlapped (Hypergeometric test P-value = 2.6 x 10e-4) with a recently 

published prognostic markers (Ali et al., 2018) lncRNAs from various cancers. 

 

 

Figure 3.5.2: Relapse-specific lncRNAs markers identified in other cancers. 

A. The boxplot represents, examples of relapse-specific lncRNAs, SLC38A3 (absolute fold change = -1.961, P-value = 

7.14 x 10e-4), LINC00312 (absolute fold change = -1.028, P-value = 1.69 x 10e-3) and ZBTB11-AS1 (absolute fold 

change = -1.55, P-value = 9.58 x 10e-3) which are significantly up-regulated in relapse samples compared to diagnosis 

samples in DUX4 subtype. B. The boxplot represents, examples of relapse-specific lncRNAs MIR17HG (absolute fold 

change = -0.82, P-value = 7.81 x 10e-4) and RP11-419K12.1 (absolute fold change = -1.18, P-value = 1.80 x 10e-3) 

which are significantly up-regulated in relapse samples compared to diagnosis samples in Ph-like subtype. C. The 

boxplot represents, examples of relapse-specific lncRNAs MBNL1-AS1 absolute fold change = -1.95, P-value = 5.62 x 

10e-4), CTA-445C9.14 (absolute fold change = -1.90, P-value = 2.59 x 10e-3) and RP1-153G14.4 (absolute fold change 

= -1.40, P-value = 5.34 x 10e-3) which are significantly up-regulated in relapse samples compared to diagnosis samples 

in NH-HeH subtype. 



 

 

59 

 

Table 3.5.8: Examples of previously reported lncRNAs identified as relapse-specific lncRNAs in BCP-ALL 

subtypes. 
Relapse-specific 

lncRNAs 

Disease association 

TCL6 

(DUX4) 
Chromosomal translocations T-cell leukaemia/lymphoma 

LINC00312 

(DUX4, Ph-like, NH-HeH) 

Proliferation, invasion, and migration of thyroid cancer, Nasopharyngeal 

carcinoma 

miR-17-92a-1 

(DUX4, Ph-like, NH-HeH) 
Development, progression, and aggressiveness of colorectal cancer 

Table 3.5.8: The differentially expressed lncRNAs between relapse (REL) and initial diagnosis (ID), from three 

subtypes, which were previously reported for its disease association, selected representative examples from relapse-

specific lncRNAs, which are previously identified in other diseases. Representative examples from ten disease-

associated lncRNAs 

3.5.1  Functional analysis for relapse-specific lncRNAs as markers of BCP-ALL subtypes 

We then aimed to infer the putative global molecular functions associated with these relapse-specific 

lncRNAs. For each subtype, we used the previously defined guilt-by-association approach to predict the 

putative functional pathway involved. Relapse-specific lncRNAs within Ph-like and NH-HeH subtypes 

did not show any significant correlation with activation of pathways. In contrast, we identified 56% (n = 

321) relapse-specific lncRNAs within the DUX4 subtype correlated with their cis PC genes. These 

strongly correlated relapse-specific lncRNAs showed activation of PC genes involved in vital signaling 

pathways and metabolic pathways. For example, Hippo, mTOR, and MAPK signaling pathways, cell 

adhesions molecule (CAMS) and metabolic pathways (number of genes involved >= 3 and P-value <= 

0.05) (Figure 3.5.1 D). These pathways are comparable to the identified pathways from the subtype-

specific analysis. Taken together, the results indicate that relapse-specific markers from DUX4 subtype 

may be functionally engaged in metabolic and signaling pathways (Figure 3.5.1 D). 

3.6  DNA Methylation Patterns of lncRNA genes are altered in BCP-ALL subtypes 

In order to analyze the methylation status of loci located at the lncRNAs genomic position in the BCP-

ALL subtypes, we used DNA methylation array data (collected from Illumina 450k methylation array) 

from the same patients (n = 45) included matched diagnosis (ID) and relapse (REL) samples (n = 82). 

Consistent with the RNA-seq dataset, the unsupervised clustering (PCA) on the DNA methylation profile 

of lncRNAs identified with distinct clusters for DUX4, the Ph-like and the NH-HeH subtypes (Figure 

3.6.1 A). 
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Given these findings, we next looked into the differential hypo-methylated (Methylation value < 0; P-

value <= 0.05) and hyper-methylated (Methylation value >0.2; P-value <= 0.05) CpGs associated with 

lncRNAs between each subtype (Figure 3.6.2 A-C). We identified 1118 DM lncRNAs from three 

subtypes, with methylation distribution of 29.25% at promoter-TSS, 46% in the intronic and intergenic 

region and renaming in the gene body of the genome. About 10% of promoter-TSS methylated lncRNAs 

displayed a significant inverse correlation with its RNA expression level.  In the DUX4 and NH-HeH 

subtypes the number of hypo-methylated lncRNAs (differential methylation value < 0, P-value <= 0.05) 

were higher compared to the number of hyper-methylated lncRNAs. Whereas in Ph-like subtype the 

hyper-methylated (67%) lncRNAs were higher than hypo-methylated (33%) lncRNAs. 

We then explored the differentially methylated regions associated with lncRNAs and annotated them 

based on their genomic position. The differentially methylated CpGs were located in different genomic 

positions. In each subtype, we identified an average of 28% of DM lncRNAs in the promoter-TSS region 

(defined as region between -2000 base pair to +2000 base pair within TSS) the remaining within gene 

body (exon, and Transcription termination site (TTS), Figure 3.6.2 A-C (right panel). 

 

Figure 3.6.1: Hierarchical clustering of CpG's associated with DM lncRNA 

A. PCA of CpG's associated with lncRNAs on DNA methylation SWAN normalized beta values. Each point represents 

a BCP-ALL sample. DUX4, Ph-like, near-haploid, and others are represented by orange, rose, blue and grey 

respectively. 
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Figure 3.6.2: Hierarchical clustering of CpG's associated with DM lncRNAs from each subtype  
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A. The heatmap representing hierarchal clustering on 544 differentially methylated (DM) CpG's associated with 434 

lncRNAs in DUX4 subtype. In the DUX4 subtype, we identified 328 (76%) differentially hypo-methylated and 106 

(25%) hyper-methylated lncRNAs. B. The heatmap representing hierarchal clustering on 518 DM CpG's associated with 

450 lncRNAs in the Ph-like subtype. In Ph-like subtype, we observed 302 (67%) hyper-methylated lncRNAs and 148 

(33%) hypo-methylated lncRNAs. C.The heatmap representing hierarchal clustering on 295 DM CpG's associated with 

234 lncRNAs in NH-HeH subtype. In the NH-HeH subtype, we identified 200 (86%) hypo-methylated and 34 (14%) 

hyper-methylated lncRNAs. The heatmap is plotted using SWAN normalised Methylation values. The bar plots below 

each heatmap represent the distribution of DM lncRNAs in the genome (Promoter-TSS and gene body) lncRNAs from 

each subtype. The distribution DM Promoter-TSS lncRNAs are as follows: 25%, 29% and 39% in DUX4, Ph-like, and 

NH-HeH subtype, respectively. The promoter methylated lncRNAs, we identified a higher degree of hypo-methylated 

and lower number hyper-methylated lncRNAs in DUX4 and NH-HeH subtypes. However, the Ph-like subtype has 

shown a higher degree of hyper-methylated DM lncRNAs than hypo-methylated DM lncRNAs. 

3.6.1  Correlation between subtype-specific differentially expressed and differentially 

methylated lncRNAs 

In order to systematically define epigenetically silenced or facilitated lncRNAs in the three subtypes, we 

correlated the expression FPKM and the beta value of promoter-TSS DM lncRNAs. We identified 6.7% 

of lncRNAs with hyper-methylated and hypo-methylated promoters with a reduced or increased RNA 

expression level within BCP-ALL subtypes. For instance, in the DUX4 subtype, 17% (n = 22) of DM 

lncRNAs at promoter region (Differential hyper-methylation > 0.2; Differential hypo-methylation < 0; 

P-value <= 0.05) were differentially expressed (P-value <= 0.01 and Absolute fold change = +- 1.5). Out 

of that, 15 lncRNAs were significantly inversely correlating with their RNA expression levels (Pearson 

correlation test, two-tailed P-value <= 0.05, Figure 3.6.3 A). Whereas in the Ph-like subtype, 9% (n = 11) 

of significantly DM lncRNAs at promoter region (Differential hyper-methylation > 0.2 ; Differential 

hypo-methylation < 0; P-value <= 0.05) are differentially expressed (P-value <= 0.01 and Absolute fold 

change  =+- 1.5), and out of that we found 73% (n = 7) lncRNAs with a significant inverse correlation 

with their RNA expression level (P-value <= 0.05, Figure 3.6.2 D). Analogously, in the NH-HeH subtype 

we observed three promoters associated lncRNAs overlapping with the DE signature, where 2 out of 3 

showed a significant anti-correlation to their expression level. 

Thus, the DM promoter-TSS methylated lncRNAs harboring statistically significant DM at promoter 

regions, and the strong anti-correlation with its expression level collectively determined 23 putative 

epigenetically facilitated and silenced lncRNAs from our three BCP-ALL subtypes (Table 3.6.9). 

Table 3.6.9: The list of significantly correlated DNA methylation and the expression for promoter methylated 

lncRNAs (n = 23) from BCP-ALL subtypes. 

