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Summary 

 

Cold stress is a major factor restricting plant performance and fitness. Depending on the length and 

intensity of the cold stimulus, plants respond to the stress event by alleviating immediately occurring 

adverse effects of cold stress and by inducing cold acclimation. In the case of a timely limited cold 

stimulus, Arabidopsis thaliana responds with the formation of a cold memory that modifies its 

response to a future cold stimulus, a phenomenon which is called priming. 

Short-term cold priming was previously shown to attenuate chloroplast to nucleus signalling in the 

regulation of cold-induced ZAT10 expression. In the present study, this effect was mimicked by 

transient overexpression of tAPX, but not of sAPX at 20 °C, while counteracting priming-induced tAPX 

accumulation during the lag-phase abolished the priming effect. This demonstrated that cold priming 

is mediated at the thylakoid membrane and is regulated by post-priming tAPX expression. 

Electrolyte leakage assays demonstrated that the AP2/ERF-Ib transcription factors RAP2.4c and 

RAP2.4d, that have been proposed to regulate chloroplast APX gene expression, negatively regulate 

the direct cold response and cold acclimation. RNAseq analysis of rap2.4c and rap2.4d KO plants one 

hour after transfer to 4 °C revealed stronger induction of genes that are involved in JA/ET, JA and SA 

signalling pathways than in wild type Col-0 pants. Subsequent analyses did not show differences in 

hormone contents and in sensitivity to hormone signals in rap2.4c and rap2.4d plants, demonstrating 

that misregulation of gene expression in the knock-out lines is independent of hormone availability 

and sensing. Transient overexpression of RAP2.4c and RAP2.4d also did not influence hormone-related 

transcript levels. Additionally, the lack of RAP2.4c and RAP2.4d did not affect cold priming-dependent 

attenuation of ZAT10 regulation.  

The similarities of the expression patterns of rap2.4c and rap2.4d with that of an npr1 mutant in the 

cold indicate an upstream function of both transcription factors in NPR1-mediated gene expression 

regulation. A putative target is TRXH5, which is involved in quaternary structure regulation and, 

consequently, nuclear translocation of NPR1. This gene was strongly upregulated in the rap2.4d line. 

Besides a DRE-motif, which is a known RAP2.4d binding site, the TRXH5 promoter contains a RAP2.4d 

binding motif, which was identified in the present study based on a Yeast-One-Hybrid screen with 

RAP2.4d and random genomic DNA fragments of Arabidopsis thaliana. The present study highlights 

RAP2.4d, and to a lesser extent RAP2.4c, as cold-inducible inhibitors of TRXH5 expression attenuating 

the NPR1-mediated induction of JA/ET, JA and SA responses in the early cold response. 
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Zusammenfassung 

 

Kältestress ist ein wichtiger Faktor, der das pflanzliche Wachstum limitiert. Abhängig von der Intensität 

und Dauer des Kältestimulus, induzieren Pflanzen Reaktionen, die die direkten Auswirkungen der Kälte 

bekämpfen und die längerfristige Kältetoleranz aufbauen. Im Falle eines kurzen Kältestimulus können 

Arabidopsis thaliana Pflanzen ein Gedächtnis anlegen, mit dessen Hilfe sie im Falle eines zukünftigen 

Kälteeinbruchs angepasst reagieren. Dieses Phänomen wird Priming genannt. 

Zuvor wurde gezeigt, dass Kältepriming Signale aus den Chloroplasten in den Zellkern unterdrückt, was 

zu einer modifizierten ZAT10 Expression führt. In der vorliegenden Studie wurde gezeigt, dass dieser 

Effekt durch die Überexpression von tAPX, nicht aber von sAPX bei 20 °C simuliert werden kann. Wurde 

dagegen die kälteinduzierte Akkumulation von tAPX während der lag-phase unterdrückt, wurde das 

Gedächtnis an den ersten Stimulus gelöscht. Die Daten zeigen, dass das Gedächtnis durch die tAPX 

Expression während der lag-phase und durch ihre Funktion an der Thylakoidmembran reguliert wird. 

Electrolyte leakage Versuche haben gezeigt, dass die AP2/ERF-Ib Transkriptionsfaktoren RAP2.4c und 

RAP2.4d, von denen angenommen wird, dass sie die Expression der plastidären APX Gene regulieren, 

die Kälteantwort und -akklimatisation negativ beeinflussen. RNAseq Analysen von rap2.4c und rap2.4d 

KO Linien eine Stunde nach dem Transfer in eine 4 °C Klimakammer, zeigten relativ zum Col-0 Wildtyp 

die verstärkte Expression von Genen, die in den JA/ET, JA und SA Systemen involviert sind. Die 

anschließenden Analysen der Hormonspiegel und Sensitivität gegenüber den Hormonen in rap2.4c 

und rap2.4d wiesen keine Unterschiede zum Wildtyp auf, was zeigte, dass die veränderte 

Genregulation unabhängig von Hormonspiegeln oder Hormonsensitivität war. Auch die transiente 

Überexpression von RAP2.4c und RAP2.4d hatte keinen Einfluss auf die Expression hormonassoziierter 

Gene. Außerdem hatte das Fehlen von RAP2.4c und RAP2.4d keinen Effekt auf die primingabhängige 

Regulation von ZAT10. 

Ähnlichkeiten in den Expressionsmustern von rap2.4c und rap2.4d und denen von npr1 Mutanten in 

der Kälte legen nahe, dass beide Transkriptionsfaktoren in der Signaltransduktion oberhalb von NPR1 

fungieren. Ein mögliches direktes Ziel ist TRXH5, das die Quartärstruktur von NPR1 modifiziert und 

dadurch seine Translokation in den Zellkern steuert. Dieses Gen war in rap2.4d stark induziert. Neben 

einer für RAP2.4d bekannten DRE-Bindestelle, befindet sich ein weiteres Motiv in dem TRXH5 

Promotor, das in dieser Studie durch ein Yeast-One-Hybrid Experiment mit RAP2.4d und zufälligen 

Fragmenten aus dem Arabidopsis thaliana Genom identifizierte wurde. Diese Studie zeigt RAP2.4d, 

und in geringerem Maße RAP2.4c, als kälteinduzierte Inhibitoren der TRXH5 Expression, was die NPR1-

abhängige Induktion der JA/ET, JA und SA Reaktionen in der frühen Kälteantwort hemmt.  
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1 Introduction 

 

Plants are constantly challenged by various stressful stimuli, e.g. pathogen attacks, herbivore feeding, 

competing plants, light fluctuations, nutrient limitations, water availability and variations in 

temperatures. They can sense adverse conditions and induce appropriate responses. These include 

the induction of defensive compounds upon pathogen attacks (Ausubel et al., 1995), closing of stomata 

upon drought (Raghavendra et al., 2010), modifications in photosystem composition and light usage 

efficiency in fluctuating light (Depège et al., 2003) and the production of compatible solutes at chilling 

temperatures (Hayashi et al., 1997). Single stimuli typically induce more than one response. First 

responses are induced within seconds. Typically, slower responses activate long term protection (Grant 

and Loake, 2000; Gilmour et al., 2004).  

 

1.1 Cold stress in plants 

 Perception and signalling 

Cold stress is one of the major abiotic factors limiting plant growth and crop production worldwide 

(Xin and Browse, 2000). A reduction of growth temperatures leads to an array of changes. An early and 

inevitable consequence of declining temperatures is a decrease in membrane fluidity (Murata and Los, 

1997). On the long term, the reduction of membrane fluidity is compensated by the induction of fatty 

acid desaturases, which induce double bonds in the fatty acids, restoring membrane fluidity from pre-

stress conditions (Murata and Wada, 1995).  

Another almost immediately occurring consequence of cold stress is the influx of calcium ions (Ca2+) 

into the cytosol. These ions originate from the apoplast and from the vacuole, which is a major Ca2+ 

storage in plant cells (Knight et al., 1996). This import of Ca2+ is a response to the relative change in 

temperature per time rather than a response to a certain temperature threshold (Plieth et al., 1999). 

The Ca2+ influx is required to induce cold acclimation and to induce gene expression of various COLD 

REGULATED (COR) genes (Tähtiharju et al., 1997). Treatment of alfalfa protoplasts with the membrane 

fluidizer benzyl alcohol prevents Ca2+ influx and expression of COR genes at 4 °C, whereas the 

treatment with the membrane rigidifier dimethyl sulfoxide induces calcium influx and COR gene 

expression at 25 °C (Orvar et al., 2000), demonstrating that calcium influx is a consequence of reduced 

membrane fluidity. Ca2+-permeable mechanosensitive channels called MID1-COMPLEMENTING 

ACTIVITY (MCA) 1 and 2 to contribute to the cold-induced calcium influx (Mori et al., 2018). Calcium 

influx is apparently preceded by a destabilization of the cytoskeleton structures consisting of actin 
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filaments and microtubules, as inhibition of cold-induced destabilization of the cytoskeleton prevents 

calcium influx into the cytosol and subsequent induction of downstream gene expression in the cold 

(Sangwan et al., 2002).  

Changes in cellular calcium concentrations are sensed by an array of calcium-binding proteins, such as 

CALCIUM-DEPENDENT PROTEIN KINASES (CDPK), CALCINEURIN B-LIKE (CBL) proteins and CAMODULIN 

(CaM) (Kudla et al., 1999; Chin and Means, 2000; Harmon et al., 2000). CaM is a well characterized 

calcium-binding protein which consists of two globular domains with EF hand motifs that are 

connected by a flexible α-helix. EF hand motifs, which are rich in glutamic acid (E) and phenylalanine 

(F) residues, bind single Ca2+ ions (Strynadka and James, 1989), which leads to a conformational change 

and enables interaction of CaM with target proteins (Crivici and Ikura, 1995). This induces 

conformational changes in the target proteins and modifies their activity enabling Ca2+-dependent 

functions. Ca2+-activated CaM can for example bind to the Ca2+/CALMODULIN-REGULATED RECEPTOR-

LIKE KINASE (CRLK1), which is anchored to the plasma membrane and is required for the induction of 

well-characterized cold marker genes, including CBF1, RD29A, COR15a, and KIN1 (Yang et al., 2010a). 

Signalling is mediated by phosphorylation of the MAPK/ERK KINASE KINASE 1 (MEKK1) (Yang et al., 

2010b). MEKK1 is a member of the MITOGEN-ACTIVATED PROTEIN (MAP) kinase pathway, which 

consists of a heavily interconnected three-step kinase cascade system that regulates various stress 

responses (reviewed in Xu and Zhang (2015)). In cold stress, activated MEKK1 phosphorylates MAP 

KINASE KINASE 2 (MKK2), which then phosphorylates the MAP KINASEs MPK4 and MPK6 (Teige et al., 

2004). Plants overexpressing a constitutively active allele of MKK2, show higher expression of selected 

cold-responsive genes, among them the C-REPEAT-BINDING FACTORS (CBF) 2 and 3.  

 

 The ICE-CBF-COR pathway 

The three closely related genes CBF1, CBF2 and CBF3 encode transcription factors that are master 

regulators of the cold response. The CBFs induce both short-term cold responses and long-term cold 

acclimation by binding to the promoters of their target genes (among them COR genes) and induction 

of their expression (Gilmour et al., 1998). The DNA motif, which is recognised by the CBFs, the C-repeat 

motif, contains a 5-bp core, CCGAC, which is present in various genes that are induced during cold and 

dehydration stress (Baker et al., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994; Stockinger et al., 

1997; Liu et al., 1998). CBF-regulated genes include COR15a, COR47 and COR6.6, which are marker 

genes of cold stress events. COR15a encodes an intrinsically disordered protein that folds into 

amphipathic α-helices upon mild dehydration. Due to extracellular formation of ice crystals, freezing 

stress is accompanied by dehydration of the cytosol (Steponkus, 1984), which leads to the folding of 

COR15a (Thalhammer et al., 2014). Already above-zero chilling temperatures can lead to mild 
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dehydration of the cells, because water uptake is inhibited in the cold (Beck et al., 2007). After 

structural re-organisation, COR15a binds to the inner membrane of the chloroplast envelope resulting 

in its stabilization during freezing conditions (Navarro-Retamal et al., 2018). Thus, cold-induced CBF-

dependent expression of COR15a leads to the acclimation of the plants to subsequent freezing 

temperatures.  

Under standard conditions, expression of CBF1, CBF2 and CBF3 is hardly detectable. Expression is 

induced within 15 minutes in the cold and peaks after three hours before it declines back to control 

levels after approximately 24 hours (Gilmour et al., 1998; Fowler et al., 2005). Their expression in the 

cold is predominantly regulated by the constitutively expressed transcription factor INDUCER OF CBF 

EXPRESSION 1 (ICE1) (Chinnusamy et al., 2003). Constitutive expression of ICE1 enables rapid 

regulation of its target CBF genes by posttranscriptional regulation of ICE1 activity. Phosphorylation by 

the cold-activated kinase OPEN STOMATA 1 (OST1) enhances ICE1 stability and its transcriptional 

activity (Ding et al., 2015). The ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE 

GENES 1 (HOS1) counteracts ICE1 function by ubiquitinating ICE1, which marks it for degradation via 

the 26S-proteasome pathway (Kim et al., 2015b). Furthermore, ICE1 activity is inhibited by the 

interaction with the ZIM domain proteins JAZ1 and JAZ4, which are both degraded upon JA signalling 

(Hu et al., 2013). As such, ICE1 is a convergence point integrating cold responses with other signalling 

pathways.  

Apart from the adjustment of membrane stability by desaturation and stabilization, plants cope with 

cold conditions by the increased production of compatible solutes which osmotically protect the 

cytoplasm from water loss (Steponkus, 1984). Compatible solutes comprise various classes of 

molecules including low molecular weight saccharides such as sucrose, raffinose and maltose as well 

as amino acids and their derivates such as proline and glycinebetaine (Hayashi et al., 1997; Guy et al., 

2008). As a metabolomic study has demonstrated, cold-induced shifts in the metabolome are more 

pronounced in the Arabidopsis accession Wassilewskija-2 (Ws-2) than in the accession Cape Verde 

Islands-1 (Cvi-1), which correlated with their freezing tolerance (Cook et al., 2004). The same study has 

shown, that 256 (79 %) out of 325 metabolites that are upregulated in Ws-2 in the cold, also 

accumulate in CBF3 overexpressing plants, indicating the CBF pathway to play a central role in the 

regulation of compatible solute levels. Accumulation of sugars is evident already after two hours in the 

cold which preceded changes in freezing tolerance (Wanner and Junttila, 1999). During acclimation, 

sugar levels further increase and contribute to enhanced freezing tolerance, but their levels sharply 

decline when transferred back to control conditions (Zuther et al., 2015). The ICE-CBF-COR pathway is 

by far the best studied pathway regulating the short-term and long-term response to cold stress in 

plants (reviewed in Liu et al. (2019)). However, Fowler and Thomashow (2002) have demonstrated that 
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only 12 % of all known cold-responsive genes are regulated by this pathway, suggesting the existence 

of CBF-independent pathways regulating the cold-response. One such pathway is regulated by the 

phytohormone abscisic acid (ABA). 

 

 The ABA-dependent pathway 

ABA levels transiently and moderately increase during cold exposure (Lang et al., 1994) and enhance 

cold resistance (Xing and Rajashekar, 2001; Nayyar et al., 2005), whereas they strongly increase during 

drought (Xiong and Zhu, 2003). Mutations in ABA-related genes, such as ABA INSENSITIVE 1 (ABI1) and 

ABA DEFICIENT (ABA) 1 and 3, impair cold acclimation in Arabidopsis (Gilmour and Thomashow, 1991; 

Mantyla et al., 1995; Xiong et al., 2001). The cold-responsive genes CBF 1-3 are additionally induced 

by elevated ABA levels (Knight et al., 2004) and a fourth member of the family, CBF4, is induced by 

ABA upon drought, but not in the cold, and its overexpression leads to the activation of DRE-motif 

containing downstream genes, resembling the cold response (Haake et al., 2002). This way, cold and 

drought result in the activation of a similar set of genes whose promoters contain DRE-motifs.  

The CBF-dependent and the ABA-dependent pathways are interconnected, as the CBFs and several 

COR genes are inducible by ABA (Gilmour and Thomashow, 1991; Nordin et al., 1991; Knight et al., 

2004). However, as the ABA-signalling mutation abi1 strongly impaired ABA-induced expression of 

such COR genes, which was not affected in cold-treated abi1 plants, the ABA-pathway represents a 

separate cold-signalling pathway, next to the ICE-CBF-COR (Gilmour and Thomashow, 1991; Nordin et 

al., 1991).  

Apart from the DRE-motif, the Abscisic acid-Responsive Element (ABRE)-motif is present in many cold-

responsive promoters which are activated by the abscisic acid (ABA)-dependent pathway (Guiltinan et 

al., 1990). Various BASIC-DOMAIN LEUCINE ZIPPER (bZIP) transcription factors have been identified to 

bind to the ABRE-motif and to induce expression of ABA-responsive genes (Choi et al., 2000; Uno et 

al., 2000). Such bZIP transcription factors include the ABRE BINDING PROTEINS (ABF) and are 

differentially regulated in stress situations. ABF1 is induced in the cold, ABF2 and ABF3 are induced at 

high salt concentrations and drought and ABF4 is upregulated by cold, high salt and drought (Choi et 

al., 2000), again demonstrating an overlap in the responses to these three stimuli. Treatments of plants 

with exogenous ABA results in enhanced cold tolerance, which correlates with elevated levels of 

proline and soluble sugars, water retention and photosynthesis and reduced membrane peroxidation 

(Huang et al., 2015; Kim et al., 2016; Huang et al., 2017b; Huang et al., 2017a).  

Park et al. (2009) have demonstrated that PYRABACTIN RESISTANCE 1 (PYR1) and 13 PYR1-LIKE (PYL) 

proteins are the ABA receptors that bind and inactivate PROTEIN PHOSPHATASE 2C (PP2C) proteins in 
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the presence of ABA. Such PP2Cs are encoded by ABI1 and ABI2 (Leung et al., 1994; Meyer et al., 1994; 

Leung et al., 1997). In the absence of ABA, active PP2Cs inactivate certain SNF1-RELATED PROTEIN 

KINASES (SnRK) by dephosphorylation and by the formation of a PP2C-SnRK complex (Yoshida et al., 

2006). These SnRKs (SnRK2.2; SnRK2.4 and SnRK2.6) have been identified as positive regulators of the 

ABA response (Mustilli et al., 2002; Yoshida et al., 2002). At elevated ABA levels, PRY/PYL proteins bind 

ABA, undergo a conformational change and recruit PP2Cs leading to their inactivation (Park et al., 

2009), releasing the SnRKs from the inhibitory complex (Ng et al., 2014). The SnRKs undergo 

autophosphorylation and induce ABA signalling by phosphorylating their target transcription factors, 

such as the ABFs (Belin et al., 2006; Furihata et al., 2006; Yoshida et al., 2006). The ABFs in turn induce 

the expression of various cold- and drought-responsive genes, such as LOW-TEMPERATURE-INDUCED 

78 (LTI78) (Xu et al., 2013). While the precise mode of action in the cold is not well described, abf1 

mutants were compromised in seedling establishment specifically in the cold (Sharma et al., 2011). 

Together, these findings establish the ABA-dependent pathway as a parallel mechanism for the 

formation of cold tolerance, apart from the CBF1-3 pathway.  

 

 The NPR1-pathway 

NONEXPRESSER OF PR GENES (NPR1) is a well-described master regulator of the salicylic acid (SA)-

dependent induction of defence responses against biotrophic pathogens (Spoel et al., 2003; Pieterse 

et al., 2012). In the absence of pathogens, it forms oligomers that are stabilized by intermolecular 

disulfide bonds. Upon pathogen-induced increases in SA levels, the oligomers disassemble into 

monomers (Mou et al., 2003), that translocate into the nucleus, where they interact with transcription 

factors and induce defence responses (Fan and Dong, 2002).  

Recently, a function of NPR1 was observed in the cold response. npr1 knock-out (KO) plants that were 

transferred to 4 °C for 24 hours failed to induce various cold-responsive genes compared with the wild 

type (Olate et al., 2018). In the wild type, NPR1 transcripts increased in the cold, which was also 

observed in plants lacking the three cold-inducible CBFs or a central enzyme for the biosynthesis of 

ABA (aba2), indicating that this pathway is independent from the CBFs and from ABA. In the same 

study, it was shown, that two THIOREDOXINs (TRXH3 and TRXH5) that facilitate cold-induced NPR1 

monomerization and the kinase SnRK2.8 that phosphorylates NPR1 monomers to induce nuclear 

import are necessary for the cold-induced translocation of NPR1 into the nucleus. In the nucleus, NPR1 

interacts with the HEAT SHOCK TRANSCRIPTION FACTOR 1 (HSFA1) and induces expression of various 

HSFA1 target genes that encode chaperones. Apart from chaperones, several other cold-responsive 

genes were found to be NPR1 targets, while the NPR1-interacting transcription factor that leads to the 

expression of these genes remains elusive. Furthermore, npr1 mutants exhibit reduced freezing 
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tolerance after seven days of cold acclimation at 4 °C (Olate et al., 2018). These findings establish NPR1 

as a recently identified CBF- and ABA-independent pathway in the cold response.  

 

 

Figure 1: Major pathways regulating the cold response. 
Cold stress leads to a reduction of the membrane fluidity and increased ABA levels. Membrane rigidification 
results in Ca2+ signalling which activates the MPK signalling pathway and ultimately in CBF-dependent expression 
of COR genes. Increases in ABA lead to the activation of CBF4 and three members of the SnRK2 family. SnRK2s 
phosphorylate ABFs and two of them regulate the expression of cold-responsive genes. In the cold, NPR1 
oligomers monomerize in a TRXH/SnRK2.8-dependent manner. NPR1 monomers translocate into the nucleus 
and interact with HSFA1 which leads to the expression of HSP genes. 

 

A simplified model describing the cold response is shown in Figure 1. The CBF regulon controls 

approximately 12 % of all cold-inducible genes (Fowler and Thomashow, 2002), which partly overlap 

with the ABA-dependent pathway (Haake et al., 2002). The recently identified NPR1-dependent 

pathway represents an independent node in the regulation of cold stress responses (Olate et al., 2018). 

While these pathways represent important regulatory mechanisms in the cold response, it is safe to 

predict the existence of further, to date unidentified mechanisms that facilitate cold tolerance and 

cold acclimation. 

 

 ROS formation in the cold 

In addition to the rigidification of membranes and Ca2+ ion influx into the cytosol, the formation of 

reactive oxygen species (ROS) is another inevitable consequence of cold stress. ROS are highly reactive 
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oxygen containing molecules and are constantly formed in all aerobic cells, also in the absence of 

stressors (Apel and Hirt, 2004). Due to its two unpaired electrons in the π* orbitals, molecular oxygen 

is a potent acceptor for single electrons (Halliwell, 2006). Compartments as the mitochondria and 

chloroplasts harbour biochemical reactions that involve the transfer of electrons along a reduction 

potential gradient. In the case of chloroplasts, the transfer occurs from water, which is split using the 

energy of the sun light, via various carrier molecules such as plastoquinones to NADP+. This 

circumstance makes ROS production in aerobic organisms unavoidable.  