 
DM 

lncRNAs 

Pearson correlation 

coefficient 

P-value Methylation Absolute 

Fold change 

Subtypes 

 

AC003075.4 -0.31 0.004 1.43 -1.26 

DUX4 
AC099754.1 -0.32 0.002 -1.74 3.2 
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AC104655.3 -0.26 0.017 -2.27 2.07 

CACNA1C-AS1 -0.45 2.03E-05 1.97 -1.62 

CTB-25B13.9 -0.26 0.016 -1.73 1.46 

IGF2-AS -0.24 0.028 -1.33 4.95 

LINC01006 -0.39 0.001 -2.06 2.53 

PVT1 -0.40 0.001 -2.13 1.15 

RGMB-AS1 -0.26 0.0193 -1.48 5.96 

RP11-125B21.2 -0.35 0.001 -1.75 4.11 

RP11-138M12.1 -0.70 5.21E-13 -5.98 3.77 

RP11-367G6.3 -0.30 0.004 1.98 -1.63 

RP11-624M8.1 -0.50 1.34E-06 -3.34 4.13 

RP11-789C17.3 -0.36 0.001 -2.27 3.2 

SERTAD4-AS1 -0.25 0.0232 -1.98 1.79 

LINC01006 -0.38 0.0003 1.44 -1.56 

Ph-like 

RP11-138M12.1 -0.70 5.21E-13 2.06 -1.44 

RP11-305F18.1 -0.64 5.36E-11 1.76 -2.08 

AC099754.1 -0.33 0.002 1.21 -1.36 

ACVR2B-AS1 -0.36 0.0009 2.18 -1.75 

LINC00996 -0.39 0.0003 -1.56 2.11 

ERICH1-AS1 -0.40 0.0006 -1.82 2.21 

DIO3OS -0.31 0.0037 -1.76 4.05 

NH-HeH 
U3 -0.83 1.346E-22 -2.01 2.43 

Table 3.6.9: The lncRNAs are promoter differentially methylated and correspondingly differentially expressed. DM: 

Differentially methylated. The significance is calculated based on Pearson correlation rate and two -tailed P-value <= 

0.05. 
 

Of these 23 epigenetically modulated lncRNAs, we observed novel lncRNAs to show an anti-correlation 

between the DNA methylation rate and expression levels. For instance, in the DUX4 subtype, lncRNA 

R11-138M12.1 and RP11-624M8.1, showed a significant hypo-methylated at their promoter region and 

is transcriptionally up-regulated in the DUX4 subgroup (Pearson correlation coefficient = -0.69; P-value 

= 5.1E-13 for R11-138M12.1; Pearson correlation coefficient = -0.50; P-value = 1.36E-06 for RP11-

624M8.1; Figure 3.6.2 B -C). The same lncRNA R11-138M12.1 showed significant hypermethylation at 

the promoter region and a concordant down-regulation in the Ph-like subgroup (Figure 3.6.2 E). 

Besides the novel lncRNAs, we identified certain others lncRNAs which are previously brought in the 

context of different cancers from our epigenetically facilitated set. The lncRNA PVT1 is an example 

which we observed in the DUX4 subtype with significant anti-correlation (P-value <= 0.01) to its 

expression level. These findings suggest that epigenetic silencing of lncRNAs may be a mechanism that 

contributes to the dysregulation of expression of lncRNAs in the BCP-ALL subtypes. 
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Figure 3.6.3: The epigenetically altered promoter methylated lncRNAs and their expression.  

. 
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A. The barplot depicts the distribution of hyper and hypo-methylated LncRNAs in promoter region. B-C. The 

promoter-TSS DM lncRNAs with significant negative correlation with DE expression profile from the DUX4 

and Ph-like subtypes. D. Two representative examples of hypo-methylated lncRNAs with increased expression 

profile from a DUX4 subtype with significant inverse correlation between DNA methylation and expression 

levels. The lncRNA RP11-138M12.1 (Pearson correlation coefficient = -0.69, 2-tailed P-value = 5.21e-13), 

RP11-624MB.1 (Pearson correlation coefficient = -0.50, P-value = 1.36e-06) are examples with hypo-

methylation and up-regulated expression pattern. E. A representative example of the promoter hyper-

methylated lncRNA, RP11-138M12.1 (Pearson correlation coefficient = -0.69, 2-tailed P-value = 5.21e-13) 

with down-regulated expression pattern, and with inverse correlation within the Ph-like subtype. 

3.6.2  Chromatin markers associated with intronic and intergenic methylated subtype-specific 

lncRNAs 

Around 46% (n = 512) of the DM subtype-specific lncRNAs are localized in the intronic and intergenic 

genomic regions. We next aimed to investigate whether these lncRNAs regions have chromatin markers 

encoded within their genomic location. A recent human genome-wide chromatin marker study (114) has 

provided us with a rich resource to identify chromatin markers. Genome-wide mapping of B-lymphocyte 

cell line by searching for epigenetic markers within our DM subtype-specific intronic and intergenic 

regions revealed a significant number of lncRNAs (n = 53, Fisher extract test P-value = 2.2E-16) with 

enhancer and insulator markers. Out of these, lncRNAs, RP11-134O21.1, RP11-398B16.2, RP11-

689B22.2, CTC-458I2.2, and LINC00880 were DE expressed, with a significant negative correlation 

between DNA methylation and expression levels in the DUX4 subtype (Table 3.6.10). Together these 

show both intronic and intergenic DM lncRNAs associated with strong enhancer and insulator regions 

can accelerate its expression at the epigenetic level. 

Table 3.6.10: The list of significantly correlated DNA methylation and expression for intronic and Intergenic 

methylated lncRNAs (n = 5) from DUX4 BCP-ALL subtypes. 
DM 

lncRNAs 

Absolute 

Fold change 

Methylation 

value 

Pearson 

correlation rate 

P-value Epi-markers Biotype 

RP11-134O21.1 2.54 -1.56 -0.63 1.9E-010 Enhancer  

Intron 

RP11-398B16.2 2.08 -1.85 -0.47 0.0007 Insulator 

RP11-689B22.2 1.52 -3.37 -0.47 0.008 Enhancer 

CTC-458I2.2 -1.16 3.38 -0.42 0.0001 Enhancer 

LINC00880 -1.45 2.23 -0.25 0.02 Enhancer Intergenic 
 

Table 3.6.10: The significance is calculated based on Pearson correlation rate and two -tailed P-value <= 0.05. The 

lncRNAs are promoter differentially methylated and differentially expressed in their corresponding subtypes. These 

lncRNAs are with enchancer and insulator epigenetic markers. DM: Differentially methylated. 
 

We further compared our list of DMR associated lncRNAs from each subtype with published list disease-

associated lncRNAs and identified 24 previously reported disease associated lncRNAs (Table 3.6.11) 

within our BCP-ALL subtype-specific DM lncRNAs. 
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Table 3.6.11: The list of DM lncRNAs which are previously reported due to there disease associations (n = 24) 

from BCP-ALL subtypes. 
DM Subtype-specific lncRNAs Subtypes Annotation Methylation value P-value 

ADAMTS9-AS2 Ph-like intron 1.777801 0.00171869 

DANCR NH-HeH promoter-TSS -1.787494 0.02195348 

DLEU2 NH-HeH intron -1.857272 0.007403689 

DLX6-AS1 DUX4 Intergenic -1.639343 0.007447799 

 NH-HeH intron -1.368489 0.03913844 

EGOT Ph-like intron -1.995476 0.01631441 

ERICH1-AS1 DUX4 intron -2.788796 0.0000274 

NH-HeH intron -2.396816 0.0002673425 

FENDRR NH-HeH intron -1.742717 0.004852748 

HOTAIRM1 DUX4 promoter-TSS -1.858395 0.0002810779 

Ph-like promoter-TSS 1.428301 0.0202788 

HOXA-AS2 NH-HeH promoter-TSS -1.509447 0.02797619 

HOXA11-AS NH-HeH Promoter-TSS -1.84395 0.001730609 

Ph-like exon -1.934465 0.02145395 

IGF2-AS 

 

DUX4 Promoter-TSS -1.326866 0.0322549 

NH-HeH Promoter-TSS -1.405105 0.03537591 

KCNQ1OT1 Ph-like exon 2.251927 0.008248937 

LINC00261 Ph-like intron -2.112499 0.01462022 

LINC00467 DUX4 promoter-TSS 2.000734 0.0018457 

LINC00473 DUX4 promoter-TSS -1.442647 0.02018019 

MEG3 DUX4 intron -2.518794 0.0001154195 

NEAT1 DUX4 exon 2.230128 0.000287578 

Ph-like exon -1.787521 0.01741656 

PVT1 DUX4 Promoter-TSS -2.126776 0.0009309612 

Ph-like Promoter-TSS 1.960143 0.002582014 

RGMB-AS1 DUX4 Promoter-TSS -1.471133 0.007150467 

RP11-325I22.2 NH-HeH Intergenic -1.778581 0.02285671 

TCL6 DUX4 Promoter-TSS 1.749096 0.006956922 

Ph-like intron 1.844357 0.04590776 

TP73-AS1 DUX4 Promoter-TSS -1.34541 0.01637621 
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UCA1 DUX4 intron -4.572273 0.000000778 

Ph-like intron 2.03285 0.02043621 

ZNRD1-AS1 Ph-like Promoter-TSS 1.679822 0.01186042 

Table 3.6.11: The list of previously reported lncRNAs which are associated with other disease including leukemia 

identified within our DM subtype-specific lncRNAs. For example, HOTAIRM1, previously reported to be associated 

with malignant hematopieosis. 
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Chapter 4.  Discussion 

BCP-ALL is a genetically heterogeneous disease consisting of many subtypes. Understanding the 

molecular signature behind these subtypes could improve its diagnosis and treatment. In the recent past, 

compared to protein-coding genes, there is a growing appreciation for investigating the role of lncRNAs 

in cancer development and progression given their surprising functions and their aberrant gene 

expression patterns. Now, it is apparent that lncRNAs are involved in the tumorigenesis of leukemias. 

Nevertheless, a comprehensive characterization of the transcriptome, DNA-methylation, and their 

functional contribution in distinct BCP-ALL subtypes are lacking. 