Once they are formed, ROS can spontaneously react with biomolecules including lipids, proteins and 

DNA, causing severe damage at higher concentrations which may lead to programmed cell death 

(Desikan et al., 1998). Also in widespread human diseases such as Parkinson’s disease and Alzheimer’s 

disease, increased oxidative damage to various biomolecules was detected in the brains of patients 

(Halliwell, 2001). Initially, ROS were assumed to exclusively be toxic by-products of various reactions. 

Over time it became clear, that they are also central stress signalling molecules (Mittler et al., 2004) 

taking part in the regulation of drought resistance (Pei et al., 2000), excess light responses (Mullineaux 

and Karpinski, 2002), growth regulation (Foreman et al., 2003) and other responses. Apart from their 

signalling capabilities, they fulfil functions in directly killing pathogens in a so-called ROS burst (Lamb 

and Dixon, 1997). Furthermore, ROS are also intentionally produced in order to facilitate 

developmental processes, such as cell wall extension and cross-linking (Schopfer, 2001; Passardi et al., 

2004). The group of ROS comprises various molecules with different properties and functions. 

These include singlet oxygen (1O2), which is produced at photosystem II (PSII) especially in high electron 

pressure situations (Macpherson et al., 1993). If oxygen takes up an electron, for example in the 

Mehler-reaction (Mehler, 1951), this electron enters one of the π* antibonding orbitals and a 

superoxide radical anion (O2
-) is formed (Fridovich, 1995). During various kinds of stresses, this electron 

transfer occurs at elevated rates at the photosystem I (PSI) (Asada, 2006). Apart from this source of 

superoxide production that occurs passively as a consequence of limited availability of electron 

acceptors in the photosynthetic electron transport (PET) chain, it can also be actively produced by 

plasma membrane localised RESPIRATORY BURST OXIDASE PROTEINs (RBOHs) as an early response to 

pathogen attack (Grant et al., 2000; Torres et al., 2006). SUPEROXIDE DISMUTASEs (SODs) catalyse the 

first detoxification step in which superoxide is converted into hydrogen peroxide (H2O2) (Kliebenstein 

et al., 1998).  

H2O2 is the type of ROS with the longest half-life of approximately 1 ms in living cells (Hossain et al., 

2015). Since it is the product of spontaneous or enzymatic conversion of superoxide, it accumulates 

directly at the sites where superoxide is produced, e.g. at the PSI or at the plasma membrane (Grant 

et al., 2000; Asada, 2006). An array of enzymes detoxifying H2O2 to water is available in different plant 
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compartments, including CATALASES (CAT) in the peroxisomes, ASCORBATE PEROXIDASE 2 (APX2) in 

the cytosol and various enzymes in the plastids, that will be discussed in the following chapters 

(Tolbert, 1981; Fryer et al., 2003; Asada, 2006). H2O2, as well as the other ROS, oxidises other 

biomolecules and may lead to their inactivation (Imlay et al., 1988; Groen et al., 2005; Siddique et al., 

2011). 

As stated above, ROS formation in plants is ubiquitous and unavoidable even under optimal conditions 

and systems for their detoxification are active at all times to minimize toxic effects. However, various 

types of stressors lead to the elevated production of ROS which then function as signalling molecules. 

In the cold, ROS formation is strongly increased in the chloroplasts. During oxygenic photosynthesis, 

photons are absorbed by chlorophyll molecules and their energy is used to split water molecules and 

to extract electrons from them (Nelson and Ben-Shem, 2004). These electrons are subsequently fed 

into the photosynthetic electron transport chain (PET) and are finally transferred to oxidised NADP+ 

molecules to form reduced NADPH which serves as a short-term storage for these electrons (Whatley 

et al., 1963). A proton gradient which is formed during this process is used to produce adenosine 

triphosphate (ATP), which is an energy storage molecule that enables various enzymatic reactions or 

acts as a donor of phosphate groups in other reactions (McCarty et al., 2000). The energy that is stored 

in ATP and NADPH is used for enzymatic reactions, e.g. in the Calvin-Benson cycle which fixes 

atmospheric carbon dioxide (CO2) (Benson et al., 1950).  

Enzyme reactions are highly temperature-sensitive. A decrease in temperature leads to a decrease in 

enzymatic reaction velocities, as less energy is available from the surrounding medium (Schmidt-

Nielsen, 1990). Whereas the enzyme-dependent Calvin-Benson cycle is slowed down by low 

temperatures, the PET relies on physical transfer reactions that do not involve enzymes and as such, 

are only mildly affected by low temperatures (Hiller and Raison, 1980; Tardy and Havaux, 1997; 

Skupień et al., 2017). Thus, in the cold, the same amount of energy is trapped and stored as ATP and 

reduced NADPH, but this energy cannot be consumed in the slowed Calvin-Benson cycle. Pools of 

oxidised NADP+ get depleted and electrons from the PET cannot be transferred to their designated 

acceptors, increasing the electron pressure. These excess electrons are then transferred to molecular 

oxygen at a higher rate, forming O2
- which is subsequently dismutated to H2O2 (Kliebenstein et al., 

1998; Asada, 2006). This pattern is very similar in high light stress, where more light is captured in the 

photosystems leading to a higher rate of electron transport in the PET which cannot be consumed in 

the Calvin-Benson cycle that is adjusted to normal light conditions (Huner et al., 1998). Cold and high 

light stress both lead to the elevated production of ROS in the chloroplasts via a similar mechanism, 

that leads to the activation of similar stress-related downstream regulatory pathways. Further signals 

need to be sensed that integrate the nature of the stress into the regulation of the stress response. 
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1.2 The plastid antioxidant system  

Plants have evolved a sophisticated network of antioxidants that are necessary to keep ROS at non-

toxic levels (Asada, 1999). Antioxidants can be divided into enzymatic and non-enzymatic low 

molecular weight compounds. The most important low molecular weight antioxidants are the 

tripeptide glutathione and ascorbate which can accumulate to millimolar concentrations (Noctor and 

Foyer, 1998). As the chloroplasts are one of the most important sources of ROS in plants, they contain 

30-40 % of total cellular ascorbate (Foyer et al., 1983; Inzé et al., 2002). Glutathione and ascorbate 

have been shown to directly reduce and detoxify ROS (Njus and Kelley, 1991; Galano and Alvarez-

Idaboy, 2011).  

Additionally, ascorbate also functions as a co-enzyme of a group of ascorbate peroxidases (APX) 

converting H2O2 to water at the expense of their electron donor ascorbate (Asada, 1992; Ursini et al., 

1995). Arabidopsis chloroplasts contain two APX isoforms (Jespersen et al., 1997; Pitsch et al., 2010). 

One of them is a soluble APX that is targeted to the stroma (sAPX) and the other one is bound to the 

thylakoid membrane (tAPX), in close proximity to the photosystems (Miyake et al., 1993; Dekker and 

Boekema, 2005). Both APX variants are susceptible to oxidative inactivation during low ascorbate 

availability (Miyake and Asada, 1996) which occurs during stress situations with elevated H2O2 levels 

and may work as a switch to allow for a ROS burst above the inactivation threshold, leading to another 

set of ROS responses (Kitajima, 2008). While both isoforms are similar in their molecular functions in 

mature leaves, they exhibit distinct phenotypes during stressful conditions (Kangasjärvi et al., 2008). 

In the same study, sapx KO seedlings were susceptible to photooxidative stress during germination, 

while tapx KO plants displayed only a mild phenotype. Transient silencing of tAPX resulted in elevated 

H2O2 levels in the plastids and subsequently to reduced CBF1 expression and thus, to reduced cold 

resistance (Maruta et al., 2012). Knock-out of both genes in the sapx/tapx double KO line led to 

compensation by the elevated expression of members of the PEROXIREDOXIN (PRX) family after 

acclimation to high light intensities (Kangasjärvi et al., 2008). As in the case of APX, chloroplasts contain 

two GPX variants (GPX1 and GPX7) that take part in the regulation of the response to photooxidative 

stress and in biotic defence signalling (Chang et al., 2009). Additionally, chloroplasts contain the PRXQ, 

the type II PEROXIREDOXINS, the 1-CYS REOXIREDOXINS (1CP) and the 2- CYS REOXIREDOXINS (2CP) 

(Horling et al., 2002). The 2CPs are ubiquitously found in all organisms (Baier and Dietz, 1996; Baier et 

al., 2000). As opposed to APXs, PRXs and GPXs do not require co-enzymes, but reduce H2O2 via 

oxidation of conserved cysteine residues. PRXs need to be regenerated by reduction of their previously 

oxidised cysteines by either of various enzymes, including THIOREDOXINs (TRX) (Chae et al., 1994; 

Kwon et al., 1994).  
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Oxidation of ascorbate results in the formation of monodehydroascorbate (MDA) that is regenerated 

via reduction by either FERREDOXIN (FER) (Miyake and Asada, 1994) or by NAD(P)H catalysed by 

chloroplastic MDA REDUCTASE (Sano et al., 2005). If MDA is not reduced, it disproportionates into 

ascorbate and dehydroascorbate (DHA) which is reduced to ascorbate by DHA REDUCTASE using 

electrons from glutathione (Foyer and Halliwell, 1977; Shimaoka et al., 2003). Finally, oxidised 

glutathione is regenerated with electrons from NADPH which is catalysed by GLUTATHIONE 

REDUCTASE (Meister and Anderson, 1983; Mhamdi et al., 2010). This way, electrons that are extracted 

from water during the first steps of photosynthesis are transferred to oxygen, forming ROS, which are 

detoxified with electrons that also originate from photosynthesis, with water as the end product of 

this detoxification pathway (Asada, 1999). For this reason, this detoxifying and regenerating system is 

known as the water-water cycle (Asada, 1999). Hence, the formation of ROS represents an important 

sink for PET-derived electrons during stress situations, as the formation and detoxification of ROS both 

require electrons from the PET, reducing electron pressure and limiting over-excitation of the electron 

carrier pools. The redox states of electron carriers, such as plastoquinone, FER and TRX have been 

shown to elicit retrograde signalling under such stressful conditions, controlling the expression of 

nuclear genes (Karpinski et al., 1997; Baier et al., 2000; Piippo et al., 2006; Lepetit et al., 2013). 

 

1.3 Priming 

 The concept of priming 

Cold exposure elicits a multitude of different responses that were introduced above. After a cold 

stimulus is over, these cold responses quickly stop, and metabolic shifts and gene expression regulation 

are widely reverted within 24 hours, a process which is called deacclimation (Zuther et al., 2016). The 

timing of these deacclimation responses is individual for single compatible solutes and genes, but the 

majority of such cold responses declined very sharply after cold exposure (Zuther et al., 2015). After 

short-term exposure, single components may normalize more slowly and serve as an information 

storage that helps the plant to respond better to a future stress (Hilker et al., 2016; Zuther et al., 2019). 

In several studies, it has been shown, that plants can store information on a certain first stress event 

(the priming stimulus) over a stress-free period and use this information to respond to a future stress 

(the triggering stimulus) in a more beneficial way (Hilker et al., 2016). This phenomenon is called 

priming. Priming capabilities have been shown in several contexts in plants. These include priming in 

pathogen attack, heat stress, herbivory and cold stress (Boyko et al., 2007; Charng et al., 2007; Helms 

et al., 2013; van Buer et al., 2016). In most cases, primed plants show an earlier, faster or stronger 

response to the second stress, as compared to naïve plants, which allows them to withstand the 
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adverse conditions more effectively (Conrath, 2009). Various mechanisms have been demonstrated 

and hypothesized to enable plants to store the information on the past stress despite the lack of a 

nervous system.  

 

 Mechanisms in memory formation and maintenance  

Priming-induced accumulation of inactive signalling components that are quickly activated upon 

exposure to the triggering stimulus enables plants to mount defence responses more quickly than in 

unprimed (naïve) plants that do not accumulate these signalling components. Examples are the well-

characterised signal transduction proteins MPK3 and MPK6, that accumulate as inactive proteins upon 

a chemical priming stimulus and are activated more strongly upon challenge with biotic and abiotic 

stressors (Beckers et al., 2009). In addition to inactive MPKs, accumulation of inactive transcription 

factors was hypothesized to be a mechanism that enables priming in a similar way (Conrath, 2006).  

A number of genes have been shown to be inducible to a higher extent in drought stressed plants that 

previously had been primed by drought stress (Ding et al., 2012). These so-called “trainable genes” 

were specifically associated with Ser5P DNA-DEPENDENT RNA POLYMERASE II (POLII) at their 

transcription start sites during the recovery phases, which was not found at other genes. POLII which 

is phosphorylated at serine 5 (Ser5P) is found in promoter regions and its dephosphorylation is 

necessary for the induction of transcription (Komarnitsky et al., 2000; Buratowski, 2003). Stalled POLII 

at promoters of primed genes that respond more strongly upon a second challenge is in line with the 

finding that stalled POLII was found in promoters that quickly respond to environmental changes (Core 

et al., 2008; Nechaev and Adelman, 2011). 

Apart from Ser5P POLII, high levels of trimethylation of lysine 4 of histone H3 (H3K4me3) were 

associated with trainable genes during recovery (Ding et al., 2012). Both Ser5P POLII and H3K4me3 

marks were also found in other genes during drought treatments, but they only persisted in trainable 

genes during stress-free phases. H3K4me3 represents another mechanism that is involved in priming 

and that is strongly correlated with active gene expression (Ng et al., 2003). This way, a priming 

stimulus may induce H3K4me3 marks in histones specifically bound to primable genes and enable 

earlier or stronger expression of such genes upon a second challenge. Jaskiewicz et al. (2011) have 

demonstrated that salicylic acid (SA) treatments induced various histone modifications that are 

associated with active gene expression, including di- and trimethylation and acetylation on the 

promoters of several WRKY transcription factors. While these activating marks did not immediately 

result in elevated gene expression, they facilitated enhanced responsiveness upon pathogen infection.  
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Cold-primed Arabidopsis plants have been shown to exhibit a reduced expression of the plastid H2O2 

marker gene ZAT10 upon cold triggering, as compared with naïve plants that strongly induce ZAT10 

(van Buer et al., 2016). During the five-day lag-phase that separated both cold stimuli, tAPX protein 

and transcript levels increased and were still elevated at the beginning of the triggering stimulus. The 

ZAT10 priming phenomenon was not observed in plants lackeding tAPX, which detoxifies H2O2 that is 

generated at the photosystems. It was hypothesized, that elevated tAPX levels protect cold-primed 

chloroplasts more effectively from triggering-induced H2O2 accumulation as compared to naïve 

chloroplasts, which would not lead to the induction of the chloroplast H2O2-responsive gene ZAT10 

(van Buer et al., 2016).  

Whereas several mechanisms have been reported, that contribute to store information on a previous 

stress event, less is known about how this information is “forgotten” over time. Mechanisms that 

involve the accumulation of inactive signalling molecules (i.e. MPKs) or of protective enzymes (i.e. 

tAPX) may weaken over time and depend on the half-life of these molecules. However, this explanation 

may not explain all priming phenomena, as it does not take into account further regulatory pathways 

(Hilker et al., 2016). Particularly transgenerational priming, which is regulated via epigenetic marks, 

does not follow this explanation, as these marks are sometimes persistent over several generations 

and thus, countless cell divisions (Hauben et al., 2009; Whittle et al., 2009; Kathiria et al., 2010). 

 

 Relevance of cold priming in natural environments 

Priming and acclimation are two different strategies of plants to cope with adverse conditions. They 

differ in their physiological outcomes in terms of fitness, in their relevance with respect to 

environmental conditions, in their molecular mechanisms and consequently in the costs that are 

connected with the establishment of an acclimated or primes state (reviewed in Hilker et al. (2016)). 

Cold acclimation represents a strategy that involves the enhanced production of proteins and 

compatible solutes, both at high levels, that confer enhanced tolerance to chilling and freezing 

temperatures (reviewed in Knight and Knight (2012)). The massive production of cold-responsive 

proteins is a costly response that pays off for example in autumn or winter, when it is more predictable 

that the cold stress persists for an extended period of time (Huner et al., 1993). Mounting full cold 

acclimation responses during a short cold spell would be a waste of energy and result in reduced 

resources that are available for growth and reproduction (Cook et al., 2004).  

As opposed to cold acclimation, cold priming is a comparably cost-efficient strategy to increase fitness 

in the cold. Plants that have perceived a timely limited cold stimulus can avoid cold acclimation 

responses and store information on this stimulus in the form of epigenetic marks, elevated levels of a 
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single or of a few signalling (e.g. MPKs) or defence components (e.g. tAPX), that allow the plant to 

respond to a future stress in a way that is beneficial to its fitness in the cold (van Buer et al., 2016). 

This strategy relies on comparably few alterations to the cellular activity as compared to the massive 

transcriptional reprogramming and protein biosynthesis that is induced by cold acclimation (Lee et al., 

2005).  

A field study with six natural Arabidopsis accessions that differed in their potential to acquire freezing 

tolerance by cold acclimation, demonstrated that selectively those accessions with lower cold 

acclimation capacities (WS, Col-0 and Van-0) showed positive priming effects on photosystem II 

performance and on reproductive fitness (Cvetkovic et al., 2017). This indicated that cold acclimation 

and cold priming may be two strategies that counteract each other and that natural selection for one 

of both traits opposes selection for the other one, respectively.  

 

 

1.4 Transcription factors in stress responses 

 Transcriptional regulation 

Transcriptional reprogramming enables strong cold responses (Lee et al., 2005). Gene expression (the 

synthesis of a primary RNA) is regulated by a complex system of transcription factors that may have a 

positive or negative influence on RNA synthesis. Apart from transcription factors, various further 

factors such as transcriptional co-activators (Fan and Dong, 2002), chromatin structure (Hu and Tee, 

2017), DNA methylation (Bemer, 2018) and occupancy by histone proteins (Hu et al., 2011) take part 

in the regulation of gene expression. However, the relative importance of transcription factors was 

demonstrated, as 1968 genes in the Arabidopsis genome were identified as transcription factors, which 

represents 7.4 % of all genes (Iida et al., 2005).  

Transcription factors are usually composed of at least two protein domains: A DNA binding domain 

and a protein-protein interaction domain. The DNA binding domain is responsible for the recognition 

of specific DNA sequences (Schlotmann and Beyreuther, 1979). In the most cases, these DNA 

sequences are located within a few hundred base pairs (bp) upstream of the gene, in the promoter 

region. Upon binding to their recognition site, transcription factors serve as a binding platform for 

other regulatory proteins to form a protein complex in the promoter region (Kim et al., 1994; Koleske 

and Young, 1994). This kind of interaction requires the protein-protein interaction domain of the 

transcription factor. Promoters contain several such target sequences to allow for a more complex 

regulation rather than regulation by only a single transcription factor (Raikwar et al., 2015). So called 
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enhancer sites are recognition sites, that may be thousands of bp away from their target gene. In these 

cases, specific DNA 3D structures lead to a close proximity of the promoter and the enhancer sites 

facilitating the required protein-protein interactions which are necessary for the regulation of gene 

expression (Yang et al., 1994).  

Gene expression regulation is a complicated multi step process. Promoters contain core promoter 

elements (CPE) that are common to all genes. CPEs are bound by the so-called general transcription 

factors. They form the preinitiation complex (PIC), which recruits the POLII and regulates POLII activity 

(Thomas and Chiang, 2006). Additionally, promoters contain cis-acting elements that are recognised 

by transcription factors conferring context specificity to gene expression and that differ between 

genes. 

Gene-specific transcription factors that bind to cis-acting elements modulate gene expression, e.g. by 

recruitment of further components of the PIC and of co-activators (Ptashne and Gann, 1997), 

modification of chromatin structure and expression enhancing functions that occur after the formation 

of the PIC, such as activating stalled POLII (Hahn and Young, 2011; Adelman and Lis, 2012). The latter 

was predominantly observed for genes that quickly respond to environmental cues and that require 

fast activation in eukaryotes (Core et al., 2008; Nechaev and Adelman, 2011).  

The regulation of transcription factors takes place at several levels. One such regulatory mechanism is 

the regulation of the abundance of transcription factors that in many cases strongly increases upon a 

certain stress or developmental cue. An example for such an inducible transcription factor is CBF1, that 

strongly accumulates in the cold at the transcript and protein levels and leads to the expression of 

genes that have functions in the cold (Fowler et al., 2005).  

Many transcription factors are present in an inactive form and require activation. One such example is 

the WRKY DNA-BINDING PROTEIN 33 (WRKY33) that is phosphorylated by MPK3 and MPK6 upon 

infection with Botrytis cinerea (Mao et al., 2011). This study demonstrated that MPK3- and MPK6-

dependentp activation of WRKY33 leads to the elevated expression of its target genes and enhanced 

resistance against pathogens.  

The expression of certain genes is modified depending on the reductive state of the cell. Several 

transcription factors are directly modulated in their activity by redox signals, others by proteins sensing 

such conditions, e.g. MPKs. RAP2.4a is such a redox-sensitive transcription factor. It changes its 

quaternary structure in response to redox signals and activates 2CPA expression in vivo under ambient 

and slightly oxidising conditions, but not under strongly reducing and oxidising conditions (Shaikhali et 

al., 2008).  
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While the recognition of specific DNA sequences (motifs) in the promoters/enhancers of certain genes 

confers some degree of regulatory specificity, other factors are equally important to guarantee 

appropriate transcriptional regulation. For example, two transcription factors may recognise the same 

DNA motif, but they may be expressed in different tissues or at different times of the day or at different 

temperatures. Even though two transcription factors could potentially bind to the same promoters, 

context-dependent availability of other transcriptional regulators that may be essential for the 

induction or suppression of target gene expression may lead to vastly different transcriptional 

responses (Cheatle Jarvela and Hinman, 2015).  

Often, transcription factors have very specific functions and are only activated or expressed in very 

specific situations, regulating the expression of only a few genes, as hypothesized for the redox sensor 

protein WHIRLY1 (Foyer et al., 2014). Contrary, there are transcription factors that play roles under 

several conditions and that are activated accordingly. One example is the basic helix-loop-helix (bHLH) 

DNA-binding protein MYC2, the master regulator of the phytohormone jasmonic acid (JA). During JA 

signalling, MYC2 expression increases and the gene product binds to several promoters of JA-

responsive genes, leading to their expression, while it has inhibitory effects on other genes involved in 

indole glucosinolate biosynthesis (Dombrecht et al., 2007). Furthermore, MYC2 not only responds to 

JA, but also to ABA, another phytohormone, leading to a distinct transcriptional response (Kazan and 

Manners, 2013). As JA is mainly involved in the response to insect feeding and some developmental 

cues and ABA mainly regulates responses to abiotic stresses, such as drought and cold, it becomes 

clear how widely spread and context-specific MYC2 functions are.  

Transcription factors can be grouped depending on homologies in their DNA-binding domains. 

Prominent groups of transcription factors include the HELIX-TURN-HELIX, the BASIC REGION/LEUCIN 

ZIPPER MOTIF (bZIP), the ZINC FINGER and the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) 

families (Takatsuji, 1999; Jakoby et al., 2002; Aravind et al., 2005; Nakano et al., 2006). The AP2/ERF 

family, which contains 147 members in Arabidopsis, can be further sub-divided based on their AP2/ERF 

domain which is involved in DNA binding. The members of the AP2 group contain two AP2/ERF 

domains, proteins of the ERF family contain a single copy of the domain and the RAV family members 

contain a B3 domain in addition to a single AP2/ERF domain (Nakano et al., 2006). Homologs of AP2 

domain containing proteins that function as endonucleases have been identified in cyanobacteria and 

viruses and it was hypothesized, that the AP2/ERF family was acquired by plants via lateral gene 

transfer (Magnani et al., 2004). The ERF family comprises several well-studied transcription factors 

that contribute to the regulation of biotic and abiotic stress responses, among them the CBFs that have 

been introduced above (Nakano et al., 2006). Other members include the central regulators of the JA 

and ethylene (ET) pathway, ERF1, ERF2 and ORA59 which are involved in the regulation of the 
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resistance against necrotrophic pathogens by inducing the expression of target genes such as PDF1.2 

(Berrocal-Lobo et al., 2002; Lorenzo et al., 2003).  

 

 RAP2.4 transcription factors 

The ERF family is divided into several sub-groups. The AP2/ERF-Ib group contains eight members that 

are also known as the RELATED TO APETALA 2 (RAP2) group number 4 (RAP2.4), numbered a-h (Nakano 

et al., 2006; Rudnik et al., 2017). Members of this group have reported functions in abiotic stress 

responses. For example, RAP2.4a regulates the expression of the 2-CYS-PEROXIREDOXIN A (2CPA) in a 

redox-dependent manner by directly binding to its promoter (Shaikhali et al., 2008). Constitutive 

overexpression of RAP2.4a, RAP2.4b, RAP2.4d and RAP2.4e results in strong cell proliferation and 

callus formation, while other RAP2.4 members exhibited no such function, suggesting partly redundant 

and partly independent functions (Iwase et al., 2011). RAP2.4b and RAP2.4d are among the most 

closely related members of the family and double knock-out (KO) lines have a reported function in the 

regulation of six aquaporin genes in drought stress (Rae et al., 2011). According to publicly available 

micro array data from the eFP browser, genes of the RAP2.4 family are induced upon various abiotic 

stresses, such as drought, salt, UV-B, mechanical wounding and high and low temperature (Kilian et 

al., 2007; Winter et al., 2007; Rudnik et al., 2017).  

RAP2.4c and RAP2.4d have reported functions in the transcriptional regulation of plastidic H2O2 

degrading ascorbate peroxidases (APX). KO lines of the two RAP2.4 genes resulted in strongly reduced 

expression of the thylakoid bound version of the APX (tAPX) in rap2.4c and of the tAPX and the stromal 

version (sAPX) in rap2.4d under standard conditions (Bulcha, 2013). This is in line with Yeast-One-

Hybrid results, that confirmed direct binding of all members of the family to a tAPX promoter fragment 

(Rudnik et al., 2017). Both RAP2.4c and RAP2.4d additionally act as transcriptional repressors of several 

COR genes, as their constitutive overexpressing lines exhibited reduced COR gene induction in the cold, 

compared to the wild type (Bulcha, 2013). As both transcription factors are induced transiently in the 

cold and reach their peak after around one hour at 4 °C (as during several other abiotic stresses, 

according to the eFP browser data (Kilian et al., 2007; Winter et al., 2007)), it was hypothesized, that 

both genes act to suppress premature induction of a full cold response during transient cold snaps. In 

addition to all RAP2.4 transcription factors binding to the tAPX promoter, it has been demonstrated 

that RAP2.4a and RAP2.4d bind to the DRE-motif in vivo and in vitro, respectively and that RAP2.4c 

binds to G(A/T/C)GGCG and AGGC(C/G) motifs in vivo (Rae et al., 2011; Bulcha, 2013).  
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1.5 Aim of the study 

The two AP2/ERF-Ib transcription factors RAP2.4c and RAP2.4d have been demonstrated to be 

negative regulators of the cold response (Bulcha, 2013) and to positively regulate the expression of 

the antioxidant enzymes sAPX and tAPX (Rudnik et al., 2017), which take part in the formation of the 

memory in cold priming in Arabidopsis (van Buer et al., 2016).  

The first part of this study aimed to further characterise functions of RAP2.4c and RAP2.4d in the cold 

response. In that, the study focused on the identification of regulatory pathways that are involved in 

during the early cold response. To achieve this, a transcriptomics approach that compared gene 

regulation at 4 °C in rap2.4c and rap2.4d KO plants compared with Col-0 wild type plants was used. A 

Yeast-One-Hybrid assay was used to identify the RAP2.4d in vivo DNA binding motif to integrate 

promoter analyses into the transcriptomic expression data of putative RAP2.4d target genes. 

Additionally, both KO lines were analysed for their involvement in the regulation of cold tolerance and 

cold acclimation.  

In the second part of this study, sAPX and tAPX, which are implicated in cold priming, were further 

analysed for their capabilities to establish the cold-induced memory, using 17β-estradiol-inducible 

overexpression and silencing lines in cold priming experiments. The transient overexpression lines 

were used to mimic a cold priming event at ambient temperatures and a tAPX silencing line was used 

to counteract a cold priming event in order to discriminate between sAPX and tAPX in terms of memory 

formation in cold priming. 
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2 Material and methods 

 

2.1 Growth conditions for plants and bacteria  

 Plant growth on soil 

Plants were grown on soil composed of 70 volumes “Topferde“ (Einheitserde, Sinntal-Altengronau, 

Germany), 70 volumes “Pikiererde“ (Einheitserde, Sinntal-Altengronau, Germany), 25 volumes 

Perligran Classic (Knauf, Iphofen, Germany) supplemented with 0.5 gl-1 dolomite lime (Deutsche 

Raiffeisen-Warenzentrale, Frankfurt am Main, Germany). Seeds were sown on wet soil and stratified 

at 4 °C for three days in darkness. Pots were subsequently transferred to a growth chamber with a 

constant air temperature of 18 °C, 60 ± 5 % air humidity, ten hours of light (120 – 130 µmol photons 

m-2 s-1, L36W/840 Lumilux Cool White fluorescent stripes (Osram, Munich, Germany)) and 14 hours of 

darkness. After five to eight days, plants were transferred to single pots of 6 cm of diameter and the 

soil was kept moist. If not stated otherwise, plants were grown for 28 days before experiments started.  

Experiments used Arabidopsis thaliana var. Col-0 as the reference wild type, since the used T-DNA 

insertion lines rap2.4c and rap2.4d and transgenic inducible lines had a Col-0 background. Two T-DNA 

KO lines were used in this study: rap2.4c (At2g22200, SALK_108879) and rap2.4d (At1g22190, 

SALK_139727). 

For cold treatments, 28-day old plants were transferred to the 4 °C growth chamber that, apart from 

the temperature, had the same conditions as for regular growth. Experiments were always started two 

and a half hours after the onset of light in the morning to eliminate circadian effects. Harvesting of 

plant material, shifting plants to 4 °C and chemical treatments were always carried out at this time.  

 

 Sterile plant growth on MS agar 

For selection of transformed plants, seedlings were grown on Murashige Skoog (MS) medium (Duchefa 

Biochemie B.V, Haarlem, The Netherlands) under sterile conditions. Approximately 200 seeds were 

sterilized in 750 µl of 70 % ethanol for ten minutes. The ethanol was removed, and the seeds were 

incubated in 750 µl of 100 % ethanol for five minutes. The seeds were then spread on Whatman paper 

(Schleicher&Schuell, Düren, Germany) that had previously been soaked in 70 % ethanol and air dried 

under sterile conditions. After the seeds had dried, they were dispensed on MS-agar plates containing 

15 µg ml-1 Hygromycin B with approximately 50 – 70 seeds per plate. Seeds were stratified at 4 °C for 

three days in the darkness. The plates were subsequently transferred to a Cu-22L Percival growth 
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cabinet (CLF Plant Climatics, Wertingen, Germany) at 22 °C and 130 µmol photons m-2 s-1. After six 

hours, the light was switched off for 48 hours and switched back on for further 24 hours. Transgenic 

plants exhibited enhanced hypocotyl growth compared with wild type plants and were transferred to 

soil for normal growth (Harrison et al., 2006). 

MS-agar 
0.43 % (w/v) MS basal medium  
0.5 % (w/v) Saccharose 
5 mM  MES  
0.5 % (w/v) Phytagel    
The pH was adjusted to 5.7 with KOH. 

 

 Growth of Escherichia coli cells 

E. coli cells (either Top10 or BL21(DE3)pLysS) were grown at 37 °C in Lysogeny broth (LB) medium. 

Liquid cultures were shaken at 180 rpm and bacteria on LB plates containing agar were incubated with 

no agitation.  

Top10 genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 Δ lacX74 recA1 araD139 Δ(araleu)7697 

galU galK rpsL (StrR) endA1 nupG. (Thermo Fisher Scientific, Waltham, USA) 

BL21(DE3)pLysS genotype: F- ompT hsdSB (rB
-mB

-) gal dcm (DE3) pLysS (CamR). (Thermo Fisher Scientific, 

Waltham, USA) 

LB medium (1.5 % (w/v) agar was added for solid LB plates) 
1.0 % (w/v) NaCl  
1.0 % (w/v) Peptone   
0.5 % (w/v) Yeast extract  

Transgenic cultures were selected for cells containing specific plasmids on plates or in liquid media 

containing appropriate antibiotics: 

Antibiotics concentrations 
100 µg/ml  Ampicillin  
50 µg/ml  Kanamycin   

 34 µg/ml  Chloramphenicol  

 

 Growth of Agrobacterium tumefaciens cells 

A. tumefaciens GV3101 (pMP90) cells were grown at 28 °C in YEP medium containing 150 µg/ml 

rifampicin and 25 µg/ml gentamycin. If the cells were transformed with pMDC7 plasmids, 100 µg/ml 
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spectinomycin were added to the medium for selection. Liquid cultures were shaken at 180 rpm and 

bacteria on YEP plates containing agar were incubated with no agitation. 

GV3101 (pMP90) genotype: C58 (RifR) Ti pMP90 (pTiC58DT-DNA) (GentR/StrepR) Nopaline 

 YEP medium (agar was added for solid YEP plates) 
0.5 % (w/v) NaCl  
1.0 % (w/v) Peptone   
1.0 % (w/v) Yeast extract  
1.5 % (w/v) Agar  

 

 Growth of Pseudomonas syringae cells 

Pseudomonas syringae (Pst) var. Tomato DC3000 cells were grown for two days at 28 °C on NYGA 

medium plates containing 100 µg/ml rifampicin.  

 Solid NYGA medium 
 0.5 % (w/v) Peptone   
 0.3 % (w/v) Yeast extract  
 0.2 % (v/v) Glycerol 
 1.5 % (w/v) Agar  
 

 Growth of Saccharomyces cerevisiae cells 

S. cerevisiae Y187 cells were grown at 30 °C in YPAD medium. The cells were grown in different 

selective Minimal SD Base media lacking specific amino acids, depending on the plasmids they had 

been transformed with. Cells transformed with pACT2 plasmids were grown in media lacking leucin, 

cells containing pHIS2 plasmids were grown in media lacking tryptophan, cells containing both 

plasmids were grown in media lacking leucine and tryptophan. The final assays were performed on 

Minimal SD Agar Base plates lacking leucine, tryptophan and histidine. The media were prepared 

according to the manufacturer’s instructions (Clontech Laboratories, Inc., Mountain View, USA) 

Y187 genotype: MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ, met–, gal80Δ, MEL1, 

URA3::GAL1UAS -GAL1TATA-lacZ 

YPAD medium (agar was added for solid YPAD plates) 
1.0 % (w/v) Yeast extract 
2.0 % (w/v) Peptone   
80 mg l-1 Adenine hemisulfate 
1.8 % (w/v) Agar 
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2.2 Manipulation of nucleic acids 

 Extraction of genomic DNA from plant material 

For the extraction of genomic DNA (gDNA) from plant material, a single leaf of an approximately 

three-week old plant was transferred to a reaction tube, supplemented with 700 µl gDNA-Ex buffer 

and ground with a micro pestle. Insoluble cell debris was pelleted at 16,000 x g for two minutes and 

500 µl of the supernatant were precipitated with 500 µl of isopropanol in a new tube. After 2 minutes 

of incubation at room temperature, the DNA was pelleted at 16,000 x g and 4 °C for 15 minutes. The 

pellet was washed with 500 µl of 70 % ethanol and pelleted again at 16,000 x g and 4 °C for 4 minutes. 

After the supernatant was removed, the pellet was air dried and re-dissolved in 100 µl of water. For 

up to one month, the DNA was stored at 4 °C, for long term storage it was frozen at -20 °C. 

 gDNA-Ex buffer 
 200 mM Tris HCl, pH 7.5 
 250 mM NaCl 
 25 mM  EDTA 
 0.5 % (w/v) SDS 

 

 Polymerase chain reaction (PCR) 

PCRs amplifying DNA fragments for cloning purposes were always conducted with the OptiTaq 

polymerase enzyme (Roboklon, Berlin, Germany) and with a home-made Taq (Thermus aquaticus) 

polymerase to test for the presence of certain sequences in biological samples. All primers were 

ordered from Sigma-Aldrich (St. Louis, USA) and sequences can be found in the appendix.  

 20 µl OptiTaq reaction     20 µl home-made Taq reaction 
 2 µl 10x PCR buffer B/C   2 µl 10x PCR buffer 
 0.8 µl dNTPs (5 mM, each)   1 µl dNTPs (10 mM, each) 
 0.5 µl Primer forward (5 mM)   1 µl Primer forward (10 mM) 
 0.5 µl Primer reverse (5 mM)   1 µl Primer reverse (10 mM) 
 0.2 µl OptiTaq (5 U/µl)   2 µl Home-made Taq 
 2 µl Template (1 – 20 ng / µl)  2 µl Template (1 – 20 ng / µl) 
       1 µl 50 mM MgCl2  

 PCR program 
1.   Pre-heating  2 min  94 °C   
2.   Strand separation 30 sec  94 °C 
3.   Primer annealing 30 sec   variable 
4.   Strand elongation  1 min / kb 72 °C 
5.   Final elongation 5 min  72 °C 

 Steps 2-5 were run in 30-40 cycles 
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 Hydrolysis of nucleic acids via endonucleases  

For restriction site-based cloning, fragments were digested with conventional restriction enzymes 

(Thermo Fisher Scientific, Waltham, USA). For analytical purposes, for example to identify DNA 

fragments based on their fragmentation pattern after hydrolysis, FastDigest enzymes from the same 

company were used. The following reaction mixture was used irrespective of the enzymes used. Only 

the reaction time was adjusted to ten minutes for FastDigest enzymes or at least three hours or 

overnight for conventional enzymes. The 10x buffers depended on the enzymes used in the reaction.  

20 µl DNA hydrolysis reaction 
 2 µl 10x buffer (appropriate buffer, supplied with the enzyme) 
 1 µl per restriction enzyme 
 2-10 µl DNA (200 – 1000 µg) 

 

 Nucleic acid separation in agarose gels 

In order to separate DNA fragments according to their molecular weight, 20 µl DNA samples were 

supplemented with 4 µl of 6x DNA loading buffer and mixed. 18 µl of this mix were loaded on an 

agarose gel and run at 100 V for 20 – 30 minutes. Agarose gels were composed of 0.5 – 2 % of agarose, 

depending on the size of the nucleic acids that should be separated, melted in TAE buffer, cooled to 

approximately 50 °C and supplemented with ~0.0001 % (w/v) ethidium bromide. After the run, the 

gels were subjected to UV light and documented with a digital camera system from Intas (Göttingen, 

Germany). 

 TAE buffer      6x DNA loading buffer    
 40 mM  Tris HCl, pH 8.0   50 % (v/v) Glycerol  
 20 mM  Acetic acid    0.025 % (w/v)  Bromphenol blue  

1 mM  EDTA   

 

 Extraction of DNA fragments from agarose gels 

DNA fragments were recovered from agarose gels by cutting them out with a clean scalpel with a 

minimum amount of surrounding agarose. The DNA extraction from the gel fragment was carried out 

with the Invisorb Spin DNA Extraction Kit (Stratec Biomedical AG, Birkenfeld, Germany) and according 

to the manufacturer’s instructions. 
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 Ligation of DNA fragments 

DNA fragments can be covalently recombined with the help of DNA Ligase enzymes. All ligation 

reactions were carried out overnight at 22 °C with the T4 DNA Ligase from Thermo Fisher Scientific 

(Waltham, USA) kit in a volume of 20 µl. 

 20 µl ligation reaction 
 2 µl 10x T4 DNA Ligase Buffer 
 100 ng Linear vector DNA 
 var. Insert DNA (5:1 molar ratio over vector) 
 1 µl T4 DNA Ligase (5 Weiss Units) 

 

 Gateway cloning 

Gateway cloning is a sequence specific recombination system (Katzen, 2007) which is used to exchange 

DNA fragments between two plasmids. The two DNA fragments are located between inverse 

attachment sites (attL1 and attL2 in the entry plasmid, attR1 and attR2 in the destination plasmid). 

During the Gateway cloning process, the attL1 and attR1 and the attL2 and attR2 sites of both plasmids 

are attached. The LR-Clonase reaction exchanges the DNA fragments flanked by these attachment sites 

between the two plasmids. As a result, the insert from the entry plasmid is transferred into the 

destination plasmid. All LR-Clonase reactions were carried out with the Gateway LR-Clonase II Enzyme 

mix from Thermo Fisher Scientific (Waltham, USA) at 25 °C overnight.  

 6 µl LR-Clonase reaction 
 50 ng Entry vector 
 75 ng Destination vector 
 1 µl LR-Clonase 
 ad 6 µl TE buffer, pH 8.0 

 

 Precipitation of nucleic acids 

To increase DNA concentration, remove proteins or to replace buffers, RNA or DNA solutions were 

mixed with 0.1 vol of 3 M sodium acetate (pH 5.2) and 2.5 vol of 100 % ethanol and incubated at -80 °C 

for at least one hour (or ideally overnight). The nucleic acids were precipitated at 16.000 x g and 4 °C 

for 15 minutes. The supernatant was discarded, and the precipitate was washed in 700 µl of 70 % (v/v) 

ethanol. After centrifugation at 16.000 x g and 4 °C for ten minutes, the supernatant was removed. 

The pellet was air dried and then dissolved in an appropriate amount of water or buffer. 
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 Transformation of plasmid DNA into bacterial cells 

2.2.9.1 Transformation of plasmid DNA into E. coli cells 

For the production of chemically competent E. coli cells, 100 ml of LB medium were inoculated with a 

fresh overnight culture of the appropriate strain and grown to an OD450=0.6. The suspension was 

cooled on ice for 45 minutes and then pelleted at 5,000 x g and 4 °C for ten minutes. The cells were 

washed in 20 ml of ice cold 0.1 M MgCl2 and pelleted again for five minutes. The cells were resuspended 

in 20 ml of ice cold 0.1M CaCl2 and gently shaken horizontally on ice for 30 minutes. Finally, the cells 

were pelleted again, dissolved in a volume of 10 ml (0.086 M CaCl2 and 14 % (v/v) ml glycerol) and 

aliquots of 100 µl were frozen in liquid nitrogen and stored at -80 °C until use. 

For cloning, plasmids were transformed into Top10 cells (Thermo Fisher Scientific, Waltham, USA). 

Overexpression of genes was conducted in BL21(DE3)pLysS cells (Thermo Fisher Scientific, Waltham, 

USA). The transformation was prepared by the addition of 2 ng of clean plasmid or of 10 µl of a fresh 

ligation reaction to 100 µl of chemically competent cells on ice. The mix was incubated on ice for 

30 minutes and subsequently heat shocked at 42 °C for 45 seconds. After a 2-minute incubation on ice, 

400 µl of SOC medium were added and the cells were shaken at 180 rpm and 37 °C in a rocking 

incubator. After a brief centrifugation at 5,000 x g for one minute, all but approximately 100 µl of the 

supernatant was removed. The cells were re-suspended in the remaining 100 µl and 10 µl were plated 

on one plate and 90 µl were plated on another plate. Plates contained appropriate antibiotics for 

selection. 

 SOC medium 
0.6 % (w/v) NaCl  
2.0 % (w/v) Peptone  
0.5 % (w/v) Yeast extract  
2.7 mM  KCl  
10 mM  MgSO4  
10 mM  MgCl2  
20 mM  Glucose  
The pH was adjusted to 7.0 with KOH 

 

2.2.9.2 Transformation of plasmid DNA into Agrobacterium tumefaciens cells 

100 µl aliquots of chemically competent cells were thawed on ice and 1 µg of plasmid DNA was added. 

After gently mixing, the cells were incubated on ice, shock-frozen in liquid nitrogen and thawed at 

37 °C. Each step was carried out for five minutes. 800 µl of LB medium were added and the cells were 

shaken at 180 rpm and 28 °C for four hours. After sedimentation of the cells at 3,000 x g for two 

minutes the pellet was re-suspended in 100 µl of LB medium and plated on YEP plates containing 
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25 µg/ml gentamycin, 25 µg/ml rifampicin and 34 µg/ml chloramphenicol. Clones were picked after 

two days of incubation at 28 °C. 

 

  Transformation of plasmid DNA into Arabidopsis thaliana 

A. thaliana plants were transformed with the help of previously transformed Agrobacterium 

tumefaciens cultures. For each transformation, several pots with 4 Arabidopsis Col-0 seedlings per pot 

were grown until the inflorescences had reached a height of approximately 10 cm and the plants had 

formed plenty of not yet opened buds.  

A. tumefaciens GV3101 (pMP90) cells that had been transformed with appropriate plasmids were 

grown over night at 28 °C in 5 ml of LB medium containing 25 µg/ml gentamycin, 25 µg/ml rifampicin 

and 34 µg/ml chloramphenicol. 1 ml of overnight culture was used to inoculate 250 ml of YEP medium 

and cells were cultivated under the same conditions for 16-24 hours. The cells were harvested at 

5,500 x g for ten minutes. The pellet was re-suspended in 5 % (w/v) sucrose and adjusted to a final 

OD600 of 0.8. Additionally, 0.02 % (v/v) of Silvet L-77 were added to the cell suspension to facilitate 

infection. Developing siliques were cut from the plants and inflorescences were dipped into the 

agrobacteria solution for one minute with gentle agitation. Dipped plants were laid horizontally into 

plant growth trays that were bedded with wet paper towels and covered with a lid. After incubation 

on the bench overnight, plants were put in an upright position and normally grown to produce seeds 

for harvesting.  

 

2.3 Transcript analysis 

 Extraction of total RNA from plant material 

For the extraction of RNA from plant material, plant samples were ground to a fine powder in liquid 

nitrogen. A small portion of plant powder (~50 – 100 mg) was transferred to a 2 ml tube. Until the first 

contact of the sample with the first extraction buffer of the kit, the plant material was always kept 

frozen to prevent RNA degradation. The extraction was carried out with the Universal RNA / miRNA 

Purification Kit from roboklon (Berlin, Germany) according to the manufacturer’s instructions, 

including the optional DNaseI digestion. Freshly extracted RNA was immediately used for quality 

control and cDNA synthesis and subsequently stored at -80 °C.  