Unsupervised clustering of lncRNAs expression and DNA methylation profile demonstrated the ability 

of lncRNAs in classifying the established BCP-ALL subtypes within our cohort. This finding was further 

subsequently validated in an independent validation cohort of 47 patients. In addition to that, we 

cataloged a comprehensive set of 1564 subtype-specific and 941 relapse-specific lncRNAs using RNA-

Seq data. Finally, we present a catalog of 1118 differentially methylated lncRNAs based on the DNA 

methylation array data from the same patients across the three subtypes. In addition, to that we highlight 

23 lncRNAs whose expression levels were epigenetically facilitated or silenced. 

Interestingly, 36% of DUX4 and Ph-like specific lncRNAs (n = 229) and 62% (n = 321) of relapse-

specific lncRNAs within DUX4 were found be associated with pivotal signaling and metabolic pathways 

relevant to the progression of ALL. We present a catalog of lncRNAs based on an integrative analysis 

which brought significant insight and advances over previous studies as it provides the most 

comprehensive dataset and their potential functions in BCP-ALL, a resource of clinically relevant 

relapse-specific lncRNAs signature and discloses their utility in prognosis. 

The discussion part is divided into two sessions the first section discusses the methods used in the thesis 

and in the second part, I evaluate the major results. One of the challenges of this thesis was to determine 

the best practices for our RNA-Seq data analysis. Our first goal was to determine right algorithms which 

addresses all the major caveats of the datasets in order to draw reliable conclusions. In the following 

section we discuss the major advantages and disadvantages of the algorithms used. 
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4.1  RNA-seq for determining the subtype-specific and relapse-specific lncRNAs 

RNA-Seq technology revolutionized the study of transcriptomes. RNA-Seq allows the detection and the 

quantification of expressed genes or transcripts in a biological sample. RNA-Seq has clear advantages 

over previously existing technologies, such as microarray and Sanger sequencing. For example, 

microarray relies upon existing knowledge about genome sequence, high background levels owing to 

cross-hybridization and a limited dynamic range of detection owing to both background and saturation 

of signals. Unlike, former technologies, the RNA-seq approach is not limited to detecting known 

lncRNAs, but is also able to identify novel lncRNAs that are present in the human genome. (Zhong Wang, 

Gerstein, & Snyder, 2009). Owing to the rapid decrease in sequencing costs, RNA-seq may soon replace 

microarrays completely. However, choosing the right alignment tool is always is the key to RNA-Seq 

data analysis for maximum detection of significant genes involved in BCP-ALL samples. With the onset 

of RNA-Seq technology, there are some tools and methods developed for the RNA-seq sequence 

alignment. The appropriate mapping and read quantification algorithm were chosen based on their 

capabilities to address existing constrains. This enabled extraction of reliable information out of raw 

RNA-seq data. 

In certain instances, we observed increased misalignment of spliced reads or junction reads for lncRNAs. 

This was true for antisense and sense lncRNAs. For example, the read sequences mapping to the exon-

exon junction of lncRNAs were borrowed from their sense of PC genes, resulting in increased 

misalignment. Inherent problems of all de novo RNA-seq aligners including, Tophat and cufflinks, are 

its inability to accurately detect the splicing events or junction reads that are in the short sequence on the 

junctions. Therefore, this problem increases the under-detection of splicing events or increases the 

misalignment rate. 

A recently developed aligner, STAR-align provided solutions for the above issues combined with faster 

performance. STAR-align mitigates this problem by its 2-pass option in which it first obtains information 

about possible splice junction loci from annotation databases. Then it is also possible to run a second 

mapping pass, supplying it with novel splice junction loci found in the first mapping pass. In the second 

pass, STAR will not discover any new junctions but will align spliced reads with short overhangs across 

the previously detected junctions. The STAR-align takes the splice junction reads into accounts by its in-

built parameters. Additional reasons for using STAR-align tool was due to its better mapping accuracy 

(sensitivity and precision) and computational resources (runtime and disk space) compared to former 

mapping tools (Dobin et al., 2013). We, therefore, decided to finalize STAR-align for our RNA-seq 

datasets owing to its advantages over former tools. 
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4.2  Transcriptome alignment and read quantification 

The transcriptome is the complete set of the transcript in a cell for a specific developmental stage or 

physiological condition. Studying the transcriptome is essential for interpreting the functional elements 

of the genome and revealing the molecular constituents of cells and tissues, and also for understanding 

developments that are attributable to the disease. LncRNAs have complex patterns of expression and 

regulation compared to PC genes. Like RNA-seq reads alignment, determining the quantities of these 

reads were also challenging. The major challenge was ambiguous read mapping due to close paralogs 

present in the genome and the generally low expression level of lncRNAs. In addition to that our data set 

is strand non-specific RNA-seq data composed the second challenge in the work-flow construction to 

determine the useful tool for read quantification or extracting the gene expression count. 

When the dataset is strand non-specific the gene expression quantification of some subtypes of lncRNAs 

other than lincRNAs is not possible, as they may share sense and antisense sequence with PC genes with 

overlapping exons. When there are a sense and antisense overlapping gene across a given lncRNAs gene 

body, the tendency of borrowing reads from these neighboring partners would increase, and therefore an 

accurate estimation of the exact gene expression level is not possible. The StringTie (transcriptome 

assembler) algorithm overcame this issue with its final transcriptome assembly and read quantification 

solution, regardless of the non-strand specificity of our reads. The StringTie algorithm accurately 

quantified reads which are mapped in splice junctions or exon-exon junction of each lncRNAs without 

borrowing its neighboring reads from the sense protein-coding genes. To test the ability of StringTie with 

different other programs which quantify gene expression we tested feature-count, and Ht-seq. These tools 

resulted in biased results for the sense and antisense lncRNAs. In addition to that, the output files from 

StringTie can be processed by R Bioconductor differential expression analysis programs like Deseq2, 

edgeR, LIMMA Voom. Whereas other similar transcriptome assemblers (example Cufflinks), need one 

more additional step of read quantification using other tools like Ht-seq. Therefore, using StringTie 

enabled us to reduce the complexity of characterizing antisense or partially intronic transcripts from our 

strand unspecific RNA-Seq libraries. StringTie had fast run, which is several times faster than Cufflinks 

(our former tool of choice), HTSeq (Anders, Pyl, & Huber, 2014), and FeatureCount (Liao, Smyth, & 

Shi, 2014). 

4.3  Addressing major caveats in our multi factorial design model for differential 
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expression analysis 

Accurate detection of significant differentially expressed genes is one of the essential steps in RNA-seq 

work-flow. RNA-seq data is heteroscedastic in nature, meaning that, some genes have a higher variance 

than others. However, the ultimate rationale in the choice of the tool for DE analysis is based on ability 

of an algorithm which could leverage all caveats present in the datasets. In our case, we had 82 samples 

from 45 patients, from 2 disease stages with corresponding matching diagnosis (primary sample) and 

relapse from each patient. However, for 8 individual patients, we had either of ID or REL samples. And 

DESeq2 has no statistical function to leverage this sample imbalance and biological dependency or 

confounders. The differential expression analysis using R-Bioconductor, LIMMA Voom, accommodates 

the mean-variance relationship using precision weights calculated by the Voom function and has 

additional features to accommodate the co-founders within our dataset. 

4.4  Functional enrichment analysis of lncRNAs 

The high throughput technologies have enabled a detailed exploration of lncRNAs in different diseases. 

Functional association of lncRNAs is a daunting task, due to low expression rate, and cell or tissue-

specificity. However, the functional role, if any, of these lncRNAs, are largely unexplored. Unlike 

protein-coding genes, lncRNAs have no functional databases like DAVID, reactome, or Panther. 

Recently, there are methods like “guilt-by-association” approach is used to identify potential functions 

of lncRNAs. By systematically applying this approach we defined the functions of our subtype-specific 

and relapse-specific lncRNAs. The approach is based on the hypothesis described in several earlier 

studies, that lncRNAs exert their functions by regulating neighboring (cis) and distally (trans) located 

protein-coding genes. The correlation-based “guilt-by-association” approach is based on the hypotheses 

that co-expressed genes are more likely to be co-regulated, or share the same functions. Compared to 

other methods, including genome-wide-clustering, which is based on hierarchical clustering, L-means 

and self-organizing maps (SOMs) require some form of a selection of cluster number or size. Therefore, 

these methods require careful selection of parameters to ensure that the clusters obtained would result in 

reliable conclusions. The network approach is another method similar to clustering approach, which is a 

computationally difficult task, even though there exist several algorithms and statistical approaches for 

this purpose. 

Functional enrichment analysis is mostly done using the database. For example, Database for Annotation 

Visualization and Integrated Discovery (DAVID) (Huang, Sherman, & Lempicki, 2008), and Gene Set 

Enrichment Analysis (GSEA) (Y. Lee, Huang, & Zhang, 2006; Subramanian et al., 2005). However, one 
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drawback of such tools is since these databases are growing dramatically and it becomes more difficult 

for those enrichment tools to include that updated information. Therefore, the need for an enrichment 

tool which performs the real-time analysis is required. We used Gene Set Clustering based on Functional 

annotations (GeneSCF) for the functional enrichment analysis. GeneSCF is a relatively new tool which 

performs real-time functional enrichment analysis. GeneSCF makes use of source databases directly 

while enrichment analysis is performed. This tool is a more reliable compared to its predecessors mainly 

because of its real-time analysis nature (Subhash & Kanduri, 2016). 

4.5  DNA methylation array on subtype-specific lncRNAs profiling 

We used Illumina's Infinium HumanMethylation450 BeadChip for profiling lncRNAs within our BCP-

ALL samples. Compared to the current methods for genome-wide DNA methylation profile such as 

tilling microarrays and bisulfite genomic DNA sequencing of selected regions, the Illumina's Infinium 

HumanMethylation450 BeadChip has its advantages. For instance, these methods (tilling micro-arrays 

and bisulfite genomic DNA sequencing) require large amounts of sample material and labor, making it 

difficult to use in large-scale studies where there is a limited number of samples are used. The Infinium 

HumanMethylation450 array makes it possible to assess the methylation status of >450 000 CpGs located 

throughout the genome, which means it covers 96% of CpG or known as CGIs (regions where cytosine 

nucleotide is followed by guanine nucleotide, separated by a phosphate group) islands within the 

genomes, offering a comprehensive coverage with high-throughput compatibility to large sample size 

(Dedeurwaerder et al., 2014). The signal intensity is measured using an Illumina scanner (iScan) to 

generate the beta values. 

4.6  Unsupervised hierarchal clustering revealed lncRNAs expression and 

methylation pattern correlated with established molecular subtypes of BCP-

ALL 

Unsupervised hierarchal clustering of lncRNAs expression and DNA methylation data identified the 

robust classification of previously established BCP-ALL subtypes from 45 relapsed patients. Emerging 

evidences have shown that lncRNAs can be used as a classifier in the molecular subtypes of different 

solid tumors, including, ovarian cancer, glioma, and lung squamous cell carcinoma (Du et al., 2013). Of 

the few studies performed in leukemias, most have analyzed the association of lncRNAs in AML (Lei et 

al., 2017) and pediatric ALL (Gioia et al., 2017) classification there are no much comprehensive studies 

on BCP-ALL subtypes. Furthermore, our study framework is based on the relapsed BCP-ALL patients 
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from different age groups of both pediatric and adult cases. This observation was true for DNA-

methylation dataset and 1534 subtype-specific and 1118 differentially methylated lncRNAs. Taken 

together, our analysis provides insights of lncRNA-based stratification of BCP-ALL patients on the 

established molecular subtypes of ALL. 

4.7  Validated set of BCP-ALL subtype-specific lncRNAs 

We further corroborated the ability of lncRNAs to classify the established molecular subtypes in an 

already processed independent validation cohort of 47 BCP-ALL patients.  In line with our observation, 

we identified similar clusters of molecular subtypes based on lncRNAs expression profile in the 

independent validation cohort upon unsupervised hierarchical clustering. This result strengthens our 

preliminary observation that subtype-specific lncRNAs can be used as classifiers like PC genes in 

molecular subtypes of BCP-ALL. In-depth transcriptomic analyses using RNA-seq revealed that 

lncRNAs profiling could recapitulate the molecularly defined subtypes of BCP-ALL, which agrees with 

the findings of recent studies (W. Zhao, Luo, & Jiao, 2014). 

4.8  BCP-ALL subtype-specific lncRNAs showing oncogene properties like drug 

resistance 

Besides the subtype-specificity, we also identified previously detected/described lncRNAs within our set. 

A closer look at these molecular subtype–specific lncRNAs identified 23 lncRNAs previously validated 

and reported as onco-lncRNAs in different cancers including leukemia. The representative examples of 

these onco-lncRNAs in the subtypes are discussed in the following session. For example, tumor 

suppressor GAS5 is up-regulated in the DUX4 subtype; it has been reported to be related to cell-cycle 

arrest and apoptosis properties in other cancer types (Nobili et al., 2016). Recently, an isoform of GAS5 

lncRNAs (GAS6-AS2) (Bester et al., 2018) is reported to be associated with chemotherapy resistance in 

AML. However, there are no direct reports of GAS5 in BCP-ALL subtypes. Notably, the highly expressed 

MIR155HG lncRNA mainly associated with B-cell malignancies (CLL) and B-cell receptor signaling 

was down-regulated within the DUX4 subtype (Vargova et al., 2011). MIR155HG associated with 

aggressive phenotype in cytogenetically normal acute myeloid leukemia (CN-AML) was found to be 

down-regulated in DUX4 subtype compared to others. Another example is lncRNA PVT1, which is 

widely reported in AML is up-regulated in the DUX4 subtype. The lincRNA MIAT up-regulated in Ph-

like subtype within our cohort, over-expression of MIAT is reported to be associated with CLL (Sattari 

et al., 2016). The lincRNA CCDC26 (Hirano et al., 2015) associated with cell proliferation, 
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differentiation and apoptosis in AML is up-regulated Ph-like subtype. Besides, the known lncRNAs, we 

have identified novel lncRNAs as BCP-ALL subtype-specific lncRNAs. Taken together, these subtype-

specific lncRNAs signature from different molecular subtypes may serve in defining the core lncRNAs 

that orchestrate the key oncogenic properties of BCP-ALL subtypes. 

4.9  Relapse-specific lncRNAs markers in BCP-ALL subtypes 

A hand full of studies consistent with our studies reported the role of lncRNAs in relapse and its 

importance as prognostic factor (Zhonghao Wang, Wu, Feng, Zhao, & Tao, 2017) in several cancer types 

(Ali et al., 2018). However, so far there are no studies reporting relapse specific lncRNAs in BCP-ALL 

subtypes. Like protein-coding RNAs, several lncRNAs are reported as markers of other diseases.  In our 

analyses, we found associations between lncRNAs and relapse on three different subtypes of BCP-ALL. 

One of the leading causes of death in ALL patients is the disease relapse. Chemotherapy resistance of 

relapsed blasts compared to what is observed in diagnosis is a key hallmark of ALL relapse. Innovative 

strategies are urgently required due to the frequent failure of conventional salvage chemotherapy, 

including intensified drug schedules and stem cell transplantation, in the treatment of relapsed ALL 

(Bhatla et al., 2014). Thus, there is always a great interest in characterizing the molecular drivers of 

relapsed ALL because it has a poor outcome with conventional therapy and is increasing with age 

(Iacobucci & Mullighan, 2017). 

We cataloged a comprehensive set of 941 relapse-specific lncRNAs which are driving the BCP-ALL 

progression. Initially, we looked for relapse-specific lncRNAs in adults and pediatric patients. Due to the 

heterogeneity of BCP-ALL, we could not infer any significant relapse-specific lncRNAs and thus 

investigated relapse-specific lncRNAs signature within each subtype. Within each subtype, we found that 

the relapse-specificity of lncRNAs was more pronounced than in the whole cohort (n = 82). Interestingly, 

when compared to relapse-specific mRNA signature the relapse-specific lncRNAs signature was stronger 

with clear separation between ID and REL samples for all three subtypes. Gene expression profiling of 

leukemic blasts in the matched diagnosis and relapse patient pairs in protein-coding genes has revealed 

a common gene signature reflective of relapse, gene markers involved in proliferation and cell cycle 

regulation, apoptosis, DNA repair and drug resistance (Bhatla et al., 2014). However, lncRNAs based 

relapse-specific markers are not studied much, especially in the context of BCP-ALL. 
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4.9.1  Relapse-specific onco-lncRNAs 

Although the majority of the relapse-specific lncRNAs identified were novel ones, we identified a hand 

full of previously defined onco-lncRNAs. The examples included MIAT, CCDC26, TCL6, RP11-

701P16.5, MIR503 Host Gene (MIR503HG), MIR17HG and GAS5, with cell-cycle arrest and apoptosis 

properties in cancer (Kitagawa et al., 2013). In the DUX4 subtype, we observed lncRNAs, T-cell 

leukemia/lymphoma 6 (TCL6), which was up-regulated in diagnosis compared to relapse. TCL6 is 

reported to its leukemogenesis properties in T cell leukemia (H. et al., 2017). However, its association 

with BCP-ALL is not documented, and its functions are unclear. The results of our “guilt-by-association” 

study highlights its association with the PI3K-Akt signaling pathway in DUX4 subtype. 

Other examples are, the BDNF antisense RNA (BDNF-AS) and Insulin-like growth factor 2 antisense 

(IGF2-antisense, embryonic stem cell-related (ESRG) are up-regulated in the diagnosis and LINC00312 

up-regulated in relapsed samples. Among the disease-associated lncRNAs, in Ph-like, we observed 

SNHG3 (a marker for malignant melanoma), as up-regulated in relapse stages. The lncRNAs 

AP000688.29 was down-regulated and MIR17HG was up-regulated in relapse. The lncRNA 

MIR17HG46 was reported to suppress apoptosis in myc-driven lymphomas (Ott, Rosenwald, & Campo, 

2013) and was DE in relapse compared to diagnosis samples within the Ph-like subtype. In NH-NeH 

subtype we observed AP000688.29 and IFNG-AS1 as down-regulated, whereas MBNL1 antisense RNA 

1 (MBNL1-AS1), CTA-445C9.14 and RP1-153G14.4 were up-regulated in relapse samples. Overall, the 

relapse-specific lncRNAs highlights the oncogenic relevance in BCP-ALL subtypes. 

4.9.2  Relapse-specific lncRNAs as prognostic markers 

Besides the oncogenic properties, lncRNAs can act as prognostic markers and aid for disease diagnosis 

and treatment (Ali et al., 2018).  We identified a significant enrichment of a subset of relapse-specific 

lncRNAs (n = 61) with recently identified independent prognostic markers from 14 different solid cancer 

types. Out of these, for example, lncRNA LUCAT1 was previously reported for its role in drug resistance 

in solid cancer (Z. Han & Shi, 2018). Within the DUX4 subtype, we identified up-regulated expression 

of LUCAT1 at relapse, providing a novel insight into treatment resistance for BCP-ALL subtypes. 

Together, this illustrates that the catalog of relevant lncRNAs in different subtypes of BCP-ALL serves 

as subtype-specific and relapse-specific markers with the potential of RNA based treatments for BCP-

ALL subtypes. 

4.10  Molecular functions identified using subset-specific and relapse-specific 
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lncRNAs 

The subtype-specific and relapse-specific lncRNAs showed significant correlation between genes 

enriched in key pathways associated with cell proliferation, growth, survival, metabolism, and autophagy 

based on the correlations with their neighboring and distinct protein-coding genes. These findings 

indicate that BCP-ALL subtype-specific and relapse-specific lnRNAs are associated with tumorigenesis 

of hematopoietic cells. LncRNAs are emerging as new players in cancer, due to their potential roles in 

both oncogenic and tumour suppressive pathways. They are frequently dysregulated in a variety of 

human cancers; however, the biological functions of a vast majority of them remain unknown. Recently, 

evidence of lncRNAs molecular mechanisms and function has begun to accumulate, providing insight 

into the functional roles they may play in tumorigenesis (Serviss, Johnsson, & Grandér, 2014). 