26 
 

 Quantification of transcript abundances 

2.3.2.1 Transcriptome analysis via RNA sequencing (RNAseq) 

For transcriptome analysis, total RNA was extracted from frozen ground plant material omitting the 

on-column DNase digestion. RNA integrity was tested on a 1 % (w/v) 3-(N-morpholino) propanesulfonic 

acid (MOPS) agarose gel. RNA samples were treated with 2 U of DNase I (Thermo Fisher Scientific, 

Waltham, USA) for 20 minutes and precipitated overnight. Re-dissolved RNA was analysed on an 

agarose gel again and intact samples were stored at -80 °C until they were shipped with dry ice. 

The synthesis of the cDNA library, the RNAseq, the transcript annotation and the basic bioinformatic 

analysis were carried out by BGI (Beijing, China) with a BGISEQ-500 system. For the synthesis of the 

cDNA library, BGI followed a protocol in which messenger RNA was enriched, and reverse transcribed 

with random N6 primers. The second strand was synthesized, and adaptors were ligated to end-

repaired double-stranded cDNAs that enabled cyclization of heat-denatured single-stranded cDNAs, 

representing the cDNA library. Per sample, 24,136,983 raw reads or 4,057,386 clean reads were 

generated on average. For data evaluation, only genes with a raw count of at least 20 reads were 

considered. Genes were considered differentially regulated if they were up- or down regulated at least 

two-fold relative to a reference sample (for example the wild type). 

 MOPS buffer 
200 mM  MOPS 
10 mM   Sodium acetate 
10 mM   EDTA 
The pH was adjusted to 7.0 

 

2.3.2.2 Quantitative real-time polymerase chain reaction (RT-qPCR) 

Transcript abundances were determined using RT-qPCR and the 2-∆ct or 2-∆∆ct evaluation methods (Livak 

and Schmittgen, 2001). All transcript data determined by RT-qPCR are relative to the geometric mean 

of transcript levels of the reference genes ACTIN 7 (ACT7, AT5G09810) and YELLOW-LEAF-SPECIFIC 

GENE 8 (YLS8, AT5G08290). RT-qPCR experiments were conducted with the C1000 Thermal Cycler 

equipped with a CFX96 Real-Time System (Bio-Rad, Hercules, USA) and the CFX Manager 3.1 software 

(Bio-Rad, Hercules, USA).  

PCR program 
1.   Pre-heating  5 min 94 °C   
2.   Strand separation 15 sec 94 °C 
3.   Primer annealing 30 sec  60 °C 
4.   Strand elongation  30 sec 72 °C 

 Steps 2-4 were run in 40 cycles followed by the melting curve 
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qRT-PCR master mix 
 2.00 µl  10x qRT-PCR buffer  
 0.80 µl  50 mM MgCl2 
 0.40 µl  dNTPs (5 mM, each) 
 0.20 µl  1x SYBR green (Sigma-Aldrich, St. Louis, USA) 

 0.04 µl  Opti-Taq polymerase (5 U/µl) 
 0.12 µl  Primer mix (50 µM, each) 

 13.44 µl Water 

qRT-PCR 10x buffer 
160 mM  Ammonium sulfate 
1 M   Tris HCl, pH 8.3 
0.10 % (v/v)  Tween-20  
 

  

2.4 Protein analysis 

 Protein extraction from plant material 

For extraction of proteins from plant material, plant samples were ground to a fine powder in liquid 

nitrogen. Some of the powder was filled into a 2 ml tube until it reached the 0.5 ml mark. 500 µl of 

protein extraction buffer were added and thoroughly vortexed. Samples were heated at 95 °C for 

ten minutes and allowed to cool back down to room temperate. After centrifugation at 16,000 x g for 

ten minutes, the supernatant containing the proteins was transferred to a new tube. Protein samples 

were placed on ice for subsequent use or stored at -20 °C. 

 Protein extraction buffer 
 62.5 mM Tris HCl, pH 6.8  
 10 % (v/v) Glycerol  
 1 % (w/v) SDS  
 5 % (v/v) β-mercaptoethanol (freshly added every time) 
 

 Extraction of nuclei from plant material 

Following a protocol modified after Kinkema et al. (2000), approximately 1.5 g of plant material were 

ground to a fine powder in liquid nitrogen and subsequently mixed with 3 ml of Honda buffer. The mix 

was filtered through a nylon mesh with 62 µm pores. The samples were supplemented with triton 

X-100 to a final concentration of 0.5 % (v/v), briefly vortexed and incubated on ice for 15 minutes. After 

centrifugation at 1,500 x g and 4 °C for five minutes, an aliquot of the supernatant was saved and 

stored as a nuclei depleted sample and the remaining supernatant was discarded. The pellet was re-

suspended in 2.5 ml of Honda buffer containing 0.5 % (v/v) of triton X-100. After the previous 

centrifugation step was repeated, the pellet was re-suspended in 2.5 ml of Honda buffer without 

triton X-100. During a centrifugation step at 100 x g and 4 °C for five minutes, remaining cell debris was 
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pelleted. The nuclei containing supernatant was transferred to a new tube and centrifuged at 2,000 x g 

and 4 °C for five minutes to pellet the nuclei. Nuclei were re-suspended and frozen at -20 °C in 100 µl 

of Honda buffer. 

 Honda buffer 
 2.5 % (w/v) Ficoll 400 
 5.0 % (w/v) Dextran T40  
 0.4 M  Sucrose  
 25 mM  Tris HCl, pH 7.4  
 10 mM  MgCl2  
 5 mM  DTT  
 1x  Protease inhibitor cocktail (Sigma-Aldrich, St. Louis, USA) 

 

 Determination of protein concentration 

Concentration of protein samples was determined using the Protein Assay (Bio-Rad, Hercules, USA) 

which is based on Bradford (1976). For every sample of interest, two reactions were measured 

containing either 2 µl or 4 µl of the sample. Water was added to the proteins to a volume of 800 µl. 

Then, all samples were mixed with 200 µl of Bradford reagent and incubated in the dark for 20 minutes. 

The absorption of the samples was determined at 595 nm and standardized based on a calibration 

curve with 0-11 mg BSA ml-1.  

 

 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

For the separation of denatured proteins on SDS-polyacrylamide gels, 20 µg of proteins were mixed 5x 

loading buffer and heated at 95 °C for ten minutes. The samples were cooled down on ice, briefly spun 

down and proteins were then loaded on a 12 % polyacrylamide gel (Rotiphorese gel 30 (37.5:1), Carl 

Roth, Karlsruhe, Germany) overlaid with a 5 % stacking gel. For separation, the gel was run in SDS 

running buffer at 40 V until the samples had passed the stacking gel. Then the voltage was increased 

to 100 V. The run was stopped when the bromophenol front had passed the gel.  

 Stacking gel     Separating gel 
 5 % (v/v) Polyacrylamide   12 % (v/v)  Polyacrylamide 
 120 mM Tris HCl, pH 6.8   375 mM Tris HCl, pH 8.8 
 0.1 % (w/v) SDS    0.1 % (w/v) SDS 
 0.1 % (w/v) APS    0.1 % (w/v) APS 
 0.2 % (v/v) TEMED    0.1 % (v/v) TEMED 
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5x Protein loading buffer   SDS running buffer 
 625 mM Tris HCl, pH 6.8   25 mM  Tris 
 50 % (v/v) Glycerol   200 mM Glycine 
 10 % (w/v) SDS    0.1 % (w/v) SDS 
 0.025 % (w/v)  Bromphenol blue   
 20 % (v/v) β-mercaptoethanol  

 

 Immunological detection of proteins (Western Blot) 

The protein samples were transferred electrophoretically onto a nitrocellulose membrane (Carl Roth, 

Karlsruhe, Germany) according to Kyhse-Andersen (1984). The transfer was conducted for 40 minutes 

with the current set to 2x the surface area of the membrane in cm² in mA.  

To control the transfer, the proteins were stained on the membrane in 0.2 % (w/v) Ponceau S in 3 % 

(v/v) acetic acid for five minutes. Afterwards, the membrane was rinsed several times in water until 

clear protein bands were visible with a weak background. After documentation, the membrane was 

then de-stained in water until the staining was removed. 

The membrane was then blocked for at least 2 hours in 5 % (w/v) milk powder in TBST at room 

temperature. Subsequently, the blocking solution was replaced by the primary antibody (1:1,000 in 

5 % (w/v) milk powder in TBST) and incubated at 4 °C overnight, while gently shaking. The membrane 

was then washed three times for five to ten minutes in TBST, shaken with the secondary antibody 

(1:10,000 in 5 % (w/v) milk powder in TBST) and washed as stated before. Agrisera ECL SuperBright 

solutions were mixed 1:1 or 1:1:2 with water. The detection solution was incubated in the dark for 

20 minutes before it was evenly applied onto the membrane in a clear film. After five minutes, the 

membrane was drained from excess solution with a lint-free tissue and then exposed for detection in 

a LAS4000 CCD camera system (GE Healthcare, Chicago, USA) for one to 60 seconds until clear bands 

were visible with low background. 

Transfer buffer     TBST 
 25 mM  Tris HCl, pH 8.3   10 mM  Tris HCl, pH 7.5  
 150 mM Glycine    150 mM NaCl  
 10 % (v/v) Methanol   0.05 % (v/v) Tween-20   

 

Antibody combinations: 

Primary: α-HIS-tag antibody (mouse) from Sigma-Aldrich (St. Louis, USA) 
Secondary: α-mouse-HRP conjugate from Sigma-Aldrich (St. Louis, USA) 

 



30 
 

Primary: α-tAPX serum from rabbit detecting both sAPX and tAPX (described in van Buer et al. (2016)) 
Primary: α-RAP2.4c serum from rabbit immunized against heterologous expressed RAP2.4c 
Primary: α-RAP2.4d serum from rabbit immunized against heterologous expressed RAP2.4d 
Secondary: α-rabbit-HRP conjugate from Sigma-Aldrich (St. Louis, USA) 

 

 Protein overexpression in E. coli cells 

For the overexpression of plant proteins in E. coli, 4 ml of LB medium containing 100 µg/ml ampicillin 

and 34 µg/ml chloramphenicol were inoculated with E. coli BL21(DE3)pLysS cells carrying the pOPINF 

plasmid encoding the desired protein. After incubation at 37 °C and 180 rpm overnight, this culture 

was used to inoculate 100 ml of pre-warmed LB medium without antibiotics, diluting the cells 

approximately 1:50. The cells were further cultivated under the same conditions until they had reached 

an OD600 = 0.6. To induce overexpression, isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to 

a final concentration of 1 mM. This lactose analogue binds to the LacI repressor protein and leads to 

its dissociation from the operator upstream of the cDNA that was previously cloned into the pOPINF 

vector and thus, to its expression. After three hours of protein overexpression, the cells were harvested 

by centrifugation at 3,200 x g for 15 minutes. The pellets were immediately used for protein extraction. 

 

 Extraction of native protein from E. coli cells 

Cell pellets of bacteria that were generated after protein overexpression in E. coli, were re-suspended 

in lysis buffer (4 ml g-1 cells). Lysozyme was added to a final concentration of 1 mg ml-1 and the cells 

were incubated on ice for 30 minutes. The suspension was sonicated on ice with a Sonopuls sonicator 

(Bandelin, Berlin, Germany) (settings: cycle 9, 80 % energy level) for six times, each time for one minute 

with breaks of 30 seconds in between. The lysate was centrifuged at 10,000 x g and 4 °C for 30 minutes 

to separate soluble and insoluble fractions.  

 Lysis buffer 
 50 mM   NaH2PO4  
 300 mM  NaCl 
 10 mM   Imidazole 
 The pH was adjusted to 8.0 with KOH  

 

 Re-solubilisation of inclusion bodies 

Inclusion bodies were solubilized in 10 ml of IB wash buffer and centrifuged at 8,000 x g for 30 minutes. 

The pellet was re-dissolved in 10 ml of sterile water and centrifuged again the same way. The pellet 
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was re-dissolved in 5 ml of 50 mM Tris HCl (pH 8.5). This solution contained the re-solubilised 

overexpressed proteins and was used for His-tag purification in the next step. 

 IB wash buffer 
 50 mM  Tris HCl, pH 8.0 
 5 mM  EDTA  
 2 % (w/v) Sodium deoxycholate 

 

 His-tag purification 

All proteins that were overexpressed with the pOPINF vector carried an N-terminal 6x His-tag that can 

be used for affinity purification of the proteins. His-tagged and re-solubilised proteins were purified 

with Ni-NTA-agarose (Qiagen, Venlo, The Netherlands). 500 µl of Ni-NTA-agarose were sedimented for 

a few seconds, the supernatant was removed, 1 ml of lysis buffer was added and briefly centrifuged 

again. The supernatant was removed, and the protein solution was gently agitated with the Ni-NTA-

agarose at 4 °C in a 15 ml tube for one hour to facilitate binding of the proteins to the Ni ions in the 

matrix. The suspension was loaded on a column at 4 °C and allowed to run through by gravity. The 

agarose matrix was washed twice with 2 ml of wash buffer. Purified proteins were eluted four times 

with 250 µl of elution buffer. Highest protein concentrations are obtained in elution fractions 2 and 3.  

 Lysis buffer Wash buffer Elution buffer 
 50 mM  50 mM  50 mM  NaH2PO4  
 300 mM 300 mM 300 mM NaCl  
 10 mM  20 mM  250 mM Imidazole  
 pH 8.0  pH 8.0  pH 8.0  Adjusted with KOH  

 

  De-salting of proteins 

Kinase enzymes usually rely on bivalent cations such as Mg2+ and Mn2+. High concentrations of 

imidazole in the elution buffer from the previous step may bind these cations and render them 

unavailable for enzyme reactions. Thus, the imidazole was removed from the protein solutions using 

the Zeba Spin Desalting Columns (7K MWCO) from Thermo Fisher Scientific (Waltham, USA) that 

deplete the loaded solution from molecules that are smaller than 7 kDa. The columns were loaded 

with the maximum volume of 130 µl of fraction 3 of the His-tag purified proteins. The de-salting was 

carried out according to the manufacturer’s instructions.  
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  Kinase assay 

In a kinase assay, radioactively labelled ATP is used as a co-substrate. Radioactivity that is incorporated 

into the target proteins can be subsequently detected, confirming or disproving the protein as a target 

of the kinase.  

In each reaction, 300 ng of a kinase were mixed with 300 ng of a target protein, filled to 10 µl with 

water and then supplemented with 10 µl of the 2x kinase reaction buffer (Lumba et al., 2014). All 

proteins were previously His-tag purified and de-salted under native conditions. Reactions were 

incubated at 22 °C for 20 minutes and then stopped by the addition of 5x protein loading dye and 

heating the samples at 95 °C for ten minutes. Samples were then separated via SDS-PAGE and gels 

were dried in a Model 583 Gel Dryer (Bio-Rad, Hercules, USA) in a vacuum over night while the gels 

were heated at 80 °C for the first 2 hours. Dried gels were exposed to BAS-MS phosphoimaging films 

(Fujifilm Holdings Corp., Tokyo, Japan) and visualized by autoradiography with in a Typhoon FLA 9500 

phosphoimager (GE Healthcare, Chicago, USA) at maximum intensity.  

 2x Kinase buffer 
 20 mM  MgCl2 
 20 mM  MnCl2  
 40 mM  Tris HCl, pH 7.5  
 20 µM  ATP  
 1 µCi  [γ32P]ATP (Hartmann Analytic GmbH, Braunschweig, Germany) 

  

2.5 Phytohormone analysis 

 Phytohormone extraction from plant material 

Plant material was ground to a fine powder in liquid nitrogen. Approximately 100 mg of powder were 

transferred to a new tube and the precise weight was noted. Four Zirconox beads with a diameter of 

2.8–3.3 mm (Mühlmeier Mahltechnik, Bärnau, Germany) were added per sample. 1 ml of extraction 

buffer 1 (998 µl ethyl acetate and 2 µl of the internal standard composed of deuterated hormone 

molecules: 10 ng µl-1 of salicylic acid, abscisic acid and jasmonic acid-isoleucine and 30.2 ng µl-1 of 

jasmonic acid) was added to the frozen samples and to an empty tube as a blank. All samples were 

thoroughly mixed in a FastPrep-24 Classic grinder (Mp Biomedicals, Santa Ana, USA) twice for 

30 seconds. The samples were centrifuged at 13,000 x g and 4 °C for ten minutes and the supernatant 

was transferred to a new tube. A new tube was filled with extraction buffer 1 as another blank control. 

All samples were concentrated in a vacuum concentrator 5301 (Eppendorf, Hamburg, Germany). 

During the concentration of the samples, the plant material that already had been extracted once was 

used for a second identical extraction procedure, only this time with pure ethyl acetate lacking the 
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internal standard. The supernatant from the second extraction was added to the concentrated solution 

from the first extraction and the combined extract was further concentrated until only roughly 50 µl 

of a highly viscous solution were left. All samples and a new re-eluation blank tube were supplemented 

with 400 µl of re-eluation buffer (70 % methanol and 0.1 % formic acid) and vortexed for ten minutes. 

After centrifugation at 13,000 x g for ten minutes, 200 µl of the supernatant were transferred without 

any suspended solids into GC/HPLC vials and stored at -20 °C until analysis. 

 

 Phytohormone quantification 

Hormone extracts were analysed using a UPLC-ESI-MS/MS Synapt G2-S HDMS (Waters, Milford, 

Massachusetts, USA). Hormone concentrations were calculated relative to the fresh weight that was 

used for hormone extraction and to the internal standards that were added to the samples during the 

extraction procedure (Nguyen et al., 2016).  

 

2.6 Electrolyte leakage assay 

Plant cells that are exposed to adverse freezing temperatures lose electrolytes from the cytosol to the 

surrounding medium. The extent of this loss can be interpreted as a means of freezing tolerance. The 

less electrolytes a cell loses at a given sub-zero temperature, the more freezing tolerant it is. Measuring 

the electrolyte leakage over a temperature gradient in different genotypes allows for comparison of 

freezing tolerance between these genotypes.  

Four-week-old plants were used for the assessment of the electrolyte leakage. These plants were 

either used directly (naïve), or they were acclimated at 4 °C for three days (acc). Per genotype, 

measurements were carried out at temperatures between 0 and -18 °C (in 2 °C intervals). Each of these 

treatments was measured in triplicates and each of the single samples consisted of three leaves taken 

from three different plants. These leaves were harvested and put into glass tubes that contained 200 µl 

of ice-cold double distilled water (dd water) with the cut petioles covered in water. All, but the 0 °C 

samples were put into a “Huber P100 Process” oil bath (Peter Huber Kältemaschinenbau GmbH, 

Offenburg, Germany) that was pre-cooled to -1 °C and samples were incubated for 45 minutes. A bit 

of ice was ground to a fine powder in liquid nitrogen and small amounts of this snow were added to 

every sample to facilitate nucleation of the water surrounding the leaves. After 45 minutes of 

incubation, the oil bath was set to start a temperature gradient, reducing the temperature by 4 °C per 

hour. Triplicates of all genotypes were transferred from the oil bath to an ice bath at the temperatures 

mentioned above. All samples were left on ice in the cold room overnight. On the next day, 5 ml of dd 
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water were added to all samples and they were vigorously shaken at 4 °C until the next day. Avoiding 

organic material, 1 ml of all samples was added to 15 ml tubes containing 5 ml of dd water. The 

remaining water containing the leaves was heated in a boiling water bath at 100 °C for 45 minutes to 

destroy all cell membranes and release all electrolytes as a 100 % reference. After the samples were 

cooled down to room temperature, 1 ml of every sample was again transferred to 15 ml tubes 

containing 5 ml of dd water. Conductivity of all samples was measured with a Seven Excellence 

Multiparameter conductometer (Mettler-Toledo, Columbus, USA) resulting in two values per sample 

(leaked electrolytes and 100 % electrolytes). Values were analysed with GraphPad. 

 

2.7 Pseudomonas syringae DC3000 infection assays 
Infection assays allow to assess the resistance of Arabidopsis plants towards various bacteria. In this 

assay, cells of the coronatine secreting pathogenic bacterium Pseudomonas syringae (Pst) var. Tomato 

DC3000 were plated on a NYGA agar plate containing 100 µg/ml rifampicin and incubated over night 

at 28 °C to form a dense layer of cells. On the next day, 5 ml of 10 mM MgCl2 were added to the plate 

and it was gently shaken for five minutes to re-suspend the cells. The same was done with an identical 

but sterile plate as a blank solution for a photometric measurement. Both samples were transferred 

to a 50 ml tube and filled to 50 ml with 10 mM MgCl2. Adding more MgCl2 solution, the bacteria 

containing sample was adjusted to an OD600 = 0.001 relative to the blank sample. Three leaves of similar 

developmental age of each plant were marked with a permanent marker and infected by infiltrating 

the leaves with a syringe through the stomata. The syringe was placed on the abaxial side of the leaves 

while applying gentle counter pressure with a finger from the top. The leaves were infiltrated until the 

apoplast was infiltrated with the bacterial suspension. The plants were then grown under standard 

conditions in a separate chamber for three days. Leaf discs with a radius of 0.25 cm were cut out of 

the infected leaves with a cork borer and all three discs from a single plant were transferred into 1 ml 

of 10 mM MgCl2 containing 0.01 % (v/v) Silvet L-77. The discs were then shaken at 300 rpm and 28 °C 

for two hours to extract the bacteria from the leaves. Every sample was then serially diluted 1:10 for 

six times in 10 mM MgCl2. 15 µl of each dilution were plated on a NYGA plate containing 100 µg/ml 

rifampicin. The plates were dried and subsequently incubated at 28 °C for two days. After growth, cfu 

were counted and cfu/cm² leaf were calculated.  

 NYGA agar 
 5 g   Peptone  
 3 g   Yeast extract  
 2 % (v/v) Glycerol  
 1.5 % (w/v) Agar  
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2.8 Yeast methods 

 Transformation of plasmid DNA into Saccharomyces cerevisiae 

The transformation protocol was adopted from Gietz and Schiestl (2007a). S. cerevisiae Y187 cells were 

plated on YPAD agar plates and grown at 28 °C for two to three days until colonies were visible. A single 

colony was picked, re-suspended in 5 ml of liquid YPAD medium and shaken overnight at 180 rpm and 

28 °C. The OD600 was determined in a 1:100 dilution (1x106 cells ml-1 give an OD600 = 0.1 in the dilution), 

2.5 x 108 cells were added to 50 ml of pre-warmed YPAD medium and incubated for approximately 

four hours until the suspension contained at least 2 x 107 cells ml-1. The cells were harvested at 

3,000 x g for five minutes and resuspended in 25 ml of sterile water. Centrifugation was repeated, the 

cells were resuspended in 25 ml of sterile water again, sedimented again and resuspended in 1 ml of 

sterile water. The cells were transferred into a fresh 1.5 ml tube, centrifuged at 13,000 x g for 

30 seconds and divided into a number of aliquots equal to the number of planned transformations 

(max. 10). The aliquots were pelleted again at 13,000 x g for 30 seconds and the supernatants were 

removed. During the washing steps, carrier DNA (2 mg ml-1 salmon sperm DNA) was heated at 100 °C 

for five minutes and then stored on ice. 360 µl of transformation mix containing the plasmid DNA (see 

below) were added to the cells and carefully mixed. The cells were incubated at 42 °C for 40 minutes 

and pelleted at 13,000 x g for 30 seconds. The pellets were re-suspended in 1 ml of sterile water and 

aliquots of 20 µl and 200 µl were plated on SD plates lacking specific amino acids. 