The guilt-by-association method designates potential or putative functions to lncRNAs based on its co-

expression of characterized PC genes. The certainty of the association is based on the condition of 

available expression data. For instance, time-dependent data can be notably crucial because aberrant 

regulation of expression can be informative of the certain pathways by which lncRNAs functions 

(Bartonicek, Maag, & Dinger, 2016). Our study consists of time-dependent dataset from two disease 

stages. The appropriateness and popularity of this approach have given rise to several subtypes of 

analyses including the cis and trans-correlation-based association. 

We identified a remarkable fraction of subtype-specific lncRNAs (621 out 1534) with significant co-

expression with their cis and trans located protein-coding genes. Notably, 32% of these lncRNAs are 

involved in pathways associated with proliferation, apoptosis and differentiation in leukemia, including, 

JAK-STAT, mTOR, PIK3-AKT, TGF-beta, MAPK, P53, hippo and NF-kappa B signaling pathways from 

both DUX4 and Ph-like subtypes. The co-expression between the protein-coding genes and subtype-

specific lncRNAs provided a possible explanation of co-regulation or co-activation of lncRNAs, with 

their cis and trans PC genes. We also demonstrated that several lncRNAs were co-expressed with 

oncogenes associated with leukemias. 

4.10.1  Potential functions of DUX4 specific DE lncRNAs associated with signaling pathways 

In the DUX4 subtype, we report lncRNAs signature (n = 185, both cis and trans based analysis) 

associated with pathways reported to play a key role in leukemogenesis, such as TGF-Beta signaling 

pathway, P53, Endocytosis, hippo, proteoglycans, and pathways in cancer. Considering the functional 

nexus between these lncRNAs and leukemia related pathways, targeting these lncRNAs provide novel 

insights for new therapeutic targets. 
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In ALL, TGFB has complex roles; it regulates the proliferation of the distinct myeloid stem cells (Dong 

& Blobe, 2006). Recently there are some lncRNAs documented to be associated with TGFB gene. For 

instance, Lnc-ATB, a TGFB2 induced lncRNA that could mediate TGF-β-induced epithelial-

mesenchymal transition and has been reported to promote metastasis in various solid cancer such as 

hepatocellular carcinoma, colorectal cancer, gastric cancer, and breast cancer. However, the lncRNAs 

associated with BCP-ALL subtypes are not reported. We identified the antisense lncRNA, RP11-

224O19.2 and other novel lncRNAs significantly correlated with TGFB, and are enriched in TGF-beta 

pathway, indicating their functional relatedness or regulatory relationships. Interestingly, the subtype-

specific lncRNAs and subtype-specific PC are globally predicted to activate or inhibit the same key 

signaling pathways in the DUX4 subtype. 

4.10.2  Potential functions of Ph-like specific DE lncRNAs associated with signaling pathways 

The Ph-like subtype is both molecularly and functionally well characterized based on mRNAs/protein 

expression levels, whereas non-coding genes are not much studied. We have identified a list of 24 novel 

dysregulated Ph-like specific lncRNAs crucial in signaling pathways associated with Ph-like subtype. 

The pathways controlling the cell proliferation, differentiation, and survival of hematopoietic cells were 

identified based on functional enrichment analysis, for example, the PI3K and mTOR signaling 

pathways. In addition to that, our functional predictions identified other prominent pathways which 

trigger chemotherapy resistance in BCP-ALL, including, JAK-STAT2, Cytokine-cytokine receptor and 

endocytosis pathways. The lncRNAs associated with these pathways are antisense or sense intronic to 

the mRNA genes with a significant co-expression pattern. Characterization of the lncRNAs involved in 

this pathway may be of interest in the search for new potential therapies. 

Some of the functions predicted here have been validated by previous studies, suggesting that our guilt-

by-association approach is valid. For example, lncRNA AC002454.1 was recently reported to regulate 

CDK6 to participate in cell cycle dysfunction in the endometriosis pathogenesis. LncRNA AC002454.1 

is an antisense lncRNA of CDK6 gene. The results of our guilt-by-association study highlight an 

association of this lncRNA with the PIK3-Akt pathway. Both the CDK6 gene and antisense AC002454.1 

are significantly co-expressed and up-regulated in the Ph-like subtype. 

Interestingly, we observed a significant co-expression between oncogene IL2RA and its antisense 

lncRNA RP11-536K7.5. Recently, IL2RA gene was found to be specifically up-regulated by pre-B cell 

receptor (pre-BCR) signaling during early B cell development, and cells with oncogenically activated 

tyrosine kinases by a manifold to pre-BCR signalling in both in Ph+ALL and in Ph-like ALL (J.-W. Lee 
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et al., 2015). In Ph-like subtype, we observed IL2RA gene enriched in the cytokine-kinase signaling 

pathway. Both IL2RA and RP11-536K7.5 were up-regulated in Ph-like samples. The ability of IL2RA to 

stabilize oncogenic signaling strength in Ph-like ALL is important for leukemia initiation and 

development. Our analysis indicates the co-regulation or co-regulation of RP11-536K7.5 with IL2RA 

gene, which provided a new context for further characterization of RP11-536K7.5 lncRNA. We predicted 

the positive association between cytokine-kinase signaling pathway and RP11-536K7.5 lncRNA, but the 

mechanisms involved are still poorly understood, therefore, further studies are needed to better 

understand RP11-536K7.5/ cytokine-kinase signaling transduction. 

It was noteworthy that subtype-specific lncRNAs and subtype-specific PC are globally predicted to 

activate or inhibit the same pathways. However, some exclusivity appeared. For example, lncRNAs 

specific to the Ph-like subtype particularly involved in the activation of mTOR and the PI3K-Akt 

signaling pathway. Considering the functional nexus between Ph-like specific lncRNAs and the 

activation of pathways such as mTOR and PI3K signaling pathways, targeting those lncRNAs may be a 

promising novel therapeutic option for BCP-ALL subtypes provided a new context for further 

characterization of RP11-536K7.5 lncRNA. We predicted the positive association between cytokine-

kinase signaling pathway and RP11-536K7.5 lncRNA, but the mechanisms involved are still poorly 

understood, therefore, further studies are needed to better understand RP11-536K7.5/ cytokine-kinase 

signaling transduction. 

4.10.3 Molecular and functional association of relapse-specific lncRNAs signature 

We applied the “guilt-by-association” approach also on the relapse-specific lncRNAs markers within the 

subtypes for investigating their functions. However, the relapse-specific signature from the Ph-like and 

the NH-HeH subtypes did not show any significant enrichment of pathways. A potential reason can be 

that the DUX4 subtype is particularly perturbed in both relapse-specific and subtype-specific 

classification, and therefore the number of dysregulated lncRNAs are high compared to the other two 

subtypes. 

In the DUX4 subtype, a notable observation was a strong correlation between relapse-specific lncRNAs 

with genes involved in the activation of metabolic pathways and signaling pathways. We identified 112 

relapse-specific lncRNAs co-expressed with 29 PC genes activated in metabolic pathways. Out of this 

112 lncRNA, eight lncRNAs were previously reported as biomarker lncRNAs in the context of various 

cancers. For example, we identified oncogenic lncRNA LUCAT1 reported to be associated with poor 

prognosis in lung cancer. In addition to that, eight relapse-specific lncRNAs associated with metabolic 
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pathways in the DUX4 subtype was previously reported due to their ability to dysregulate metabolic 

pathways in multiple tumor contexts. Taken together, the global co-expression analysis and gene-

expression profiling suggest important and previously unappreciated roles of lncRNAs in the BCP-ALL 

subtypes. 

4.11  Differentially methylated lncRNAs in BCP-ALL subtypes 

We are demonstrating 1118 epigenetically modified novel lncRNAs and previously reported disease-

associated lncRNAs within each subtype. Our work additionally underscores the importance of 

epigenetic alterations in modulating lncRNAs transcriptional activities. Although previous studies have 

demonstrated cross-talk between DNA methylation and transcriptional activities of lncRNAs, their role 

in the aetiology of BCP-ALL subtypes has not been investigated. DNA methylation analyses of lncRNAs 

revealed that DNA methylation might underlie the differential expression of BCP-ALL subtype-specific 

lncRNAs. 

4.11.1  Epigenetically altered lncRNAs within DUX4 subtype 

In the DUX4 subtype, we identified lincRNA PVT1, LINC00312 and TCL6 as differentially hypo-

methylated in the promoter region. Interestedly, lincRNA PVT1 is differentially hypo-methylated, with 

an up-regulated expression pattern in DUX4 samples. The lincRNA PVT1 is a well-defined lncRNA for 

its oncogenic properties (Colombo, Farina, Macino, & Paci, 2015) with multiple roles in cell growth, and 

differentiation in chronic and T-cell leukemia and many other solid tumors. However, there are no studies 

in the context of BCP-ALL subtypes. 

Other interesting examples are lncRNA LINC00312, and TCL6 were extensively studied on expression 

levels, but they are not studied at the epigenetic level. We are reporting its expression and DNA 

methylation profile in BCP-ALL subtypes. Both TCL6 and LINC00312 are lowly expressed in DUX4 

samples. Intriguingly, TCL6 is differentially up-regulated in ID compared to REL condition in the DUX4 

subtype. The lncRNA TCL6 is on-lncRNA reported in CLL due to its leukemogenic properties. However, 

it is not much documented in BCP-ALL. The TCL6, on-lncRNA is hyper-methylated and negatively 

correlating its expression pattern in the DUX4 subtypes. 