 Transformation mix 
 33 % (w/v) PEG 3350  
 0.1 M   LiAc  
 0.1 mg  Salmon sperm DNA 
 500 µg  Plasmid DNA  

 

 Yeast-Two-Hybrid assay 

Single colonies of Saccharomyces cerevisiae Y187 cells that contained two plasmids, each one encoding 

one of the putative interaction partner proteins fused to either of the two fragments of the yeast GAL4 

transcriptional activator and a selective marker gene, were dissolved in 100 µl of sterile water. 15 µl 

of these suspensions were dripped on SD-LTH plates containing 0, 1, 2.5, 5 or 10 mM 3-AT. Successful 

interaction of both fusion proteins brings the two GAL4 fragments in close proximity, which enables it 

to induce expression of the HIS3 gene that allows the yeast cells to survive on selective medium lacking 

histidine (H). 3-AT was added to the medium to suppress leaky HIS3 expression discriminating cell 

growth due to leaky expression from protein-protein interaction-triggered expression. These plates 
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were incubated at 30 °C for several days until clear growth of the yeast cells could be observed that 

allowed for comparison of the different protein combinations.  

 

 Inverse Yeast-One-Hybrid assay 

The inverse Yeast-One-Hybrid assay was conducted following the protocol established by (Bulcha, 

2013). 

2.8.3.1 Transformation of library scale plasmid DNA into Saccharomyces cerevisiae 

For the library scale plasmid transformation into yeast cells, the protocol developed by (Gietz and 

Schiestl, 2007b) was applied. Yeast cells that had previously been transformed with the 

RAP2.4d_pACT2 construct were grown overnight in SD-L medium. Cell density was determined 

spectrophotometrically as described in chapter 2.8.1 and the volume containing 6.25 x 108 cells was 

harvested at 3,000 x g for five minutes. The pellet was re-suspended in an appropriate volume of warm 

SD-L medium, resulting in a cell density of x 106 cells per ml. The cells were incubated for four to five 

hours and harvested by centrifugation. The cells were re-suspended in 360 µl transformation mix and 

incubated at 42 °C for two hours. After another centrifugation step, the cells were re-suspended in 

20 ml of sterile water and plated on SD-LT plates of 150 mm in diameter.  

 

Transformation mix 
 33.3 % (w/v) PEG 3350  
 0.1 mM  LiAc  
 0.28 mg Salmon sperm DNA 
 60 µg  Plasmid DNA 

 

2.8.3.2 Analysis of the interacting clones 

The interaction assay was carried out by plating yeast clones that contained a prey and a bait plasmid 

on selective SD-LTH plates containing 0 mM, 60 mM, 100 mM, 160 mM, 200 mM, 250 mM and 300 mM 

3-amino-1,2,4-triazole (3-AT). The cells were incubated at 30 °C for five days to allow the cells to grow. 

Colonies that had grown on agar plates at higher 3-AT concentrations indicated positive interactions. 

Plasmid DNA was extracted from these clones with the Easy Yeast Plamsid Isolation Kit (Clontech, 

Mountain View, USA) according to the manufacturer’s instructions and sent to GATC Biotech 

(Konstanz, Germany) for sequencing of the inserts, to identify interacting DNA fragments. 
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3 Results and discussion 

 

3.1 Functions of RAP2.4c and RAP2.4d in the cold 

Previous studies have indicated various functions of the two transcription factors RAP2.4c and 

RAP2.4d. Under standard growth conditions, both rap2.4c and rap2.4d KO plants exhibit reduced 

transcript levels of the plastid localised ASCORBATE PEROXIDASE (APX) sAPX (stromal version) and tAPX 

(thylakoid-bound version) (Rudnik et al., 2017). In other experiments using RAP2.4c and RAP2.4d 

overexpressing lines that had been transferred to 4 °C, it was shown that the cold-induced 

upregulation of COLD REGULATED (COR) genes, such as COR47 and COR15a was reduced compared to 

the response in wild type plants, indicating a role as negative regulators of the cold response. These 

results were the basis to further investigate the functions of RAP2.4c and RAP2.4d in the cold and in 

cold priming. 

 

 Analysis of the freezing tolerance of rap2.4c and rap2.4d 

Previous studies have focused on effects on COR transcript levels in the rap2.4c and rap2.4d KO lines 

in the cold (Bulcha, 2013). Additionally, both transcription factors have been demonstrated to regulate 

expression of plastid APX genes that are involved in the cold response (Prasad et al., 1994; Thomashow, 

1999; Rudnik et al., 2017), but their impact on the cold tolerance has not been tested. To fill this gap 

and to analyse the capacity of both T-DNA KO lines to tolerate freezing stress before and after 

acclimation to 4 °C, an electrolyte leakage assay was carried out (Figure 2). Exposition of leaves from 

naïve (non-acclimated) plants to a freezing stimulus typically leads to electrolyte leakage from the 

leaves. Cold-acclimated plants have an altered composition of membranes resulting in adapted 

membrane fluidity and in reduced electrolyte leakage. Electrolyte leakage data of naïve and acclimated 

plants show to what extent freezing tolerance is activated and how efficient they have acclimated to 

4 °C during three days of acclimation.  

Compared with Col-0, rap2.4c plants exhibited improved cold acclimation with an unchanged direct 

cold response and rap2.4d plants had an enhanced direct cold response, while cold acclimation was 

wild type-like. These results indicate that RAP2.4c is involved in the regulation of cold acclimation. On 

the contrary, RAP2.4d affects the direct cold response. The results are consistent with the previous 

studies in which both RAP transcription factors were described as negative regulators of the cold 

response (Bulcha, 2013; Rudnik et al., 2017).  
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Figure 2: Freezing tolerance of Col-0, rap2.4c and rap2.4d determined by electrolyte leakage. 
Four-week-old plants were either used for electrolyte leakage directly (naïve) or after a three-day cold 
acclimation pre-treatment at 4 °C. The EL50 represents the temperature at which 50 % of the electrolytes are 
released from the leaves. n=3±DS, Tukey's multiple comparisons test KO line vs. Col-0 in the same treatment, 
p<0.05.  

 

The electrolyte leakage results indicated that RAP2.4c and RAP2.4d function in cold tolerance 

regulation and/or inhibition of regulatory processes leading to freezing tolerance.  Many COR genes 

are regulated via the ICE1-CBF-COR pathway and facilitate direct cold responses and long-term cold 

acclimatory responses (reviewed by Knight and Knight (2012)). INDUCER OF CBF EXPRESSION 1 (ICE1) 

is a constitutively expressed transcription factor that is activated at low temperatures and leads to the 

expression of the cold master regulator genes C-REPEAT BINDING FACTOR (CBF) 1-3. Expression of 

these genes peaks after three hours in the cold and induces the expression of their COLD REGULATED 

(COR) target genes (Fowler et al., 2005). To test if modulations of the ICE1-CBF-COR pathway are 

responsible for the altered electrolyte leakage, the expression of selected COR genes and of their 

upstream regulators, the CBF transcription factors, was analysed in the cold in four-week-old Col-0, 

rap2.4c KO and rap2.4d KO plants. Samples were taken before the start of acclimation and after two 

and three days to observe differences in CBF and COR gene expression during acclimation (Figure 3).  

COR15a, COR47, CBF1 and CBF3 showed a strong induction of gene expression in the cold with variable 

absolute expression between the experiments. No significant differences in gene expression could be 

observed between Col-0 and both KO lines. Expression of central regulatory genes (CBF) and of genes 

directly affecting the cold response and cold acclimation (COR) were very similar between the 

genotypes and do not obviously explain the significant differences in freezing tolerance and cold 

acclimation that were shown in the electrolyte leakage experiment (Figure 2). 
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Figure 3: Relative expression of cold related genes determined by RT-qPCR.  
Four-week-old Col-0, rap2.4c and rap2.4d KO plants were transferred to 4 °C and harvested before the transfer 
and after two and three days of acclimation to 4 °C. n=3±SD, student’s t-test KO line vs. Col-0 at the same time, 
p<0.05. 

 

 Analysis of the RAP2.4d DNA binding motif 

As demonstrated by Rae et al. (2011), RAP2.4d (there assigned as RAP2.4B) binds to the Dehydration-

Responsive Element (DRE) sequence (CCGAC) in an electrophoretic mobility shift assay (EMSA). This is 

a motif typical for transcription factors from the DREB group within the AP2/ERF super family of 

transcription factors (Sakuma et al., 2002). RAP2.4c and RAP2.4d belong to the sub-family AP2/ERF-Ib 

(Nakano et al., 2006). In vitro analysis of DNA binding properties of transcription factors are useful 

tools, but in vivo binding is more complex, as interacting proteins may alter binding affinities. Jote 

Tafese Bulcha (Bulcha, 2013) conducted assays with RAP2.4a and RAP2.4c (there called RAP2.4d) and 

proposed CCG(A/G)C for RAP2.4a and G(A/T/C)GGCG and AGGC(C/G) for RAP2.4c as target motifs 

based on an inverse Yeast-One-Hybrid assay approach. The proposed RAP2.4a motif matched the DRE-

motif, while the RAP2.4c motif was similarly GC-rich but deviated from the DRE-sequence. The same 

protocol was used to determine the DNA-binding motif of RAP2.4d in the present study.  

For this purpose, the library of sheared Arabidopsis gDNA fragments of approximately 200 – 300 bp 

that was generated by Bulcha (2013), was used in the present study, representing the prey DNA library 

that was tested for interaction with RAP2.4d. The bait plasmid was generated by the insertion of the 

full-length coding sequence of RAP2.4d into the pACT2 vector. The RAP2.4d coding sequence was 

amplified by PCR using gene specific primers (forward: GAATTCCTAATTTACAAGACTCGAACACTGAAG 
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and reverse: GGATCCGAACAACTTCTATGGATTTTTACAGTAACAA), that added the restriction enzyme 

recognition sites of EcoRI and BamHI, respectively. The RAP2.4d PCR product was ligated into the 

pACT2 vector and transformed into E. coli Top10 cells. Sequencing confirmed the accuracy of the 

resulting construct. 

 

Figure 4: First putative DNA binding motif of RAP2.4d. 
Sequenced interacting clones from an inverse Yeast-One-Hybrid assay were analysed for a common motif with 
MEME2.0. A: The highest scoring result is shown which had an E-value of 9.8E-25. B: The list names the genes, 
promoter positions and sequence hits that share the common motif. 

 

The resulting sequences were blasted against the Arabidopsis thaliana genome using the NCBI 

Nucleotide BLAST function and only the 56 sequences that were within 3000 bp upstream of a coding 

gene were collected. These 56 sequences were subjected to the MEME motif finder (Multiple EM for 

Motif Elicitation) searching for overrepresented motifs. Searching for motifs with a length of only six 
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to ten bp yielded no motifs with an E-value below 0.05. Thus, the search was stepwise extended to 15 

bp and two candidate motifs were identified (Figure 4 and Figure 5).  

 

The first motif (Figure 4) was found in 21 out of the 56 interacting promoter sequences and the second 

motif was identified in 14 sequences. Both motifs contain sequences that resemble the classical CCGAC 

DRE-motif with some variation in single base pairs, slightly varying between the target genes. The first 

motif starts with a GC-rich region that resembles the DRE-element. The TATA sequence at bases eight 

to eleven is flanked by two regions that have reverse-complement sequences to each other, that might 

form loops under certain conditions and that may modify binding of RAP2.4d. These reverse-

complement sequences extend into the next two bp (GG) of the top four target sequences (Figure 4B). 

No such structure was found in the second motif. However, it contains a DRE-like motif at the 3’ end 

which reads CCGTC instead of CCGAC. 

 

 

Figure 5: Second putative DNA binding motif of RAP2.4d. 
Sequenced interacting clones from an inverse Yeast-One-Hybrid assay were analysed for a common motif with 
MEME2.0. A: The second highest scoring result is shown which had an E-value of 9.7E-17. B: The list names the 
genes, promoter positions and sequence hits that share the common motif. 
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Notably, the two lists of genes that contained the two putative motifs had an overlap of 12 genes, 

which left only nine promoters that were unique to the first motif and two promoters that were unique 

to the second motif. As both motifs contained a CCCG sequence at the 5’ end of motif 1 and at the 

3’ end of motif 2, it was possible, that this CCCG sequence represented an overlap between both 

motifs.  

The two motifs that were found in the 12 promoters that contained both motifs were compared for 

their location within the promoters. In all of the 12 cases, two distinct sequence fragments were 

assigned to the two motifs, establishing that both motifs represent separate genetic positions within 

the promoters. 

The AP2 DNA binding domain that is common to all members of the RAP2.4 family is highly conserved 

and consist of 58 amino acids (Nakano et al., 2006). In these 58 amino acids, RAP2.4a and RAP2.4d 

have a high homology and share all but three amino acids. With nine mismatches, RAP2.4c and 

RAP2.4d are more divers in their AP2 domains (Rudnik et al., 2017). This is also reflected in their 

predicted DNA binding motifs that were all determined with the same method. RAP2.4a was predicted 

to bind to a DRE motif (CCG(A/G)C) (Bulcha, 2013) that is highly similar to the 3’ end of the second 

motif (CCGTC) that was determined for RAP2.4d in the present study (Figure 5). The DNA binding 

motifs that were determined for RAP2.4c (G(A/T/C)GGCG and AGGC(C/G)) deviate more strongly from 

the classical DRE motif (Bulcha, 2013). This is in line with the calotte models that compare the 3D-

structures of the AP2 domains of all RAP2.4 members (Rudnik et al., 2017). The loop 2 that connects 

the β-sheets 2 and 3 is in direct contact with the DNA (Allen et al., 1998). This loop is almost identical 

in RAP2.4a and RAP2.4d but differs more strongly in RAP2.4c, supporting its deviating DNA binding 

motif. Particularly the R  K substitution in RAP2.4c (K90) that lies in the loop 2 may influence DNA 

binding capabilities, as lysine (K) it is less bulky than the arginine (R) and has less potential for the 

formation of hydrogen bonds (Rudnik et al., 2017). 

The promoter sequences of the cold-regulated genes COR15a and COR47 that were shown to be 

inhibited by RAP2.4c and RAP2.4d (Bulcha, 2013) both contain the predicted DNA binding motifs of 

RAP2.4c and of RAP2.4d. The CCGTC (RAP2.4d, -505 bp) and several variants of the predicted RAP2.4c 

motifs are located in the COR15a promoter and the CCCGT (RAP2.4d, -990 bp) and variants of the GGCC 

motif (RAP2.4c) can be found in the COR47 promoter. Furthermore, the promoters of sAPX and tAPX 

also contain these motifs. The tAPX promoter, to which RAP2.4c and RAP2.4d bind in a Yeast-one-

Hybrid assay (Rudnik et al., 2017), has two CCCGT (-692 and -199 bp) and an AGGCG sequence (-23 bp) 

that were predicted for RAP2.4d and RAP2.4c, respectively. The sAPX promoter contains a CCCGTC 
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(RAP2.4d, -597 bp) and a GAGGCG (RAP2.4c, -14 bp) sequence that may facilitate binding of the two 

transcription factors.  

 

 Transcriptome analysis of Col-0, rap2.4c and rap2.4d in the early cold 

response 

RAP2.4c and RAP2.4d appear to take part in the regulation of the cold response (Figure 2). 

Furthermore, an in vitro DNA binding motif was published for RAP2.4d (Rae et al., 2011) and putative 

in vivo motifs for RAP2.4c and RAP2.4d were determined by Bulcha (2013) and in the present study 

(Figure 4 and Figure 5), but little was known about their target genes and pathways they are involved 

in.  

Publicly available gene expression data (eFP browser) show that expression of RAP2.4c and RAP2.4d is 

upregulated during the first 30 minutes or one hour of cold stress, respectively, and then declines 

below initial levels (Figure 6A) (Kilian et al., 2007). These data were obtained with 18-day-old Col-0 

plants that were grown on MS-agar under long day conditions. To test expression of both genes under 

the conditions used in the present study, four-week-old Col-0 plants that were grown on soil in a short 

day regime, were transferred to 4 °C and expression was analysed by RT-qPCR (Figure 6B). Both genes 

were upregulated quickly in the cold, while the effect was less intense compared with the eFP browser 

data. Especially, RAP2.4c expression was induced only 1.3-fold after 15 minutes and then declined 

below control levels, demonstrating rapid upregulation and degradation of the transcript. The 

expression of RAP2.4d peaked already after 30 minutes at a two-fold induction instead of after one 

hour and revealed another, stronger peak after twelve hours, which was absent in the eFP browser 

data. While induction intensities were lower under the conditions used in the present study, both data 

sets revealed induction of both genes quickly upon transfer to 4 °C and a subsequent decline below 

control levels.  

 

To gain deeper insights into the regulatory function of RAP2.4c and RAP2.4d in cold stress, a 

transcriptome analysis by RNA sequencing (RNAseq) was performed. As both genes were induced 

within the first hour during cold stress exposure and the transcripts were rapidly degraded thereafter, 

both genes are likely to exert their function during this time. For this reason, the early cold response 

was analysed in the RNAseq experiment.  
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Figure 6: Relative expression of RAP2.4c and RAP2.4d at 4 °C in Col-0. 
A: Publicly available data obtained from the eFP browser (Winter et al., 2007), data from Kilian et al. (2007). 
B: Four-week-old Col-0 plants were transferred to 4 °C and samples were taken according to the eFP browser 
data with additional 15 minutes samples. RNA was extracted and reverse-transcribed into cDNA which was 
analysed by RT-qPCR. n=3. All expression data are relative to the zero-hour control before the transfer to 4 °C. 

 

For the RNAseq analysis, the wild type accession Col-0 and rap2.4c KO and rap2.4d KO plants were 

grown for four weeks under standard conditions and then transferred to 4 °C. Samples were taken 

before the transfer and after one and three hours to analyse the influence of both transcription factors 

on transcription shortly after the peak of their expression and two hours later when their levels are 

low.  

 

3.1.3.1 Transcriptome data in unstressed plants 

In the plants grown under control conditions, several genes were already differentially regulated in 

both KO lines relative to Col-0 (Figure 7B). These differentially regulated genes revealed only moderate 

overlap between both KO lines, indicating only partly redundant and more individual functions of both 

transcription factors.  

Gene ontology (GO) term analysis of genes that were either up- or downregulated in either of the two 

KO lines supported more different functions of both transcription factors. Genes that were 

upregulated, revealed no significant GO terms for both KO lines. The same was true for genes that 

were downregulated in rap2.4c. However, genes that belong to several GO terms were significantly 

overrepresented among genes that were downregulated in unstressed rap2.4d plants, including the 

GO terms “defence response” (p-value 1.23x10-5), “response to external biotic stimulus” (p-value 

4.1x10-4), “response to other organism” (p-value 4.1x10-4), “response to biotic stimulus” (p-value 

4.2x10-4) and “multi-organism process” (p-value 1.31x10-3). All these GO terms resemble each other 
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and partly contain the same genes. Taken together, a significant number of genes that are involved in 

the response to biotic interactions were downregulated in unstressed rap2.4d plants, while no such 

class of genes was identified for genes that were differentially regulated in unstressed rap2.4c plants. 

 

 

Figure 7: Venn diagrams showing differentially regulated genes in the RNAseq data.  
Four-week-old Col-0, rap2.4c KO and rap2.4d KO plants were transferred to 4 °C and samples were taken before 
the transfer and after one and three hours. RNA was extracted and subjected to an RNAseq-based transcriptome 
analysis. Genes were considered differentially expressed if they had a raw count of at least 20 in one of the two 
compared samples and were up- or downregulated at least two-fold relative to the reference sample (Col-0 or 
zero hours). A: Comparison of genes that are differentially regulated after one or three hours at 4 °C relative to 
the untreated control sample within the same genotype. B: Comparison of genes that are differentially regulated 
in either of the rap2.4 KO lines relative to the wild type before (0 h) and after one or three hours at 4 °C. C: 
Comparison of genes that are differentially regulated in either of the KO lines relative to the wild type at the 
different sampling times. D: Comparison of genes that were cold-regulated after one or three hours at 4 °C 
relative to untreated plants of the same genotype and that belong to the GO term response to cold. E: As D, but 
genes are shown that belong to the GO term cold acclimation. Genes that were downregulated were not 
significantly overrepresented in the GO terms response to cold (D) or cold acclimation (E).  
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3.1.3.2 Transcriptome data of plants after one hour at 4 °C 

After one hour at 4 °C, more genes were up- than downregulated relative to unstressed plants in all 

three genotypes (Figure 7A). In the one-hour samples, the downregulated genes showed more 

differences than similarities between Col-0 and the KO lines, while in all other cold-treated samples 

(one and three hours), the similarities outweighed the differences. Genes that had responded to the 

cold in either of the genotypes after one hour in the cold (Figure 7A), were analysed for 

overrepresented GO terms and the top five GO terms of each genotype are shown in Table 1. After 

one hour at 4 °C, in Col-0, GO terms were overrepresented that involved responses to oxygen-

containing compounds, to chemicals, to organic substances, to stimuli and to chitin. The transcriptional 

cold response in rap2.4c was very similar and only the response to chitin was missing in the top five 

GO terms, whereas they contained the GO term “response to stress”. The top five hits in rap2.4d 

deviated more strongly from Col-0. They included “response to stress”, “defence response” and 

“response to external biotic stimulus”. Here again, the GO terms found in rap2.4d revolved more 

around biotic stimuli than in the wild type. 

These differences after one hour in the cold were investigated more closely. Genes, that were 

differentially regulated in the KO lines relative to Col-0 (Figure 7B), were also screened for 

overrepresented GO terms (Table 2). Among the genes that were downregulated in either of the two 

KO lines, no significant GO terms were found, whereas the upregulated genes revealed significant GO 

terms. These GO terms belonged to a rather heterogenous group in rap2.4c (“response to stress”, 

“response to acid chemical” and to “water deprivation”, “multi-organism” and “defence” responses), 

while they were very homogenous in genes that were upregulated rap2.4d after one hour at 4 °C. The 

top five GO terms were identical to those that were downregulated in rap2.4d in unstressed plants, 

also in their order of significance, except for a single one which is also involved in biotic interactions 

(“defence response to other organism”).  

Differences in the cold response were of particular interest in this experiment, as significant 

phenotypes in the cold resistance were observed in the electrolyte leakage experiment (Figure 2). 

Genes that were differentially regulated after one hour at 4 °C within the genotypes relative to the 

unstressed plants, were analysed for cold-responsive genes. Genes that belong to the GO term 

response to cold were significantly overrepresented in all three genotypes only among genes that were 

upregulated, but not in genes that were downregulated after one hour at 4 °C. Comparison of these 

cold-responsive genes that were upregulated revealed some differences between the genotypes 

(Figure 7D), while only a few genes responded only in a single genotype, whereas most of the genes 

responded similarly in the three lines. Compared to the differences in overall upregulated genes 
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irrespective of their functions (Figure 7A) which showed a lot more variation between the lines, the 

cold-responsive genes appeared comparably uniform.  

 

Table 1: Top five GO terms of differentially expressed genes in Col-0, rap2.4c and rap2.4d after one hour 
relative to unstressed plants of the same genotype. 
Genes that were differentially regulated after one hour at 4 °C relative to unstressed plants were analysed for 
overrepresented GO terms via the GO term finder from the Princeton University (Boyle et al., 2004) in each of 
the three genotypes. 