In addition to leukemia related lncRNAs, we also identified certain lncRNAs with prognostic value in 

other cancers. For instance, lncRNA LINC00472 is a tumor suppressor lncRNA in breast cancer. We 

observed hypomethylation of LINC00472 at DNA-methylation level and a higher expression at the 
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transcriptome level. Besides known ones, we have identified 15 novel lncRNAs epigenetically up and 

down-regulating its expression profile in the DUX4 subtype. 

4.11.2  Epigenetically altered lncRNAs within Ph-like subtype 

In Ph-like subtype, lncRNAs such as SOX2-OT, MIR7-3HG and PVT1 are DM methylated at the 

promoter region. In Ph-like subtype, we identified PVT1 as hyper-methylated with a corresponding lower 

expression level in Ph-like samples. The lncRNA SOX2-OT is promoter hyper-methylated in the Ph-like 

subtype. Shahryari A et al. hints the genomic association of SOX2 and SOX2-OT resembles that of ANRIL 

and CDKN2B. Similarly, the lncRNA ANRIL resides in the intronic region of the protein-coding gene 

CDKN2B, in the antisense/opposite strand (Shahryari, Jazi, Samaei, & Mowla, 2015).  However, there 

are no direct reports of DNA methylation activity of SOX2-OT. 

 In addition to that, we have observed seven novel lncRNAs potentially epigenetically regulating their 

gene expression, out of these four were differentially hyper-methylated lncRNAs with down-regulated 

expression profile and three were differentially hypo-methylated lncRNAs with up-regulated expression 

profile within Ph-like samples. 

4.11.3  Epigenetically altered lncRNAs within NH-HeH subtype 

In NH-HeH subtype, we identified lncRNAs including, LINC00312, DANCR and IGF2-AS, as promoter 

differentially hypo-methylated and with a corresponding low expression level. In addition to the reported 

lncRNAs, we identified novel lncRNAs within our subtype which significantly facilitates its expression 

level. This observation was true for all three subtypes. These findings suggest that epigenetic silencing 

of lncRNA genes may be a mechanism that contributes to the dysregulation of expression of lncRNAs in 

BCP-ALL subtypes. 

Moreover, we identified 53 novel intronic and intergenic DM lncRNAs with super enhancer insulator 

chromatin markers from our subtypes, which provided a new context for further characterization. The 

probes for many lncRNA genes were not available in the DNA methylation microarray platform, some 

lncRNAs that are epigenetically regulated may not be identified in our analysis. Taken together, these 

results provide a valuable resource that will allow us to investigate epigenetically dysregulated lncRNAs 

and provided a list of subtype-specific lncRNAs whose expression is epigenetically facilitated. 
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CONCLUSIONS 

My doctoral studies covered a number of aspects pertaining to the broad field of lncRNAs defining 

subtypes of BCP-ALL. The main conclusions of this studies presented in this thesis are: 

• We present a catalog of validated subtype-specific novel lncRNAs through our integrative 

analysis demonstrating the ability of lncRNAs to classify BCP-ALL subtypes 

• Subtype-specific lncRNAs and subtype-specific protein-coding genes are globally predicted to 

activate or inhibit the same pathways, which are involved in cell proliferation, apoptosis, 

differentiation in leukemia 

• Relapse-specific lncRNAs markers in ALL subtypes and these lncRNAs are associated with both 

keys signaling and metabolic pathways 

• Identified novel and known differentially methylated subtype-specific lncRNAs. 

• Epigenetically facilitated dysregulated subtype-specific lncRNAs from these subtypes. 

Together, these data extend the spectrum of known involvement of lncRNAs in BCP-ALL subtypes and 

represents BCP-ALL subtype-specific lncRNAs involved in key signaling and metabolic pathways. 

Additionally, we highlight key lncRNAs deregulated through epigenetic mechanisms. These findings 

may open promising avenues for the future studies to investigate key bio-markers and potential 

therapeutic targets in BCP-ALL subtypes. 
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Appendix A 
Cancer associated lncRNAs from Lnc2Cancer databased lncRNAs identified within our DE BCP-ALL subtypes 

specific lncRNAs 

lncRNAs logFC Subtype 

WT1-AS 4.4467075041 DUX4 

IGF2-AS 4.9492924115 DUX4 

LINC00617 1.6149985664 DUX4 

RP11-528G1.2 1.5962063225 DUX4 

RGMB-AS1 5.9567554334 DUX4 

PVT1 1.1472967711 DUX4 

GAS5 0.7491196605 DUX4 

NAMA 2.5975131564 DUX4 

RP11-385J1.2 1.2329503925 DUX4 

EGOT -1.0943326581 DUX4 

CCDC26 -3.2170024233 DUX4 

MIR155HG -2.6518949391 DUX4 

ERICH1-AS1 -2.7489007994 DUX4 

SBF2-AS1 -1.3594259494 DUX4 

RP11-473M20.11 -0.8438258236 DUX4 

RP4-583P15.10 -1.5308828468 DUX4 

EGOT 1.274358117 Ph-like 

CCDC26 2.6225278418 Ph-like 

GAS6-AS1 1.9037862297 Ph-like 

SOCS2-AS1 1.0747748025 Ph-like 

ZEB1-AS1 1.5226204666 Ph-like 

ERICH1-AS1 2.213397887 Ph-like 

RP11-473M20.11 1.1719914008 Ph-like 

IGF2-AS -2.0742530532 Ph-like 
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RGMB-AS1 -3.4663322292 Ph-like 

CRNDE -0.9892797054 Ph-like 

MYCNOS 1.7545902012 near-haploid 

ERICH1-AS1 3.06193078 near-haploid 

FTX 0.793491499 near-haploid 

LINC00961 2.3894010913 near-haploid 

WT1-AS -3.1921542827 near-haploid 

GAS6-AS1 -1.7290376602 near-haploid 

RP11-528G1.2 -1.2262908531 near-haploid 

GAS5 -0.90656684 near-haploid 

NAMA -2.5361169641 near-haploid 

 

Appendix B 
58 DUX4 specific lncRNAs correlated with the cis PC genes involved in different signaling pathways which are significantly 

enriched within DUX4 subtype 

Cis PC genes DUX4 specific lncRNAs Pearson correlation rate P-value 

ERG RP11-719K4.6 0.5768319431 1.41E-08 

ERG AC135048.13 0.5769253172 0.000000014 

ERG VIPR1-AS1 0.5724957843 1.92E-08 

FCGR1A CTD-2616J11.10 0.7385737284 2.39E-15 

FCGR1A AC069363.1 0.5663844552 2.92E-08 

FCGR1A CTD-2616J11.10 0.7385737284 2.39E-15 

FCGR1A AC069363.1 0.5663844552 2.92E-08 

FCGR1A CTD-2616J11.10 0.7385737284 2.39E-15 

FCGR1A AC069363.1 0.5663844552 2.92E-08 
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IGF1R CTD-2528A14.1 0.7109735395 7.23E-14 

IGF1R CTC-523E23.4 0.6726852059 4.47E-12 

IGF1R CTB-25B13.9 0.6484099706 4.51E-11 

IGF1R RP11-1157N2-B.2 0.6173232018 6.54E-10 

IGF1R RP11-314O13.1 0.6143967848 8.28E-10 

IGF1R RP11-654A16.3 0.8986194406 2.34E-30 

IGF1R RP11-35O15.1 0.6743790376 3.77E-12 

IGF1R CTD-2134A5.3 0.5981854606 0.000000003 

IGF1R LINC00637 0.5503288421 8.51E-08 

IGF1R RP11-725G5.2 0.573910225 1.73E-08 

IGF1R RP11-186F10.2 0.6320289475 1.92E-10 

IGF1R RP11-87C12.5 0.704751345 1.48E-13 

IGF1R RP11-264E20.1 0.6218023229 4.53E-10 

IGF1R AF131215.3 0.6213166158 4.71E-10 

IGF1R RP11-166A12.1 0.6229334601 4.12E-10 

IGF1R CTD-2516F10.2 0.5737725158 1.75E-08 

IGF1R CTD-2187J20.1 0.5654915282 0.000000031 

IGF1R SMAD1-AS2 0.583731427 8.62E-09 

IGF1R RP11-713M15.1 0.5534522823 6.94E-08 

IGF1R SPTY2D1-AS1 0.6839701765 1.41E-12 

IGF1R RGMB-AS1 0.6594708095 1.61E-11 

IGF1R RP11-696N14.1 0.6367590983 1.27E-10 

IGF1R RP11-744N12.3 0.5740255383 1.72E-08 

IGF1R RP11-624M8.1 0.7066372789 1.19E-13 

IGF1R RP11-528G1.2 0.614170638 8.44E-10 

IGF1R AC114877.3 0.6621082443 1.26E-11 

IGF1R AC062029.1 0.6091826178 1.26E-09 

IGF1R RP11-523O18.5 0.6478935766 4.73E-11 
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IGF1R RP11-465M18.1 0.6761671632 3.15E-12 

IGF1R RP11-63K6.7 0.5629188709 0.000000037 

IGF1R RP11-298A8.2 0.5590243606 0.000000048 

IGF1R LINC00954 0.6288612965 2.51E-10 

IGF1R RP11-563N6.6 0.6119674043 0.000000001 

IGF1R PCAT6 0.6841884724 1.38E-12 

IGF1R RP11-735G4.1 0.6342321907 1.58E-10 

IGF1R RP5-1077I2.3 0.5660757169 2.98E-08 

IGF1R LINC00694 0.568809002 2.47E-08 

IGF1R AC015977.6 0.624252876 3.7E-10 

IGF1R RP1-293L8.2 0.6415439113 8.36E-11 

IGF1R RP3-395M20.2 0.5851375181 7.78E-09 

IGF1R RP11-15H20.6 0.6028228348 2.06E-09 

IGF1R SRRM2-AS1 0.6099631582 1.18E-09 

IGF1R LINC01006 0.5932008351 4.29E-09 

IGF1R IGF2-AS 0.6394800895 1E-10 

IGF1R CTD-2528A14.1 0.7109735395 7.23E-14 

IGF1R CTC-523E23.4 0.6726852059 4.47E-12 

IGF1R CTB-25B13.9 0.6484099706 4.51E-11 

IGF1R RP11-1157N2-B.2 0.6173232018 6.54E-10 

IGF1R RP11-314O13.1 0.6143967848 8.28E-10 

IGF1R RP11-654A16.3 0.8986194406 2.34E-30 

IGF1R RP11-35O15.1 0.6743790376 3.77E-12 

IGF1R CTD-2134A5.3 0.5981854606 0.000000003 

IGF1R LINC00637 0.5503288421 8.51E-08 

IGF1R RP11-725G5.2 0.573910225 1.73E-08 

IGF1R RP11-186F10.2 0.6320289475 1.92E-10 

IGF1R RP11-87C12.5 0.704751345 1.48E-13 



 