  Differentially regulated genes after one hour at 4 °C 

  GO term p-value 

Co
l-0

 

resp. to oxygen-containing compound 1.31-29 

response to chemical 1.18-27 

response to organic substance 1.73-27 

response to stimulus 1.18-26 

response to chitin 1.65-26 

ra
p2

.4
c 

response to stimulus 6.16-40 

response to stress 1.99-36 

resp. to oxygen-containing compound 3.66-32 

response to organic substance 1.96-27 

response to chemical 2.88-27 

ra
p2

.4
d 

response to stress 9.14-44 

response to stimulus 7.75-43 

defence response 5.49-42 

resp. to oxygen-containing compound 1.44-36 

response to external biotic stimulus 1.35-32 

 

Table 2: Top five GO terms of upregulated genes in rap2.4c and rap2.4d relative to Col-0 after one hour at 4 °C. 
Genes that were differentially regulated in rap2.4c and rap2.4d relative to Col-0 plants after one hour in the cold 
were analysed for overrepresented GO terms via the GO term finder from the Princeton University (Boyle et al., 
2004). No significant GO terms were found for genes that were downregulated in either of the two KO lines. 

  Upregulated genes after one hour at 4 °C 

  GO term p-value 

ra
p2

.4
c 

response to stress 2.16-10 

response to acid chemical 1.37-09 

multi-organism process 1.45-08 

defence response 2.31-08 

response to water deprivation 3.43-08 

ra
p2

.4
d 

defence response 6.11-13 

response to external biotic stimulus 1.09-07 

response to other organism 1.09-07 

response to biotic stimulus 1.11-07 

defence response to other organism 1.01-06 
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3.1.3.3 Transcriptome data of plants after three hours at 4 °C 

After three hours in the cold, all genotypes showed more upregulation of genes than downregulation 

relative to unstressed plants of the same genotype (Figure 7A). Deregulation was more pronounced 

after three hours than after one hour. The overlap of genes that were up- or downregulated after one 

and three hours was approximately 50 % of the genes that were already differentially regulated after 

one hour in the cold in all genotypes. This indicates that the other 50 % were back to control levels 

after three hours, suggesting only transient differential expression of these genes. Furthermore, the 

majority of genes that were differentially regulated after three hours had not yet responded after one 

hour at 4 °C and are specific to a slightly slower cold response. 

Both up- and downregulated genes showed differences between the genotypes, while the largest 

share of genes responded in the same way in all three lines. The similarities were supported by a GO 

term analysis among the genes that were differentially regulated in the single lines relative to 

unstressed plants of the same genotype (Table 3).  

 

Table 3: Top five GO terms of differentially expressed genes in Col-0, rap2.4c and rap2.4d after three hours 
relative to unstressed plants of the same genotype. 
Genes that were differentially regulated after three hours at 4 °C relative to unstressed plants were analysed for 
overrepresented GO terms via the GO term finder from the Princeton University (Boyle et al., 2004) in each of 
the three genotypes. 

  Differentially regulated genes after 3 hours at 4 °C 

  GO p-value 

Co
l-0

 

response to stimulus 2.36-50 

response to chemical 1.03-43 

resp. to oxygen-containing compound 3.11-40 

response to abiotic stimulus 1.74-39 

response to organic substance 1.20-36 

ra
p2

.4
c 

response to stimulus 3.14-54 

response to abiotic stimulus 9.63-44 

resp. to oxygen-containing compound 2.85-42 

response to stress 3.20-40 

response to chemical 1.25-38 

ra
p2

.4
d 

response to stimulus 1.55-47 

response to abiotic stimulus 1.53-37 

response to chemical 4.34-36 

resp. to oxygen-containing compound 5.29-36 

response to organic substance 2.49-34 
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The top five GO terms were similar in the three genotypes. When genes, that were up- and 

downregulated in rap2.4c and rap2.4d relative to Col-0 after three hours at 4 °C were analysed 

separately, more distinct GO terms were found. Genes, that were upregulated in rap2.4c did not result 

in any significant GO terms, while those, that were upregulated in rap2.4d contained genes that were 

overrepresented in the three GO terms hormone-mediated signalling pathway (p-value 1.08x10-3), 

cellular response to hormone stimulus (p-value 4.7x10-3) and cellular response to endogenous stimulus 

(p-value 5.63x10-3). Genes, that were downregulated in the KO lines after three hours at 4 °C relative 

to Col-0 belonged to similar general stress-related GO terms with only one difference between the two 

KO lines (Table 4).  

 

Table 4: Top five GO terms of downregulated genes in rap2.4c and rap2.4d relative to Col-0 after three hours 
at 4 °C. 
Genes that were differentially regulated in rap2.4c and rap2.4d relative to Col-0 plants after three hours in the 
cold were analysed for overrepresented GO terms via the GO term finder from the Princeton University (Boyle 
et al., 2004). No significant GO terms were found for genes that were upregulated in either of the two KO lines. 

  Downregulated genes after three hours at 4 °C 

  GO p-value 

ra
p2

.4
c 

response to stimulus 9.45-18 

response to stress 8.97-16 

resp. to oxygen-containing compound 9.20-14 

response to drug 7.99-13 

defense response 1.27-12 

ra
p2

.4
d 

response to stimulus 1.20-05 

response to stress 6.99-05 

response to drug 7.99-05 

defense response 0.00026 

toxin metabolic process 0.00029 

 

Again, genes that were differentially regulated within the three genotypes after three hours in the cold 

relative to unstressed plants were specifically analysed for genes belonging to the GO term “response 

to cold”. As it was observed for the genes that were differentially regulated after one hour, cold-

responsive genes were not significantly overrepresented in the group of genes that were 

downregulated after three hours in the cold. However, genes that were upregulated after three hours 

at 4 °C, were significantly overrepresenting the GO term “response to cold” (Figure 7D), displaying a 

similar pattern as after one hour in the cold with even more overlap. All three genotypes had a few 

differentially regulated genes that were unique to them, while the majority of genes was similarly 

regulated. Genes that are associated with the induction of cold acclimation were significantly 

overrepresented after three hours, but not after one hour at 4 °C in all genotypes. Only a single gene 
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(ATRZ-1A, AT3G26420), which encodes an RNA-binding protein that enhances freezing tolerance was 

unique to Col-0, while all other genes were common to the three lines (Figure 7E), indicating a very 

similar early cold acclimation response. Thus, it is likely, that the enhanced cold acclimation capacity 

of rap2.4c that was observed in the electrolyte leakage experiment (Figure 2), either depended on 

signalling that took place at a later time during cold acclimation or that it depended on a pathway that 

was not assigned to the GO term cold acclimation. 

The groups of genes that were differentially regulated in rap2.4c and rap2.4d compared to Col-0 

differed strongly between the different durations of the cold stress (Figure 7C), which was also 

reflected in the GO terms, that were found among the differentially regulated genes of both KO lines. 

The dynamics highlighted a putative function of RAP2.4d in cold-induced biotic defence responses and 

in hormone-related signalling pathways. Defence-related GO terms were downregulated before the 

stress but upregulated after one hour at 4 °C. Although the GO terms were widely identical, the overlap 

between the single defence-related genes that were downregulated before and upregulated one hour 

after the transfer to 4 °C was only 15 %, this pattern reveals that widely different sets of defence-

related genes were differentially regulated in in unstressed and cold-stressed rap2.4d plants. 

Hormone-related GO terms were upregulated after three hours in rap2.4d. rap2.4c showed more 

general stress-related GO terms, that were less homogenous than those, that were found in rap2.4d. 

However, GO terms that are related to biotic defence responses were also found in cold-stressed 

rap2.4c plants. 

Comparison of the gene sets that were up- or downregulated in either of the two KO lines relative to 

the wild type at the different sampling times revealed that there was hardly any overlap in deregulated 

genes between the sampling times within either of the KO lines (Figure 7C). Depending on the duration 

of the cold exposure, both transcription factors seem to (directly or indirectly) regulate entirely 

different sets of genes with only little overlap with the other cold stress durations. Considering the fast 

up- and downregulation of both genes upon transfer to 4 °C (Figure 6) and the time-specific GO terms 

that were overrepresented in rap2.4d, depending on the duration of the cold stress exposure, it can 

be assumed, that both transcription factors contribute to different responses in a highly context and 

timing-dependent manner.  

 

3.1.3.4 Analysis of the robustness of the transcriptome data 

For three well characterised cold-responsive genes, LEA7, CBF1 and ZAT10, the robustness of the 

RNAseq data and especially the differences between the genotypes, were analysed by RT-qPCR in 

cDNA that was synthesized from the same RNA material that was used for the RNAseq experiment 
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(Figure 8). Overall, the RT-qPCR results strongly resembled the RNAseq data, thereby confirming the 

technical robustness of the RNAseq results.  

 

 
Figure 8: Comparison of RNAseq transcript data with RT-qPCR transcript data. 
Transcript data of three representative genes obtained from the same RNA samples by RNAseq and RT-qPCR to 
confirm technical robustness of the RNAseq data. The experimental procedure was the same as described in the 
legend of Figure 7. 

 

3.1.3.5 Comparison of RAP2.4d-interacting promoters with the RNAseq data 

The RNAseq data were analysed in comparison to the results from the Yeast-One-Hybrid assay in which 

promoters were identified that interacted with RAP2.4d and that contained the identified putative 

DNA-binding motifs (Figure 4B and Figure 5B). Only a single one of these genes showed differential 

gene expression in the rap2.4d KO line relative to Col-0. The hypothetical gene AT1G32460 (Figure 5B) 

with no reported functions failed cold-induced upregulation in rap2.4d as it was observed in Col-0 after 

one hour at 4 °C.  

In a next step, genes that were similarly deregulated in rap2.4c and rap2.4d (overlaps in Figure 7B) 

were analysed with the MEME tool for common DNA motifs within 1000 bp upstream of their 

transcription start. No motifs were found with an E-value of 0.05 or smaller.  

Only one out of the 23 genes whose promoters contain either of the two or both putative DNA binding 

motifs (Figure 4 and Figure 5) showed differential expression in rap2.4d compared with Col-0. As these 

target sequences were identified in a yeast system, in planta binding of RAP2.4d to these motifs is not 

guaranteed. Either the residual 22 promoters are no natural targets of RAP2.4d in Arabidopsis or it is 

not involved in their regulation during cold stress signalling. Expression of RAP2.4d is induced upon 

various abiotic stress events (Kilian et al., 2007). The genes that lie downstream of the identified 
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interacting promoters (Figure 4B and Figure 5B) may be regulated by RAP2.4d as a response to other 

stressful stimuli, while only the hypothetical gene AT1G32460 is a target of RAP2.4d in the cold. 

 

3.1.3.6 Analysis of expected transcriptional changes in the RNAseq data in rap2.4c and 

rap2.4d 

sAPX and tAPX levels have been reported to be reduced in the rap2.4c and rap2.4d KO lines under 

standard conditions and cold induction of COR47 and COR15a to be inhibited in RAP2.4c and RAP2.4d 

overexpressor lines after 24 hours at 4 °C (Bulcha, 2013; Rudnik et al., 2017). In the present comparison 

of rap2.4c, rap2.4d and Col-0, sAPX, tAPX, COR47 and COR15a expression levels revealed less 

differences between Col-0 and the KO lines (Figure 9). tAPX and sAPX transcript levels were similar in 

the two KO lines and Col-0 prior to the cold. tAPX levels were transiently reduced in both KO lines after 

one hour in the cold and sAPX levels were slightly reduced in both KO lines after three hours. COR47 

and COR15a displayed slightly reduced transcript levels in rap2.4c relative to Col-0 after one hour at 

4 °C.  

 
Figure 9: RNAseq data of two plastid APX genes and two COR genes at 4 °C. 
The experimental procedure was the same as described in the legend of Figure 7. 

 

To analyse the expression levels of COR genes and their upstream regulatory CBF genes, as well as 

plastid APX genes, the experiment performed for the RNAseq analysis was independently repeated 

three more times with additional sampling after 24 hours at 4 °C, but this time transcripts were 

analysed via RT-qPCR. The data obtained in this experiment confirmed the RNAseq results (Figure 10). 
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sAPX, tAPX, COR47 and COR15a showed no significant differences between Col-0 and the KO lines at 

any time. Only the cold master regulator genes, CBF1 and CBF3, that mediate COR gene expression 

displayed small and significant differences after 24 hours in the cold in one or both KO lines relative to 

Col-0. Expression of both genes was reported to peak after three hours in the cold and then to greatly 

decline over time (Fowler et al., 2005). CBF1 was additionally elevated in rap2.4d after one and three 

hours at 4 °C, but this was not significant. None of these differences in CBF1 or CBF3 expression were 

reflected in elevated expression of the two analysed target COR genes, but a negative effect of RAP2.4c 

and RAP2.4d on the cold response was evident as the electrolyte leakage was decreased in rap2.4c 

and rap2.4d, respectively (Figure 2).  

 

 
Figure 10: Relative expression of cold related genes determined by RT-qPCR.  
Four-week-old Col-0, rap2.4c and rap2.4d KO plants were transferred to 4 °C and harvested before and one, 
three and 24 hours after the transfer. n=3±SD, student’s t-test KO line vs. Col-0 at the same time, p<0.05. 

 

Thus, the freezing tolerance effects (Figure 2) did not correlate with the tested COR genes as observed 

in rap2.4d after short term cold exposure (Figure 9) or with those in rap2.4c after two or three days of 

cold acclimation (Figure 3). In cold acclimation and in the regulation of freezing tolerance, the ICE1-

CBF-COR pathway is by far the most studied pathway. Only 12 % of cold-responsive genes were found 

to be clearly regulated by the CBFs (Fowler and Thomashow, 2002), showing that the majority of cold-

responsive genes is regulated by CBF-independent pathways. One such alternative pathway involves 

the WUS class transcription factor HOS9 (Zhu et al., 2004). hos9 mutants exhibited increased 

upregulation of CBF-independent cold-responsive genes upon cold-treatments. Among these genes, 

there were ERF genes (ERF5, ERF6 and ERF11), WRKY transcription factor genes (WRKY33, WRKY40 
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and WRKY46) and the plastid O2
--responsive gene BAP1. RAP2.4c and RAP2.4d belong to the ERF-Ib 

subfamily of the ERF transcription factors that are also cold-responsive (Nakano et al., 2006; Kilian et 

al., 2007), but they are not differentially regulated in hos9 (Zhu et al., 2004).  

RAP2.4 genes strongly respond to a variety of environmental stimuli (Kilian et al., 2007; Rudnik et al., 

2017). Furthermore, members of the RAP2.4 gene family act highly redundantly in many respects 

(Iwase et al., 2011; Rae et al., 2011; Rudnik et al., 2017). The knock-out of any of the single members 

led to the altered expression of several other members (Rudnik et al., 2017) likely leading to 

compensatory effects of redundantly acting proteins. In the RNAseq analysis performed in the present 

study, the expression profiles of most RAP2.4 genes (Table 5) were consistent with the previous study 

(Rudnik et al., 2017). Only RAP2.4f and RAP2.4g were upregulated in unstressed KO plants in the 

present study, while they were downregulated in the same KO lines previously, and RAP2.4a showed 

an inverse pattern in rap2.4c. Minor changes in the growth conditions, such as altered light quality or 

watering habits, that may have differed between the two studies, and the interplay within the partly 

redundant RAP2.4 gene family could explain the differences in gene expression that were observed.  

 

Table 5: Expression ratios of members of the RAP2.4 gene family in rap2.4c and rap2.4d relative to Col-0 at 
4 °C. 
Expression levels [FPKM] of RAP2.4 genes in rap2.4c and rap2.4d KO plants were divided by FPKM values of Col-0 
at the same time before and one and three hours after the transfer to 4 °C. Transcripts of RAP2.4e and RAP2.4h 
were not detected in any of the samples, so they are not displayed in this table. Blue background indicates 
upregulation in the KO line relative to Col-0, red indicates downregulation. The experimental procedure was the 
same as described in the legend of Figure 7. 

  0 hours at 4 °C 1 hour at 4 °C 3 hours at 4 °C 
Transcript rap2.4c KO rap2.4d KO rap2.4c KO rap2.4d KO rap2.4c KO rap2.4d KO 
RAP2.4a 0.36 1.29 1.17 2.78 3.00 2.11 
RAP2.4b 0.92 0.92 0.99 1.41 0.98 1.43 
RAP2.4c   0.77   2.92   1.81 
RAP2.4d 1.13   0.69   1.01   
RAP2.4f 1.41 1.26 0.85 1.05 0.78 0.73 
RAP2.4g 1.27 0.60 1.05 1.05 0.78 0.80 

 

 

3.1.3.7 Analysis of hormone related gene expression 

The analysis of differentially regulated genes in rap2.4c and rap2.4d repeatedly yielded GO terms that 

revolved around defence responses against biotic stimuli (chapter 3.1.3.1, Table 2 and chapter 3.1.3.3). 

For this reason, single genes that play a role in these responses were analysed in more detail. First, an 

overrepresentation of genes that are involved in the jasmonic acid (JA) pathway were found to be 
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upregulated in rap2.4d one hour after the transfer to 4 °C. This included the JA master regulator gene 

MYC2 and various of its target genes, such as VSP1, JAV1, JAZ1, JAZ8 and CHIT. Such a pattern was also 

found in rap2.4c with fewer genes following this pattern. A similar pattern was found in genes that are 

involved in the combined JA and ethylene (ET) pathway, including the master regulator genes ORA59 

and ERF1 and their target genes PDF1.2a, PDF1.2c, ERS2 and DYL1. Furthermore, genes involved in the 

salicylic acid (SA) pathway were affected. These genes included PR1, PR2, WRKY38 and WRKY18, but 

not their regulators NPR1 and ICS1. Examples of such upregulated hormone-related genes are shown 

in Figure 11. This figure also demonstrates that upregulation of gene expression after one hour at 4 °C 

is seen in only a few of these genes in the rap2.4c line and always to a smaller extent compared with 

rap2.4d. Upregulation of the SA downstream genes PR1, PR2 and WRKY38 was particularly strong. 

 

 
Figure 11: RNAseq data of representative hormone related genes at 4 °C. 
A: JA-related genes. B: JA/ET-related genes. C: SA-related genes. The experimental procedure was the same as 
described in the legend of Figure 7. 

 

The comparison between rap2.4c and rap2.4d regarding affected hormone-related genes (Figure 12) 

reports genes that were upregulated less than two-fold that was chosen as the standard cut-off in this 

study, to emphasise the pattern. The majority of upregulated genes belongs to the JA pathway. JA/ET 

genes show the mildest differential expression and none of them is upregulated more than five-fold, 

as opposed to JA and SA genes.  
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The RT-qPCR confirmed the trend towards upregulated expression of hormone-related genes in 

rap2.4d after one hour at 4 °C, although the differences were not significant for all genes (Figure 13).  

 

 

Figure 12: Relative RNAseq data of hormone related genes after one hour at 4 °C in the KO lines. 
Hormone-related genes that were upregulated in rap2.4c and rap2.4d one hour after the transfer to 4 °C are 
grouped depending on their fold change in expression relative to Col-0 at the same time and depending on the 
hormone pathways that they belong to. Data are shown as (FPKM rap2.4)/(FPKM Col-0) ratios. The experimental 
procedure was the same as described in the legend of Figure 7. 

 

 

Figure 13: Comparison of RNAseq transcript data with RT-qPCR transcript data. 
Transcript data of representative JA-related genes obtained by RNAseq (n=1, the experimental procedure was 
the same as described in the legend of Figure 7) and by RT-qPCR run in three independent biological replicates 
to confirm biological robustness of the RNAseq data. n=3±SD, student’s t-test KO line vs. Col-0 at the same time, 
p<0.05. 
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The JA/ET, the JA and the SA signalling pathways all mediate defence responses against different types 

of attackers. The JA/ET pathway mainly confers resistance against necrotrophic pathogens, JA 

signalling predominantly induces defence mechanisms upon herbivory and SA strongly mediates 

resistance against biotrophic pathogens (Spoel et al., 2003; Pieterse et al., 2012), while these pathways 

control each other by feedback inhibition (Koornneef and Pieterse, 2008; Song et al., 2014; Caarls et 

al., 2015). A simplified model showing the crosstalk between these three hormone signalling pathways 

is shown in Figure 14. The feedback control prevents the simultaneous activation of more than one of 

these pathways under most conditions. JA-response regulation is largely controlled by the 

transcriptional master regulator MYC2 that leads to the expression of its target genes enhancing 

resistance against herbivores (Howe and Schilmiller, 2002). At the same time, MYC2-dependent 

signalling inhibits expression of genes that belong to the JA/ET and the SA pathways (Kazan and 

Manners, 2013). The other way around, pathogen-induced signalling leads to the activation of the SA 

response master regulator NPR1. Expression of NPR1 downstream genes enhances pathogen 

resistance and induces systemic acquired resistance, while JA signalling is inhibited, rendering plants 

more vulnerable to herbivore attacks (Cao et al., 1994; Spoel et al., 2003).  

 

 

Figure 14: Simplified crosstalk scheme of the JA/ET, JA and SA hormone pathways. 
Purple lines indicate effects of the JA/ET pathway, red lines represent the JA pathway and effects of the SA 
pathway are shown in black. Modified after Walley at al. (2008). 

 

Figure 15 shows RNAseq data of key genes that are shown in the crosstalk scheme in Figure 14 to 

exemplarily demonstrate the crosstalk pattern in the rap2.4d KO line relative to the wild type. One 

hour after Col-0 plants were transferred to 4 °C, they showed a classical MYC2 dominated expression 
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pattern. MYC2 transcript levels increased, which led to the elevated expression of its target gene VSP1 

and to the inhibition of PDF1.2a and PR1 gene expression. The three regulatory genes ORA59, MYC2 

and NPR1 were all moderately induced after one hour. These three genes showed a very similar 

expression pattern in Col-0 and rap2.4c. In rap2.4d however, MYC2 was induced to a higher level 

resulting in strongly enhanced VSP1 induction. While this should have led to an enhanced inhibition of 

PDF1.2a and PR1, both genes were induced instead, indicating simultaneous activation of all three 

hormone pathways. PR1 was even induced 58-fold, while it was downregulated two-fold in the wild 

type. One of its upstream regulators, WRKY70, was upregulated as well (data not shown), but only to 

a moderate extent, which failed to inhibit both PDF1.2a and VSP1. These data indicate impairments in 

the JA/ET-JA-SA crosstalk in the rap2.4d line.  

 

 
Figure 15: RNAseq data of hormone master regulator genes and their target genes. 
RNAseq data of master regulator genes of the JA/ET (ORA59), JA (MYC2) and SA (NPR1) pathways and of 
representative target genes. Only samples before (solid bars) and one hour after the transfer to 4 °C (striped 
bars) are shown. Purple lines indicate effects of the JA/ET pathway, red lines represent the JA pathway and effects 
of the SA pathway are shown in black. Striped lines between the graphs represent interactions of the genes as 
they can be seen in Figure 14. Solid arrows within the individual graphs illustrate the upstream hormone that 
would induce the reaction in Col-0. The experimental procedure was the same as described in the legend of 
Figure 7. 