 

100 

 

IGF1R RP11-264E20.1 0.6218023229 4.53E-10 

IGF1R AF131215.3 0.6213166158 4.71E-10 

IGF1R RP11-166A12.1 0.6229334601 4.12E-10 

IGF1R CTD-2516F10.2 0.5737725158 1.75E-08 

IGF1R CTD-2187J20.1 0.5654915282 0.000000031 

IGF1R SMAD1-AS2 0.583731427 8.62E-09 

IGF1R RP11-713M15.1 0.5534522823 6.94E-08 

IGF1R SPTY2D1-AS1 0.6839701765 1.41E-12 

IGF1R RGMB-AS1 0.6594708095 1.61E-11 

IGF1R RP11-696N14.1 0.6367590983 1.27E-10 

IGF1R RP11-744N12.3 0.5740255383 1.72E-08 

IGF1R RP11-624M8.1 0.7066372789 1.19E-13 

IGF1R RP11-528G1.2 0.614170638 8.44E-10 

IGF1R AC114877.3 0.6621082443 1.26E-11 

IGF1R AC062029.1 0.6091826178 1.26E-09 

IGF1R RP11-523O18.5 0.6478935766 4.73E-11 

IGF1R RP11-465M18.1 0.6761671632 3.15E-12 

IGF1R RP11-63K6.7 0.5629188709 0.000000037 

IGF1R RP11-298A8.2 0.5590243606 0.000000048 

IGF1R LINC00954 0.6288612965 2.51E-10 

IGF1R RP11-563N6.6 0.6119674043 0.000000001 

IGF1R PCAT6 0.6841884724 1.38E-12 

IGF1R RP11-735G4.1 0.6342321907 1.58E-10 

IGF1R RP5-1077I2.3 0.5660757169 2.98E-08 

IGF1R LINC00694 0.568809002 2.47E-08 

IGF1R AC015977.6 0.624252876 3.7E-10 

IGF1R RP1-293L8.2 0.6415439113 8.36E-11 

IGF1R RP3-395M20.2 0.5851375181 7.78E-09 
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IGF1R RP11-15H20.6 0.6028228348 2.06E-09 

IGF1R SRRM2-AS1 0.6099631582 1.18E-09 

IGF1R LINC01006 0.5932008351 4.29E-09 

IGF1R IGF2-AS 0.6394800895 1E-10 

IGF1R CTD-2528A14.1 0.7109735395 7.23E-14 

IGF1R CTC-523E23.4 0.6726852059 4.47E-12 

IGF1R CTB-25B13.9 0.6484099706 4.51E-11 

IGF1R RP11-1157N2-B.2 0.6173232018 6.54E-10 

IGF1R RP11-314O13.1 0.6143967848 8.28E-10 

IGF1R RP11-654A16.3 0.8986194406 2.34E-30 

IGF1R RP11-35O15.1 0.6743790376 3.77E-12 

IGF1R CTD-2134A5.3 0.5981854606 0.000000003 

IGF1R LINC00637 0.5503288421 8.51E-08 

IGF1R RP11-725G5.2 0.573910225 1.73E-08 

IGF1R RP11-186F10.2 0.6320289475 1.92E-10 

IGF1R RP11-87C12.5 0.704751345 1.48E-13 

IGF1R RP11-264E20.1 0.6218023229 4.53E-10 

IGF1R AF131215.3 0.6213166158 4.71E-10 

IGF1R RP11-166A12.1 0.6229334601 4.12E-10 

IGF1R CTD-2516F10.2 0.5737725158 1.75E-08 

IGF1R CTD-2187J20.1 0.5654915282 0.000000031 

IGF1R SMAD1-AS2 0.583731427 8.62E-09 

IGF1R RP11-713M15.1 0.5534522823 6.94E-08 

IGF1R SPTY2D1-AS1 0.6839701765 1.41E-12 

IGF1R RGMB-AS1 0.6594708095 1.61E-11 

IGF1R RP11-696N14.1 0.6367590983 1.27E-10 

IGF1R RP11-744N12.3 0.5740255383 1.72E-08 

IGF1R RP11-624M8.1 0.7066372789 1.19E-13 
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IGF1R RP11-528G1.2 0.614170638 8.44E-10 

IGF1R AC114877.3 0.6621082443 1.26E-11 

IGF1R AC062029.1 0.6091826178 1.26E-09 

IGF1R RP11-523O18.5 0.6478935766 4.73E-11 

IGF1R RP11-465M18.1 0.6761671632 3.15E-12 

IGF1R RP11-63K6.7 0.5629188709 0.000000037 

IGF1R RP11-298A8.2 0.5590243606 0.000000048 

IGF1R LINC00954 0.6288612965 2.51E-10 

IGF1R RP11-563N6.6 0.6119674043 0.000000001 

IGF1R PCAT6 0.6841884724 1.38E-12 

IGF1R RP11-735G4.1 0.6342321907 1.58E-10 

IGF1R RP5-1077I2.3 0.5660757169 2.98E-08 

IGF1R LINC00694 0.568809002 2.47E-08 

IGF1R AC015977.6 0.624252876 3.7E-10 

IGF1R RP1-293L8.2 0.6415439113 8.36E-11 

IGF1R RP3-395M20.2 0.5851375181 7.78E-09 

IGF1R RP11-15H20.6 0.6028228348 2.06E-09 

IGF1R SRRM2-AS1 0.6099631582 1.18E-09 

IGF1R LINC01006 0.5932008351 4.29E-09 

IGF1R IGF2-AS 0.6394800895 1E-10 

IGF1R CTD-2528A14.1 0.7109735395 7.23E-14 

IGF1R CTC-523E23.4 0.6726852059 4.47E-12 

IGF1R CTB-25B13.9 0.6484099706 4.51E-11 

IGF1R RP11-1157N2-B.2 0.6173232018 6.54E-10 

IGF1R RP11-314O13.1 0.6143967848 8.28E-10 

IGF1R RP11-654A16.3 0.8986194406 2.34E-30 

IGF1R RP11-35O15.1 0.6743790376 3.77E-12 

IGF1R CTD-2134A5.3 0.5981854606 0.000000003 
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IGF1R LINC00637 0.5503288421 8.51E-08 

IGF1R RP11-725G5.2 0.573910225 1.73E-08 

IGF1R RP11-186F10.2 0.6320289475 1.92E-10 

IGF1R RP11-87C12.5 0.704751345 1.48E-13 

IGF1R RP11-264E20.1 0.6218023229 4.53E-10 

IGF1R AF131215.3 0.6213166158 4.71E-10 

IGF1R RP11-166A12.1 0.6229334601 4.12E-10 

IGF1R CTD-2516F10.2 0.5737725158 1.75E-08 

IGF1R CTD-2187J20.1 0.5654915282 0.000000031 

IGF1R SMAD1-AS2 0.583731427 8.62E-09 

IGF1R RP11-713M15.1 0.5534522823 6.94E-08 

IGF1R SPTY2D1-AS1 0.6839701765 1.41E-12 

IGF1R RGMB-AS1 0.6594708095 1.61E-11 

IGF1R RP11-696N14.1 0.6367590983 1.27E-10 

IGF1R RP11-744N12.3 0.5740255383 1.72E-08 

IGF1R RP11-624M8.1 0.7066372789 1.19E-13 

IGF1R RP11-528G1.2 0.614170638 8.44E-10 

IGF1R AC114877.3 0.6621082443 1.26E-11 

IGF1R AC062029.1 0.6091826178 1.26E-09 

IGF1R RP11-523O18.5 0.6478935766 4.73E-11 

IGF1R RP11-465M18.1 0.6761671632 3.15E-12 

IGF1R RP11-63K6.7 0.5629188709 0.000000037 

IGF1R RP11-298A8.2 0.5590243606 0.000000048 

IGF1R LINC00954 0.6288612965 2.51E-10 

IGF1R RP11-563N6.6 0.6119674043 0.000000001 

IGF1R PCAT6 0.6841884724 1.38E-12 
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IGF1R RP11-735G4.1 0.6342321907 1.58E-10 

IGF1R RP5-1077I2.3 0.5660757169 2.98E-08 

IGF1R LINC00694 0.568809002 2.47E-08 

IGF1R AC015977.6 0.624252876 3.7E-10 

IGF1R RP1-293L8.2 0.6415439113 8.36E-11 

IGF1R RP3-395M20.2 0.5851375181 7.78E-09 

IGF1R RP11-15H20.6 0.6028228348 2.06E-09 

IGF1R SRRM2-AS1 0.6099631582 1.18E-09 

IGF1R LINC01006 0.5932008351 4.29E-09 

IGF1R IGF2-AS 0.6394800895 1E-10 

THBS4 RP11-455F5.5 0.5834534532 8.79E-09 

THBS4 AC006369.2 0.581104785 1.04E-08 

THBS4 RP11-206L10.3 0.6205508833 5.02E-10 

THBS4 AC009495.2 0.5729739692 1.85E-08 

THBS4 LINC01001 0.5885699321 6.05E-09 

THBS4 RP11-455F5.5 0.5834534532 8.79E-09 

THBS4 AC006369.2 0.581104785 1.04E-08 

THBS4 RP11-206L10.3 0.6205508833 5.02E-10 

THBS4 AC009495.2 0.5729739692 1.85E-08 

THBS4 LINC01001 0.5885699321 6.05E-09 

IFNG LA16c-380H5.2 0.6021783111 2.17E-09 

IFNG RP11-229P13.19 0.6873513366 9.92E-13 

IFNG AC006369.2 0.6132095599 9.11E-10 

IFNG RP11-206L10.3 0.5639277141 3.45E-08 

IFNG AC069363.1 0.5755674534 1.54E-08 

BHLHE40 BHLHE40-AS1 0.6099960726 1.18E-09 
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TPO CTD-2134A5.4 0.5924493 4.54E-09 