 

Whereas a similar, but milder phenotype was observed in the rap2.4c line as well, clearly fewer genes 

were affected in this line, compared to rap2.4d. In rap2.4c, the expression patterns of ORA59, MYC2, 

NPR1 and VSP1 resembled the wild type, while PDF1.2a resembled the pattern in rap2.4d, only slightly 
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weaker. Additionally, the extent of upregulation of such hormone-related genes in rap2.4c was low 

compared to rap2.4d (Figure 11 and Figure 12). For this reason, this phenotype will be mainly 

addressed in rap2.4d. rap2.4c will be analysed in comparison, as it displayed an intermediate 

phenotype. Increased activation of these three pathways, especially of the JA and the SA pathways at 

the same time, is an intriguing new phenotype of the rap2.4d (and to a minor extent in the rap2.4c) 

KO lines.  

 

 Hormone content analysis 

Various hormone-related genes were upregulated in rap2.4d (and in rap2.4c) relative to the wild type 

after one hour at 4 °C. This may be due to alterations in phytohormone contents. To address this 

hypothesis, an experiment identical to the RNAseq was conducted with additional 24-hour samples, 

followed by quantification of the putative main regulators JA and SA (Figure 16). In addition to the 

already mentioned hormones, abscisic acid (ABA) levels were quantified, because the JA master 

regulator gene MYC2 and its downstream targets that were upregulated in rap2.4d are also responsive 

to ABA (Kazan and Manners, 2013). The analysis of hormone contents revealed no significant 

differences at any time between the wild type and rap2.4c or rap2.4d for any of the analysed 

hormones. Apart from an increase of ABA after 24 hours in all genotypes, which is a well-known 

response to cold stress (Daie and Campbell, 1981; Chen and Gusta, 1983), there were no clear changes 

in hormone contents over time. Very minute differences include a slightly increased upregulation of 

JA in rap2.4d after three hours and a minor upregulation of SA after three hours in all three genotypes. 

But none of this was significant. Also, the minute increase in JA levels in rap2.4d rather appears to be 

a consequence of the observed transient gene regulation instead of its cause, as induced gene 

expression of the MYC2 pathway (one hour) which leads to the biosynthesis of JA (Chini et al., 2009), 

preceded JA induction (three hours). This is also in line with the finding, that genes that were 

upregulated in rap2.4d after three hours at 4 °C were assigned to GO terms that revolved around 

responses to hormones (chapter 3.1.3.3). The early samples before the cold treatment and after one 

hour at 4 °C were of particular interest, as they might have contributed to the failed crosstalk in the 

hormone pathways, but no differences were observed in these data. 
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Figure 16: Hormone contents of SA, ABA and JA in Col-0, rap2.4c and rap2.4d at 4 °C. 
Four-week-old plants were transferred to 4 °C and samples were taken before the transfer and after one, three 
and 24 hours. Hormones were extracted from plant material and contents were quantified by UPLC-MS/MS and 
normalized by internal SA, ABA and JA standards. Red dots represent individual samples, n=7.  

 

To determine ET-effects, the RNAseq data of the characterised ET-inducible genes ACONITASE 2 

(ACO2), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP) and ETHYLENE RESPONSE SENSOR 1 

(ERS1) (Gomez-Lim et al., 1993; Büttner and Singh, 1997; Nemhauser et al., 2006) were analysed for 

ET effects. Only minor variation in expression between the KO lines and the wild type was observed, 

that did not indicate ET signalling (Figure 17). Various genes of the JA/ET pathway were upregulated 

in rap2.4d along with an array of JA responsive genes (Figure 11), while genes specifically inducible by 

ET did not show this response, indicating that elements acting in the JA pathway were the driving force 

behind the upregulation of JA/ET genes. Genes from the JA/ET pathway, that are usually inhibited by 

JA alone (Figure 14), can also be induced by JA, while not at the same intensity as by JA/ET signalling 

(Leon-Reyes et al., 2009; Zander et al., 2010). This may be particularly true in the disturbed crosstalk 

background that was observed in rap2.4d (Figure 15). The TGACG SEQUENCE-SPECIFIC BINDING 

PROTEIN (TGA) transcription factors TGA2, TGA5 and TGA6 interact with the SA regulatory protein 

NPR1 in an SA-independent manner to induce downstream gene expression (Fan and Dong, 2002). 

Zander et al. (2010) reported that PDF1.2 expression was abolished in tga2/5/6 triple mutants. 

Apparently, both JA and SA signalling have a direct influence on JA/ET gene expression in the absence 

of JA/ET signalling that may contribute to the upregulation of JA/ET downstream genes in rap2.4d.  
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Figure 17: RNAseq data of ET-responsive genes at 4 °C. 
The experimental procedure was the same as described in the legend of Figure 7. 

 

 Hormone treatments 

Hormone level quantification (Figure 16) gave no evidence that the increased expression of hormone 

related genes in rap2.4d was not caused by alterations in hormone contents. An alternative 

explanation might be a change in the sensitivity or in the responsiveness to the hormones. Firstly, 

RAP2.4c and RAP2.4d gene expression could be responsive to hormone treatments and secondly, the 

response of hormone-related genes could be altered in the KO lines of both transcription factors. To 

test these hypotheses, the three genotypes were sprayed with JA, ABA or SA. A set of plants that was 

grown in parallel was sprayed with a mock solution as a control (Figure 18). The data revealed that in 

Col-0 plants both RAP2.4c and, to a smaller extent, RAP2.4d were inducible by ABA within one hour 

after the treatment (Figure18A). Transcript levels of both genes were back to control levels after three 

hours. Additionally, RAP2.4d was slightly induced by JA treatments after one hour and inhibited by SA. 

Because the JA-responsive genes showed the strongest effect in the RNAseq data, the JA master 

regulator gene MYC2 and its direct target gene JAZ1 were chosen as readout genes. Neither of them 

showed significant differences between Col-0 and the KO lines, except for a minimal, but significant 

increase of JAZ1 after three hours in rap2.4c (Figure 18B). Thus, the data did not indicate a function of 

the two RAP2.4 genes in hormone signal transduction explaining the increased gene expression 

detected in the RNAseq one hour after the transfer to 4 °C. 
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Figure 18: Relative transcript levels of RAP2.4c, RAP2.4d, MYC2 and JAZ1 in hormone treated plants. 
Four-week-old Col-0, rap2.4c and rap2.4d plants were sprayed with a mock solution, 50 µM JA, 100 µM ABA or 
1 mM SA. Samples were taken before and one and three hours after the treatments and transcript levels were 
analysed via RT-qPCR. A: Comparison of the relative expression of RAP2.4c and RAP2.4d after hormone 
treatments in Col-0 plants. n=3-4±SD, student’s t-test relative to mock treated samples at the same time, p<0.05. 
B: Relative expression of the JA-responsive genes MYC2 (top) and JAZ1 (bottom) after hormone treatments in 
Col-0, rap2.4c and rap2.4d. n=3-4±SD, student’s t-test KO line vs. Col-0 at the same time, p<0.05. 

 

 Transient overexpression of RAP2.4c and RAP2.4d 

Since the analysis showed that modulation of hormone contents and of downstream signalling were 

not likely responsible for the alterations in hormone related gene expression patterns in rap2.4d, the 

data pointed towards an explanation more specifically linked to the expression of RAP2.4d. This was 

tested by transiently inducing RAP2.4c and RAP2.4d overexpression using estradiol-inducible 

transgenic lines.  

For the generation of these inducible overexpressor lines, both full length transcript sequences were 

amplified via PCR from genomic DNA using gene specific primers (RAP2.4c forward: 

AGAGCTTCAGAACAAGCAAC; reverse: AAAAAGAGAGAACTAAAAGAAGA; RAP2.4d forward: 

CCACGCCTCCTATATAAACA; reverse: GTTCTTTTGTGCCAATTTAACT). The inserts were ligated into the 

pCR8/GW/TOPO vector and subsequently transformed into E. coli Top10 cells. After propagation, the 
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inserts of these plasmids were sequenced and plasmids with correct sequences were used to transfer 

their inserts into the estrogen-inducible expression vector pMDC7 via LR-reaction. Plasmids were 

transformed into Agrobacterium tumefaciens GV3101 (pMP90). These cells were used to integrate the 

T-DNA into the genome of Arabidopsis thaliana Col-0 plants using the floral dip technique (Bernhardt 

et al., 2012). Seedlings (T1) of transformed plants were selected on MS agar plates containing 15 µg/ml 

Hygromycin B (Harrison et al., 2006) and subsequently tested by PCR using a forward primer binding 

to the vector directly upstream of the insert (GGACACGCTGAAGCTAGT) and gene specific reverse 

primers that were used before. 

Seeds (T2) of these plants were again selected on Hygromycin B. Surviving seedlings were allowed to 

produce seeds (T3). T3 seeds were plated following the same selection protocol and their survival rates 

were observed. 100 % survival indicated homozygous T2 plants. T3 seeds of homozygous T2 plants 

were considered homozygous and were used in the following steps.  

Strong overexpression of inserted genes requires strong expression of the constitutively expressed 

chimeric XVE transcription factor encoded on the transformed pMDC7 plasmid. To identify plants with 

strong XVE expression, RNA was extracted, and reverse transcribed into cDNA. A PCR with XVE specific 

primers (forward: AGATCACAGACACTTTGATCCACC, reverse: GAGAGGATGAGGAGGAGCTGG) with 

25 cycles allowed for quantitative comparison of XVE transcript levels. Plants with the strongest 

expression were chosen for experiments (RAP2.4c OE: line 8, RAP2.4d OE: line 10) (Figure 19).  

First, induction intensities of RAP2.4 transcripts were tested after estradiol treatment over a course of 

five days. Both genes were strongly induced upon estradiol treatments (Figure 20). RAP2.4c transcript 

levels gradually increased and reached a maximum of 80-fold upregulation after five days, while 

RAP2.4d peaked after three days at eight-fold induction and then slightly decreased to seven-fold after 

five days. 

 
 

 
 
Figure 19: Semi-quantitative PCR for the determination of XVE expression.  
RNA was extracted from homozygous four-week-old transgenic plants and transcribed into cDNA. PCRs were 
performed using XVE and ACT7 specific primers. 
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Figure 20: Analysis of inducible overexpression of RAP2.4c and RAP2.4d determined by RT-qPCR.  
Four-week-old inducible RAP2.4c and RAP2.4d inducible overexpressor plants were sprayed with 100 µM 
17β-estradiol for induction of overexpression. RNA was extracted and reverse transcribed into cDNA. RAP2.4 
expression was monitored via RT-qPCR over five days. n=3±SD. 

 

After successful confirmation of both overexpression systems, Western blots were conducted to test 

overexpression on the protein levels. Sera extracted from rabbits that were injected with HIS-tagged 

RAP2.4c or RAP2.4d overexpressed in E. coli and purified via the tags were used as specific primary 

antibodies. Various attempts did not yield any signals on the blots. Even highly enriched nuclear 

fractions resulted in membranes with no signals. This may be explained by weak antibodies that 

generated weak signals even in E. coli overexpression samples in combination with low protein levels 

that may be insufficient for immunological detection.  

Similar inducible overexpression lines were generated for sAPX and tAPX (see chapter 3.2.2). These 

genes exhibit stronger expression levels with well detectable protein levels. In these systems, 

successful overexpression could be confirmed on both the transcript and the protein levels to similar 

extents. These results made it reasonable to assume that induction of RAP2.4c and RAP2.4d at least 

transiently lead to increased protein abundances. Thus, both lines were used for experiments. 

To investigate the influence of transient RAP2.4c and RAP2.4d overexpression on the cold independent 

expression of MYC2 (JA-pathway) and ORA59 (JA/ET-pathway) and their downstream genes VSP2 and 

PDF1.2a, Col-0 and both inducible overexpression lines were grown for four weeks under standard 

conditions and then sprayed with estradiol to induce overexpression. Samples were taken before the 

treatment and after one, three and six hours. This short time frame was chosen over the five days span 

used to test overexpression, because the cold effect on hormone related genes in rap2.4d was 

observed after one hour at 4 °C when RAP2.4d would have been at its peak of expression. The data 
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revealed that overexpression of both genes started quickly after treatments and increased over time 

and that RAP2.4d expression was elevated already before the induction (Figure 21).  

 

 

Figure 21: Relative expression of RAP2.4c and RAP2.4d and four readout genes determined by RT-qPCR.  
Four-week-old Col-0, RAP2.4c and RAP2.4d inducible overexpression plants were sprayed with 100 µM 
17β-estradiol for induction of overexpression. Samples were harvested before the treatment and after one, three 
and six hours. RNA was extracted and reverse-transcribed into cDNA. Gene expression was monitored via RT-
qPCR. n=3±SD, student’s t-test relative to zero hours of the same genotype p<0.05. 

 

RAP2.4d expression showed a short decline in transcript abundance after three hours before increasing 

again after six hours. This peak after one hour and the decline after three hours is a common expression 

pattern for RAP2.4d for a variety of abiotic stresses (Kilian et al., 2007). Apparently, this negative 

regulation of RAP2.4d transcript stability is also active after estradiol treatment, while the artificial 

induction of gene expression was strong enough to overcome this transcript degrading destabilizing 

quickly. While overexpression of both genes was successful on the transcript level, none of the 

analysed readout genes showed any significant differences between the overexpression lines and the 

wild type. This could have several reasons. As previous studies have found, members of the RAP2.4 

family may act as negative regulators of gene expression (Lin et al., 2008; Bulcha, 2013). Also in the 

present study, particularly RAP2.4d seemed to have a negative influence on the expression of several 

hormone-related genes, as the lack of this gene led to the elevated expression of such genes (Figure 

12). This negative regulation might be achieved by the RAP2.4d-dependent inhibition of a positive 

regulator that facilitates the expression of the hormone-related genes, which would fail in rap2.4d 

leading to the induction of target genes. In such a case, overexpression of RAP2.4 genes might not 

further increase inhibition of gene expression of a gene that is already effectively inhibited. Another 
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reason might be a to date unknown mechanism that prevents RAP2.4c and RAP2.4d protein 

accumulation despite successful accumulation of their transcripts. However, a potential mechanism 

that was hypothesized in such a context involves the BTB⁄POZ-MATH (BPM) proteins that assemble 

with CUL3a and CUL3b and are hypothesized to act as adapter proteins to cullin-based E3-ligases. 

Members of this family have been demonstrated to bind RAP2.4b and RAP2.4d with RAP2.4b being 

quickly degraded in a 26S proteasome-dependent manner (RAP2.4d was not tested for this 

degradation) (Weber and Hellmann, 2009). 

 

 Assessment of JA dependent phenotypes 

Neither hormone contents, nor direct responsiveness to hormone treatments, nor transient 

overexpression of the transcription factors revealed any differences between Col-0 and the 

KO/overexpressor lines, indicating a more subtle or context specific function. Thus, as JA related genes 

showed the most pronounced alterations, various JA dependent traits were analysed, comparing the 

KO lines with the wild type. 

One such phenotype that is influenced by JA, is the regulation of senescence. While JA application 

induces early senescence (He et al., 2002), the precise mechanism is not clear and may depend on the 

modulation of ET signalling (Kim et al., 2015a). The influence of RAP2.4c and RAP2.4d on the 

senescence phenotype was tested by allowing Col-0, rap2.4c and rap2.4d plants to grow until they 

developed plenty of siliques and by visually observing differences between the genotypes. No visible 

differences could be determined in the onset or progress of leaf browning. But both T-DNA lines 

appeared to have more siliques and taller shoots (Figure 22 A). Both traits were quantified and 

analysed statistically (Figure 22B). The data revealed that rap2.4d plants had significantly more siliques 

than Col-0 and their shoots were taller, while this difference was not significant. rap2.4c plants once 

again, displayed an intermediate phenotype between Col-0 and rap2.4d plants with an intermediate 

number of siliques and rap2.4d-like shoot lengths, while none of both traits revealed a significant 

difference to Col-0. 

Another plant trait that is modulated by JA is the root length. Elevated JA levels lead to reduced root 

growth (Barrera-Ortiz et al., 2018). To analyse whether RAP2.4c and RAP2.4d play a role in context of 

root length regulation, seeds of Col-0, rap2.4c and rap2.4d KO lines were sterilized and planted 

individually onto MS agar plates in a line. These plates contained either 1 µM JA or no JA as a control 

and were incubated in the light in an upright position for eleven days. Root length was determined for 

both groups (Figure 22C). Overall, the addition of JA to the growth medium significantly reduced root 

growth in all genotypes relative to the control samples. On those plates with no JA supplement, no 
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differences in root lengths could be observed between the genotypes. Presence of 1 µM JA on the 

other hand led to significantly increased root growth inhibition in rap2.4d seedlings compared with 

Col-0, leading to shorter roots, while rap2.4c seedlings displayed an intermediate phenotype that was 

not significant.  

 

 

Figure 22: Evaluation of JA dependent phenotypes in Col-0, rap2.4c and rap2.4d. 
A: Representative senescent plants that were used to quantify siliques and determine shoot lengths. B: Sterilised 
seeds of Col-0, rap2.4c and rap2.4d were planted on MS agar plates containing no or 1 µM JA and grown in an 
upright position. Root growth was determined after eleven days of growth. n≥46 individuals in three biological 
replicates ±SD, student’s t-test KO lines vs. Col-0, p<0.05. C: Number of siliques and shoot length of senescing 
plants were determined. n≥15 individuals in three biological replicates ±SD, student’s t-test KO lines vs. Col-0, 
p<0.05. D: Single leaves of four-week-old Col-0 and rap2.4d plants were infected with Pst DC3000 and normally 
grown for three days. Bacteria were isolated and grown on plates for three days and colony forming units were 
determined. n=5±SD, student’s t-test rap2.4d vs. Col-0, p<0.05. 

 

Regulation of both root length (Staswick et al., 1992) and senescence (He et al., 2002) are 

developmental processes in which JA more and more emerges to play a role. But the classical and 

probably best characterised function is the regulation of defence responses (reviewed by Howe and 

Jander (2008)). Activation of the JA pathway leads to enhanced resistance to herbivores, while 

increases in SA levels induce resistance towards biotrophic pathogens. Induction of either of the 

pathways inhibits the other pathway (reviewed in Pieterse et al. (2012)). Therefore, increased 

resistance against herbivores (JA pathway) comes at the cost of reduced resistance to pathogens (SA 

pathway). This way, JA has an indirect but strong influence on pathogen resistance. Pseudomonas 

syringae (Pst) DC3000 is a bacterial pathogen that injects the phytotoxin coronatine, a JA analogue, 
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into the host cell, leading to the activation of the JA pathway and repressing the SA pathway, thus 

repressing host resistance (Nomura et al., 2005). This way malfunctions in the JA signalling pathway in 

the rap2.4d line may influence pathogen resistance against Pst DC3000.  

For this experiment, single leaves of Col-0 and rap2.4d KO plants were infiltrated with Pst DC3000 cells. 

Half of the plants had been pre-exposed to 4 °C for one hour to induce the induction of JA and SA genes 

that had been observed to be upregulated in rap2.4d in the RNAseq data. Infected plants were 

subsequently grown for three days, bacteria were isolated from leaf discs of uniform diameters and 

colony forming units (cfu) were determined (Figure 22D). Independent of pre-infiltration temperature 

treatments of the plants, no differences in bacterial growth could be observed. As the RNAseq data 

had already indicated, this cold-induced transcriptional re-programming in rap2.4d was very transient, 

as most of the upregulated genes were back to wild type levels after three hours of cold stress 

(Figure 11). As rap2.4d pathogen resistance was not affected by cold pre-treatment, the induction of 

JA and SA genes had no long-term effect on pathogen resistance over a course of three days. 

Apparently, the lack of RAP2.4d fostered the JA induced root growth inhibition and led to an increased 

production of siliques during senescence, while it had little to no influence on shoot length and 

resistance to Pst DC3000. These data strengthen the notion that RAP2.4d has a very context dependent 

function in hormone signalling. These hormone-related phenotypes were mainly observed in plants 

that lacked RAP2.4d, while rap2.4c plants showed such phenotypes in a comparably mild form 

(Figure 22). This observation is consistent with the RNAseq data and with data obtained in other 

experiments: For example, only RAP2.4d, but not RAP2.4c was inducible by JA treatments (Figure 18). 

A similar observation was published by Iwase et al. (2011), where RAP2.4d (WOUND INDUCED 

DEDIFFERENTIATION 2, WIND2), but not RAP2.4c was induced by wounding. Wounding is an inevitable 

consequence of insect feeding and JA levels increase quickly as a response to induce defence reactions 

(Creelman et al., 1992; Bell et al., 1995). Consequently, induction of RAP2.4d upon wounding is most 

likely due to an increase in JA levels, while this hypothesis was not addressed in their study or in several 

follow-up studies. In accordance with this, Iwase et al. (2011) demonstrated that constitutive 

overexpression of RAP2.4d but not of RAP2.4c induced massive cell de-differentiation and formation 

of callus tissue in healthy seedlings. Callus formation is usually regulated by the phytohormones auxin 

and cytokinin (Skoog and Miller, 1957), but the RNAseq data did not show any differences in genes 

that are responsive to these hormones (data not shown). These consistent differences between 

RAP2.4c and RAP2.4d suggest a function of RAP2.4d in hormone crosstalk that is not fulfilled by 

RAP2.4c to the same extent.  
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 NPR1 translocation into the nucleus may be regulated by RAP2.4d 

None of the experiments investigating the role of RAP2.4c and RAP2.4d in the hormone crosstalk 

yielded any clues on how the disturbed crosstalk may be explained in the KO lines. Most of the 

experiments had focused on MYC2 because of its central position in hormone crosstalk, that explained 

both the PDF1.2a and the PR1 expression patterns (Figure 15). Shifting the focus on NPR1, which has 

a similar potential to explain the failed crosstalk, resulted in another hypothesis. 

NPR1 is a well characterised master regulator gene in the SA-dependent regulation of plant basal and 

systemic acquired resistance against pathogens (Cao et al., 1994; Delaney et al., 1995; Fu and Dong, 

2013). Under standard conditions, it is predominantly located in the cytosol forming a homo-oligomer 

that is stabilized via intermolecular disulfide bonds (Mou et al., 2003). Pathogen attack leads to an 

increase in SA levels (Malamy et al., 1990). This in turn results in a biphasic change in cellular reduction 

potential that leads to the dissociation of the NPR1 oligomer and to the translocation of the monomers 

to the nucleus (Mou et al., 2003). As a transcriptional co-activator which does not interact with DNA 

on its own, nuclear NPR1 binds transcription factors such as members of the TGA (Zhang et al., 1999; 

Despres et al., 2000; Fan and Dong, 2002) and WRKY families (Saleh et al., 2015). These complexes 

then regulate gene expression. Two of the most prominent NPR1/TGA target genes that are induced 

upon pathogen attack are the PATHOGENESIS-RELATED (PR) genes 1 and 2 (Zhang et al., 2003; 

Kesarwani et al., 2007). These two genes were strongly induced in the rap2.4d KO line after one hour 

at 4 °C in the present RNAseq data set (Figure 11), indicating nuclear localisation of NPR1 in this sample. 

In the wild type sample that was treated equally, both genes were downregulated instead, supporting 

cytosolic localisation of NPR1 and active inhibition of PR gene expression via the JA response (Walley 

et al., 2008).  