 

Appendix C 
24 Cis lncRNAs correlated with genes activated in signaling pathways in Ph-like subytpe 

Cis PC genes Ph-like specific lncRNAs Pearson correlation rate P-value 

ERG AC009970.1 0.6526738535 3.05E-011 

AGAP1 AC091814.3 0.5751982452 1.58E-008 

AGAP1 AGAP1-IT1 0.8032790178 1.09E-019 

AKT3 AKT3-IT1 0.6973830726 3.37E-013 

AGAP1 CRYM-AS1 0.7090921007 9.00E-014 

ERG FLNB-AS1 0.5648719539 3.24E-008 

AGAP1 IGF2-AS 0.5689062092 2.46E-008 

IFNG MIAT 0.5516374441 7.81E-008 

MLLT4 MLLT4-AS1 0.7485779553 6.23E-016 

AGAP1 RGMB-AS1 0.6187846799 5.80E-010 

IFNG RP11-1094M14.5 0.606262208 1.58E-009 

AGAP1 RP11-125B21.2 0.6099589362 1.18E-009 

ERG RP11-228B15.4 0.6340048541 1.62E-010 

ERG RP11-229P13.20 0.5607579369 4.28E-008 

AGAP1 RP11-332H18.4 0.5736201641 1.77E-008 

AGAP1 RP11-366M4.3 0.7741984559 1.47E-017 

AKT3 RP11-382A20.2 0.6097118707 1.20E-009 

ERG RP11-473M20.7 0.5570139637 5.49E-008 
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AGAP1 RP11-481J2.2 0.5984889177 2.88E-009 

AGAP1 RP11-735G4.1 0.6853865908 1.22E-012 

AGAP1 RP11-744N12.3 0.5923224789 4.58E-009 

AGAP1 RP11-80H8.4 0.6215682327 4.62E-010 

ERG SOCS2-AS1 0.5923422688 4.58E-009 

AGAP1 ZEB2-AS1 0.55993078 4.52E-008 

Appendix D 
61 relapse-specific lncRNAs overlapped with prognostic markers (S-phase lncRNAs) from various cancers 

Hypergeometric test is done on the overlap between relapse-specific lncRNAs (864, without duplicated lncRNAs) on 634 S-phase prognostic 

lncRNAs from Pan-cancer paper, we got a P-value of 0.00026 on the overlap 

Geneid Log Fold change Subtype freq CANCERS 

ENSG00000271966 1.8985864055 Ph-like 2 KICH 

ENSG00000271966 1.8985864055 Ph-like 2 HNSC 

ENSG00000271797 1.8237031774 DUX4 1 LIHC 

ENSG00000214145 1.7741480353 NH-HeH 1 LIHC 

ENSG00000249635 1.5171090944 DUX4 1 KIRC 

ENSG00000225806 1.2744862632 DUX4 2 KIRC 

ENSG00000225806 1.2744862632 DUX4 1 LIHC 

ENSG00000267745 1.2531138011 DUX4 1 KIRC 

ENSG00000229989 1.208303717 DUX4 1 KIRC 

ENSG00000258210 1.178750383 DUX4 2 COAD 

ENSG00000224950 1.1622599607 DUX4 1 HNSC 

ENSG00000272377 1.1518481691 NH-HeH 1 STAD 

ENSG00000251141 1.0820345446 NH-HeH 1 KIRC 

ENSG00000235477 1.0368402864 DUX4 1 KIRC 

ENSG00000272377 1.0007919201 DUX4 1 STAD 

ENSG00000225431 0.9792792873 NH-HeH 1 KIRC 



 

 

107 

 

ENSG00000259005 0.9754401642 Ph-like 2 HNSC 

ENSG00000259005 0.9754401642 Ph-like 1 THCA 

ENSG00000245904 0.9697603784 NH-HeH 1 KIRC 

ENSG00000245904 0.9697603784 NH-HeH 1 HNSC 

ENSG00000253854 0.9683243951 NH-HeH 1 HNSC 

ENSG00000258458 0.9658526226 NH-HeH 2 KICH 

ENSG00000132832 0.9542306016 NH-HeH 2 KIRC 

ENSG00000132832 0.9542306016 NH-HeH 1 KIRC 

ENSG00000269275 0.950853756 Ph-like 1 KIRP 

ENSG00000273007 0.9293166535 DUX4 1 KICH 

ENSG00000229956 0.9230710207 DUX4 3 BLCA 

ENSG00000257496 0.9071366649 DUX4 1 KIRC 

ENSG00000273321 0.8869802261 Ph-like 1 KIRC 

ENSG00000232995 0.8461955111 DUX4 2 KICH 

ENSG00000254343 0.8409647741 DUX4 1 KIRC 

ENSG00000261971 0.8122099133 DUX4 1 KIRC 

ENSG00000261971 0.8122099133 DUX4 1 HNSC 

ENSG00000255142 0.8026421154 NH-HeH 1 KIRC 

ENSG00000271270 0.7972751156 DUX4 2 KICH 

ENSG00000271270 0.7972751156 DUX4 1 LIHC 

ENSG00000262903 0.790551093 NH-HeH 2 HNSC 

ENSG00000262903 0.790551093 NH-HeH 1 KIRC 

ENSG00000203327 0.7777332889 DUX4 2 KIRC 

ENSG00000203327 0.7777332889 DUX4 1 KIRC 

ENSG00000249684 0.7751868547 DUX4 1 KIRC 

ENSG00000203327 0.7723922873 NH-HeH 2 KIRC 

ENSG00000203327 0.7723922873 NH-HeH 1 KIRC 

ENSG00000224616 0.7700697066 DUX4 2 COAD 
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ENSG00000231154 0.7402699106 NH-HeH 1 HNSC 

ENSG00000225177 0.7323191686 DUX4 2 COAD 

ENSG00000225177 0.7323191686 DUX4 2 KIRC 

ENSG00000245904 0.724870551 DUX4 1 KIRC 

ENSG00000245904 0.724870551 DUX4 1 HNSC 

ENSG00000227953 0.7215896414 DUX4 3 COAD 

ENSG00000227953 0.7215896414 DUX4 2 COAD 

ENSG00000231160 0.719501534 DUX4 1 HNSC 

ENSG00000251141 0.7055409481 DUX4 1 KIRC 

ENSG00000272142 0.7051632182 DUX4 2 BLCA 

ENSG00000272142 0.7051632182 DUX4 2 BLCA 

ENSG00000237489 0.7044213697 DUX4 1 HNSC 

ENSG00000251432 0.6928448368 DUX4 2 KICH 

ENSG00000242798 0.6656524129 DUX4 2 KIRC 

ENSG00000242798 0.6656524129 DUX4 1 KIRC 

ENSG00000251661 0.6521627605 DUX4 1 BRCA 

ENSG00000179406 0.6341635179 DUX4 1 KIRC 

ENSG00000179406 0.6341635179 DUX4 1 KIRC 

ENSG00000228544 0.6248451995 DUX4 1 KIRC 

ENSG00000232931 0.6190056715 DUX4 2 HNSC 

ENSG00000232931 0.6190056715 DUX4 2 HNSC 

ENSG00000240291 0.6188511007 DUX4 2 HNSC 

ENSG00000240291 0.6188511007 DUX4 1 KIRC 

ENSG00000231770 0.5830600454 DUX4 1 BRCA 

ENSG00000260219 -0.6415049402 DUX4 1 HNSC 

ENSG00000237471 -0.696257352 DUX4 1 KIRC 

ENSG00000203999 -0.7656032616 DUX4 3 BRCA 

ENSG00000203999 -0.7656032616 DUX4 2 COAD 
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ENSG00000237476 -0.7724465539 DUX4 2 BRCA 

ENSG00000237476 -0.7724465539 DUX4 1 LUSC 

ENSG00000223486 -0.7978375931 DUX4 1 KIRC 

ENSG00000269959 -0.8649871927 DUX4 2 HNSC 

ENSG00000269959 -0.8649871927 DUX4 2 KICH 

ENSG00000261189 -0.972774636 DUX4 2 BLCA 

ENSG00000262152 -1.0599678801 DUX4 2 COAD 

ENSG00000262152 -1.0599678801 DUX4 2 COAD 

ENSG00000272502 -1.0857976669 NH-HeH 3 BRCA 

ENSG00000272502 -1.0857976669 NH-HeH 2 KIRP 

ENSG00000258701 -1.1876038012 DUX4 1 BLCA 

ENSG00000248323 -1.1894163242 DUX4 3 KICH 

ENSG00000248323 -1.1894163242 DUX4 3 KIRC 

ENSG00000234432 -1.2407728884 NH-HeH 1 HNSC 

ENSG00000259498 -1.3129758934 NH-HeH 1 BLCA 

ENSG00000261584 -1.5542111472 DUX4 1 KIRC 

ENSG00000261584 -1.5542111472 DUX4 1 HNSC 

ENSG00000229619 -1.9591715435 NH-HeH 1 THCA 

ENSG00000229619 -1.9591715435 NH-HeH 1 KIRC 
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