In addition to explaining the strongly induced PR gene expression in rap2.4d, the hypothetical nuclear 

localisation of NPR1 may at the same time be an explanation for the increased activation of MYC2 and 

its downstream genes, among them VSP1 (Figure 15). JA signalling is actively inhibited by cytosolic 

NPR1, while nuclear NPR1 exhibits no such function (Spoel et al., 2003). In rap2.4d, cold-induced 

translocation of NPR1 to the nucleus may lead to a depletion of cytosolic NPR1, as NPR1 protein levels 

are very low under standard conditions. A lack of cytosolic NPR1 may abolish its inhibitory function on 

the JA-pathway leading to the increased expression of MYC2 and its downstream genes that was 

observed in rap2.4d in the cold. This way, translocation of NPR1 to the nucleus may explain increased 

expression of both SA genes (PR1 and PR2) and JA genes (MYC2 and VSP1).  

Olate et al. (2018) have identified 71 cold-inducible genes that were downregulated in npr1 mutants 

relative to Col-0 after 24 hours at 4 °C, identifying NPR1 as a co-activator of their expression in the 

cold. Comparison of these 71 genes with genes that were upregulated in rap2.4c and rap2.4d in the 
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cold resulted in 27 and 43 matches, respectively (Appendix) (Figure 23A). 21 out of the 71 genes were 

found to be upregulated in both KO lines, showing quite some similarities between rap2.4c and 

rap2.4d. Whereas only six genes were exclusively upregulated in rap2.4c but not in rap2.4d, 22 genes 

were exclusive to rap2.4d. This supports the notion, that rap2.4d displays the broader effect on the 

hormone crosstalk with rap2.4c being affected to a smaller extent (Figure 11 and Figure 12).  

 

 

Figure 23: Comparison of cold-responsive NPR1-dependent genes with genes that were upregulated in rap2.4c 
and rap2.4d in the cold. 
A: The Venn diagram shows the overlap of genes that were upregulated in rap2.4c and in rap2.4d after one or 
three hours at 4 °C relative to Col-0 (RNAseq data, experimental procedure in figure 6) within the 71 cold-
inducible NPR1-dependent genes (Olate et al., 2018). B: Sub-groups out of the 71 NPR1-dependent genes are 
shown comparing the same three genotypes. 

 

In the same study, Olate et al. (2018) have analysed two groups of NPR1 target genes in more detail. 

Firstly, the target genes of the HEAT SHOCK TRANSCRIPTION FACTOR 1 (HSFA1) and secondly, a group 

of other heterogenous cold-responsive genes that were downregulated in npr1 in the cold. As shown 

in their study, nuclear NPR1 interacts with HSFA1 which induces expression of its downstream genes. 

A comparison of genes from both groups with the genes that were upregulated in the RNAseq data in 

both KO lines, revealed a familiar pattern (Figure 23B): Out of the 16 analysed HSFA1 targets, five and 

nine genes were upregulated in rap2.4c and rap2.4d in the cold, respectively. The list of the 

heterogenous group of cold-responsive NPR1-dependent genes (ten genes) contained four and seven 

such genes, respectively, revealing a higher correlation of NPR1 target genes with genes that were 

upregulated in rap2.4d than in rap2.4c. Also, genes from both lists were among the upregulated genes 

in both KO lines, indicating that the lack of RAP2.4d (and RAP2.4c) did not lead to the activation of a 

specific NPR1 downstream response, but to a more general activation of NPR1 responses. 

The 16 HSFA1 target genes encode heat-shock proteins that are primarily associated with heat stress, 

but also have functions in other abiotic stresses. Heat shock proteins are mostly molecular chaperones 
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that assist in the correct folding of proteins during their synthesis or that help in maintaining native 

structures under certain conditions, such as dehydration-related stresses (water deficiency, osmotic, 

cold) (Nishizawa et al., 2006). With this in mind, it is noteworthy, that npr1 mutants only exhibited 

reduced cold tolerance but were indistinguishable in their responses to drought and salt (Olate et al., 

2018), indicating a specific NPR1 function in the cold response. 

The HSFA1 target genes and the heterogenous group of genes from the npr1 study contained genes 

that were not differentially regulated in rap2.4d (Figure 23B). Probably, the differences in cold 

exposure durations may contribute to explain this. Olate et al. (2018) analysed differentially expressed 

genes after 24 hours at 4 °C in an npr1 mutant, while in the present study the upregulation of hormone-

related genes was observed after one hour in the cold in rap2.4d. Accordingly, the transcriptomic and 

proteomic states in both systems were vastly different. The populations of transcriptional regulators 

in the nucleus differed strongly. In a transcriptomic study, Lee et al. (2005) demonstrated that in the 

early cold response after three hours at 4 °C, 128 and four genes were up- and downregulated, 

respectively. Later, after 24 hours in the cold, 581 and 265 genes were up- and downregulated, 

respectively. Including another six-hour sample, a total of 655 genes were upregulated within the first 

24 hours in the cold. Out of these, 113 (17.3 %) were annotated to have a function in transcription. 

Furthermore, transcription factors were mainly upregulated in the early cold response, probably 

modulating the later response. Consequently, the potential for interactions between NPR1 and its 

interaction partners differs strongly between the early and the later cold response. Against this 

background, the correlation of differentially regulated genes in rap2.4d and npr1 in the cold is not 

perfect but strikingly high to assume a common mechanism behind both phenomena. 

The strong overlap in gene expression of NPR1 target genes in the cold with genes that were 

upregulated in the cold in rap2.4d (Figure 23), suggests that cold-induced translocation of NPR1 to the 

nucleus might be actively inhibited in the wild type by RAP2.4d. A lack of RAP2.4d in the KO line would 

then lead to the accumulation of NPR1 in the nucleus and to a depletion of cytosolic NPR1. This in turn 

would activate both transcriptional SA responses and, due to a lack of MYC2 inhibition, JA responses. 

This notion is supported by the strong induction of two of the most prominent NPR1 target genes, PR1 

and PR2 in the rap2.4d KO line after one hour at 4 °C (Figure 11C).  

In order to narrow down options in this putative signalling pathway, several pilot experiments were 

designed. Firstly, the hypothetical translocation of NPR1 was analysed via Western blots. Col-0 and 

rap2.4d plants were grown as for the RNAseq experiment and samples were harvested following the 

same sampling scheme. Due to very low NPR1 protein levels and thereout resulting expectable 

detection difficulties, several wild type plants were sprayed with 1 mM SA to induce NPR1 expression 

as a positive control and were harvested 24 hours after the treatment which was shown to 
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substantially increase NPR1 protein levels in the nucleus (Mou et al., 2003). Nuclei were extracted from 

all samples and identical amounts of proteins were analysed via Western blots. Detection of histone-

H3 proteins served as loading controls and showed strong bands that were absent in nuclei depleted 

samples, indicating successful extraction of the nuclei. However, NPR1 detection failed in all samples, 

even in the SA-treated positive controls, leaving the question of increased nuclear NPR1 accumulation 

open. To better address the hypothesis of increased cold-induced nuclear translocation of NPR1 in 

rap2.4d, a future experiment should be conducted with a tagged version of NPR1 that facilitates 

detection in a rap2.4d KO background. 

 

 PKS5, a common upstream regulator of RAP2.4d and NPR1 

The PROTEIN KINASE SOS2-LIKE 5 (PKS5, also called SnRK3.22) has previously been shown to 

phosphorylate NPR1 and to be essential for pathogen-induced expression of PR1, WRKY38 and 

WRKY62 which requires nuclear translocation of NPR1 (Xie et al., 2010). This kinase additionally 

phosphorylates RAP2.4d (Lumba et al., 2014) establishing a direct connection between RAP2.4d and 

NPR1. RAP2.4d can additionally be phosphorylated by the closely related PKS24 (also called SnRK3.15) 

(Lumba et al., 2014). Posttranslational modifications of NPR1, such as phosphorylation, ubiquitination 

and sumoylation are essential for the regulation of NPR1 activity and localisation (Mou et al., 2003; 

Spoel et al., 2009; Xie et al., 2010; Lee et al., 2015; Olate et al., 2018). This includes the regulation of 

the oligomer/monomer equilibrium, the transport of the monomers to the nucleus and their stability.  

PKS5 appears to phosphorylate NPR1 to allow for its translocation to the nucleus (Xie et al., 2010). As 

the putatively NPR1-dependent induction of hormone-related genes in the cold was observed only in 

rap2.4d and not in Col-0, it is possible that this reaction may only take place in the rap2.4d KO line, not 

in the wild type under the conditions that were tested in the RNAseq experiment. Cold-induced 

upregulation of RAP2.4d in Col-0 may potentially prevent cold-induced PKS5-dependent 

phosphorylation of NPR1 that would otherwise lead to the translocation of NPR1 into the nucleus.  

Proteins from the calcium binding CALCINEURIN B-LIKE PROTEIN (CBL) family are, in addition to 

RAP2.4d and NPR1, further targets of various PKS kinases (Du et al., 2011). The interaction of various 

PKS and CBL proteins exhibits an intriguing feature. For example, phosphorylation of CBL1 by PKS5 

stabilizes the interaction of both proteins neutralizing the inhibitory effect of PKS5 on a membrane 

bound ATPase, as the kinase is competitively bound and not available for further enzyme reactions (Du 

et al., 2011). In a similar way, phosphorylation of cold induced RAP2.4d may stabilize the PKS5/RAP2.4d 

interaction scavenging away free PKS5 leaving NPR1 unmodified in the cytosol. Du et al. (2011) also 

investigated the phosphorylation site in the CBL proteins, while it is unknown in RAP2.4d and NPR1. 



73 
 

The highly conserved PFPF domain, which is exclusive to this family, is located at the very C-terminal 

end and harbours an FPSF sequence of amino acids. The serine (CBL1: S201) was reported to be the 

phosphorylation site and the conserved flanking sequence may represent the recognition site for PKS 

kinases. A highly similar sequence, YPSY, can be found in the RAP2.4d protein, as well at the very 

C-terminus as in the CBL proteins. Phenylalanine (F) and tyrosine (Y) are identical in their molecular 

structures, except for a single additional hydroxyl group in tyrosine. In terms of steric properties, both 

recognition sites may be recognised by PKS5 with similar affinity, with the hydroxyl group modulating 

the intensity of this interaction. The PS core of this site is conserved in the entire RAP2.4 protein family 

and is located at the very C-terminus, as in the CBL family, with a clear overrepresentation of 

phenylalanine and tyrosine directly flanking this core (Figure 24). Valine (V) and methionine (M) are 

represented more than once as well. These directly flanking amino acids may potentially regulate 

kinase binding affinities.  

 

 

Figure 24: Alignment of the C-terminal amino acids of all Arabidopsis RAP2.4 proteins. 
The alignment was created with the Clustal Omega tool. Conserved identical amino acids are shown on a black 
background. Phenylalanine and tyrosine amino acids flanking the PS core are shown on a grey background. 
Numbers on the right indicate the position of the last shown amino acid. 

 

NPR1 has only a single PS core (S414). This PS core is embedded in a PPSF sequence which shares the 

downstream phenylalanine but replaces the upstream phenylalanine that is found in CBL1 by another 

proline. This amino acid exchange may result in a weaker affinity of PKS5 to NPR1 than to RAP2.4d, 

enabling RAP2.4d to bind free PKS5 protein leaving NPR1 unmodified. 

To investigate whether RAP2.4c or RAP2.4d can stably interact with PSK5 and PKS24, a Yeast-Two-

Hybrid assay was conducted with modified versions of both RAPs. The S residues (RAP2.4c: S247, 

RAP2.4d: S245), which are the putative targets for phosphorylation, were substituted by alanine (A) 

which cannot be phosphorylated and by aspartic acid (D) or glutamic acid (E) which are the two 

phosphomimic amino acids, simulating a permanent phosphorylation, due to their steric properties 

and their negative charge. To achieve this, the codons encoding the specific S residues of the RAP2.4c 

or RAP2.4d genes were replaced by codons encoding A, D or E using site directed mutagenesis PCRs 
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(Montemartini et al., 1999). EcoRI and PstI overhangs were included in the PCR products and used to 

clone the inserts into the EcoRI and PstI sites of the pGBKT7 vector. PKS5, PKS24, CBL1 and NPR1 full 

length coding sequences were amplified from Arabidopsis cDNA samples using primers including 

5’ BamHI or BglII sites and 3’ SacI or SalI sites. Hydrolysis with BamHI or BglII on the one hand and SacI 

or SalI on the other hand, leads to identical overhangs, allowing for ligation of all inserts into the BglII 

and SacI sites of the pGADT7 vector. Yeast cells were co-transformed with all 45 possible combinations 

of pGBKT7 (containing RAP2.4c, RAP2.4c S247A, RAP2.4c S247D, RAP2.4c S247E, RAP2.4d, RAP2.4d 

S245A, RAP2.4d S245D, RAP2.4d S245E and no insert) and pGADT7 (PKS5, PKS24, NPR1, CBL1 and no 

insert). In addition to the analysis of differences of binding intensities, direct binding of all RAP2.4c and 

RAP2.4d variants with NPR1 and CBL1 were tested in this assay (Figure 25).  

 

 

Figure 25: Yeast-Two-Hybrid experiment investigating RAP2.4 protein-protein interactions. 
Yeast cultures expressing RAP2.4c or RAP2.4d in their native forms or with substituted serine residues (RAP2.4c: 
S247, RAP2.4d: S245, encoded on pGBKT7 plasmids) and either of the proteins PKS5, PKS24, NPR1 or CBL1 
(encoded on pGADT7 plasmids) were dropped on SD-LTH agar plates containing 10 mM 3-AT. Serine residues 
were substituted by alanine (A), aspartic acid (D) or glutamic acid (E). Representative results of one out of three 
replicates are shown.  

 

Cell growth was strongly inhibited on medium containing 10 mM 3-AT. At this density of colonies, 

comparison of cell growth could be conducted. But on all plates, cell growth was very similar for all 

yeast strains. Particularly, the strain carrying both empty plasmids showed similar growth to all other 

strains, indicating all growth to be due to leaky HIS3 expression exclusively, instead of successful 

protein-protein binding. Because no strain yielded better growth than this negative control, none of 

the tested protein pairs exhibited strong interactions. Even the pair that has a published interaction, 
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RAP2.4d and PKS5, showed no enhanced binding, indicating this phosphorylation might be a very 

short-lived interaction that only happens for the brief moment of the reaction that is insufficient to 

induce HIS3 expression in this system. Also, the phosphomimic variants of both RAP2.4 proteins did 

not show enhanced binding, so there did not seem to be a stabilized interaction upon phosphorylation 

of the RAPs by the PKS kinases as it was found for the PKS5/CBL1 interaction. These results indicate 

that the FPSF motif in CBL1 may exhibit stronger binding affinity for PKS5 than the FPSV and YPSY 

versions in RAP2.4c and RAP2.4d. 

Such yeast-based experiments represent a good model for protein-protein interactions that take place 

in plant cells, as both are eukaryotic organisms. But some interactions which may exist in plants in vivo 

may not give positive results in yeast-based assays due to wrong folding of the proteins or lacking 

further interaction partners or posttranslational modifications that are required for successful 

interaction (Deeds et al., 2006).  Thus, the PKS/RAP2.4d interaction could not be confirmed in this 

study, but it can’t be ruled out yet, either. 

 

  Analysis of the PKS5 phosphorylation site in RAP2.4c and RAP2.4d 

As mentioned in chapter 3.1.9, RAP2.4d and RAP2.4c share a similar amino acid sequence with the 

published PKS phosphorylation site in the CBL family (Du et al., 2011). To analyse whether this YPSY 

(FPSV) sequence is the site of phosphorylation by PKS5 and PKS24, a kinase assay was conducted. In 

this assay, reactions of PKS5 and PKS24 with RAP2.4c and RAP2.4d and their S247A/S245A variants 

lacking the serine in question were conducted. In addition, CBL1 was used as a positive control for the 

reaction.  

Coding sequences of all mentioned genes were amplified via PCR with primers that added a KpnI site 

at the 5’ end and an MscI site at the 3’ end. PCR products were cloned into the pOPINF vector, 

transformed into Top10 E. coli cells and analysed by sequencing for their correct sequence. Plasmids 

from clones with correct sequences were transformed into BL21 (DE3) pLysS E. coli cells for 

overexpression. Proteins expressed from the pOPINF vector carried an N-terminal 6x HIS tag for 

purification and detection. 

Overexpression was tested via Western blot (data not shown, but expression can be seen in Figure 26 

with the very proteins samples that were used for a kinase assay). For the kinase assay, all steps, 

starting with the protein overexpression and ending with the electrophoretic separation of the 

proteins after the kinase reactions, were carried out in one day to ensure native and fresh proteins 

and prevent protein denaturation, particularly of the kinase proteins.  
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All proteins that were used for the kinase assay were freshly overexpressed in BL21 (DE3) pLysS cells. 

Previous experiments have shown that all these proteins tended to form inclusion bodies during the 

overexpression. For this reason, after overexpression, proteins were recovers from the pellets of lysed 

E. coli cells instead of the supernatants and a specialized protein extraction protocol was applied that 

efficiently recovered proteins from inclusion bodies. Compared with other protocols (Dürauer et al., 

2009), this modified protocol avoided chemicals that denature proteins in order to obtain native 

solubilized proteins. These proteins from solubilised inclusion bodies were subsequently HIS-tag 

purified. The imidazole from the elution buffer poses a problem for cation-dependent enzyme 

reactions, such as the conducted kinase assay. Purified protein solutions were desalted and finally used 

for the kinase assay. Additionally, proteins were detected via Western blot to confirm successful 

expression of the proteins and their recovery throughout the purification procedures (Figure 26).  

 

 

Figure 26: Immunological detection of proteins after overexpression in E. coli and HIS-tag purification. 
Proteins were freshly overexpressed in BL21 (DE3) pLysS cells, extracted from the cells, HIS-tag purified and 
desalted. After electrophoretic separation, proteins were transferred to a membrane and immunologically 
detected with the α-HIS-tag antibody. 

 

For the kinase assay, PKS5 or PKS24 proteins were mixed with RAP2.4c, RAP2.4c S247A, RAP2.4d, 

RAP2.4d S245A or CBL1. In a separate reaction, CBL1 was incubated alone as a negative control. All 

reactions were stopped with SDS running buffer and electrophoretically separated. The gels were 

exposed to phosphoimaging films for two to five days and detected. No signal could be detected in 

three independent experiments. Even the native RAP2.4d and CBL1 proteins that had been reported 

to be PKS5 targets did not reveal any phosphorylation signals. The Western blot clearly confirmed 

sufficient protein overexpression, but the kinase assay did not give evaluable results.  
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Kinase assays require native kinase enzymes that are still able to bind their target proteins and carry 

out their enzymatic reaction. Both kinase enzymes and the analysed target proteins formed inclusion 

bodies during their overexpression in E. coli cells. Purification of proteins from inclusion bodies, 

subsequent HIS-tag purification and de-salting of the samples required lengthy procedures which may 

have taken too long to sustain native enzymes throughout the experiment. Western Blot analysis 

confirmed the presence of proteins of the correct in all samples (Figure 26) but confirming the native 

status of the proteins was not possible.  

 

  RAP2.4d may inhibit cold-induced expression of TRXH5 and SnRK2.8 

Interaction of RAP2.4d with PKS5 could not be confirmed as the mechanism regulating the 

accumulation of NPR1 in the nucleus in rap2.4d at 4 °C (chapters 3.1.9 and 3.1.10). However, a very 

recent paper led to a new hypothesis that may explain nuclear accumulation of NPR1. Olate et al. 

(2018) have shown that the cytosolic THIOREDOXINs (TRXH) 3 and 5 and the SNF1-RELATED PROTEIN 

KINASE (SnRK) 2.8 are necessary for cold-induced translocation of NPR1 to the nucleus as the snrk2.8-1 

and the trxh3trxh5 double KO lines almost completely failed to import NPR1. Among the eight 

members of the TRXH gene family, TRXH3 is the one with the strongest constitutive expression 

(Reichheld et al., 2002), while TRXH5 is the only one that is strongly induced upon oxidative stress and 

infection with Pst DC3000 (Laloi et al., 2004). A similar expression pattern was observed in the present 

RNAseq data in Col-0 (Figure 27): TRXH3 exhibited an expression level that was substantially higher 

than that of TRXH5, whereas TRXH5 expression slowly increased over time in Col-0. In rap2.4d 

however, TRXH5 transcript levels strongly peaked after one hour. SnRK2.8 transcript levels decrease 

after the transfer of Col-0 to 4 °C. In rap2.4d, this downregulation was impaired during the first hour 

at 4 °C but was visible after three hours in a weaker form compared with Col-0. Elevated transcript 

levels of both TRXH5 and SnRK2.8 in rap2.4d indicate nuclear localisation of NPR1 after one hour at 

4 °C. 

Upregulation of these two genes could explain the putative elevated nuclear translocation of NPR1. 

The TRXH5 promoter contains a DRE-motif, that was published as the RAP2.4d binding motif (Rae et 

al., 2011), 220 bp upstream of the transcription start and a CCCGT sequence that is part of the second 

motif that was found in the yeast system (Figure 5) 538 bp upstream of the transcription start. The 

SnRK2.8 promoter does not contain a precise copy of the DRE-motif within 1000 bp, but four copies 

that include single bp exchanges in the 3rd or 4th bp of the motif (CCGAC) that reduce the DNA binding 

capacity of RAP2.4d but are dispensable for DNA-binding (Rae et al., 2011). Among these motifs, a 

CCGTC sequence which is located 652 bp upstream of the transcription start additionally strongly 

resembles the CCCGT motif that is present in the TRXH5 promoter. Both sequences lie in the CCCGTC 
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sequence shown in Figure 5A and are only shifted by a single base pair. Also, SnRK2.8 was less induced 

than TRXH5 which would be in line with a reduced RAP2.4d DNA binding affinity due to slightly 

different binding affinities to the slightly varying promoter sequences. These findings suggest RAP2.4d 

to be a negative regulator of TRXH5 and SnRK2.8 expression. In the rap2.4d KO line, the lack of RAP2.4d 

induction in the early cold response putatively enabled the expression of TRXH5 and SnRK2.8 which 

both have complete or slightly modified DRE-motifs and a similar CCCGTC motif closely upstream of 

their transcription starts. Induction of these genes may then result in the monomerization of NPR1 

(facilitated by TRXH5) and in the translocation of NPR1 into the nucleus (facilitated by SnRK2.8). This 

in turn may explain the failed crosstalk of the JA/ET-JA-SA pathways and the particularly strongly 

induced expression of SA downstream genes (Figure 11). As the study demonstrating the NPR1-

dependent cold-response and the roles of TRXH5 and SnRK2.8 therein was published (Olate et al., 

2018) during the finalisation of the present study, the hypothesis that RAP2.4d is a negative regulator 

of TRXH5 and SnRK2.8 expression which modify nuclear translocation of NPR1 is an intriguing project 

for further studies.  

 

 

Figure 27: RNAseq data of TRXH3, TRXH5 and SnRK2.8 at 4 °C. 
The experimental procedure was the same as described in the legend of Figure 7. 

 

TRXH5 expression has been demonstrated to be enhanced by the transcription factor WRKY6 (Laloi et 

al., 2004). This study has shown that the last 1000 bp of the TRXH5 promoter contain five copies of the 

W-box cis-element, which is a typical WRKY binding site that mediates expression during oxidative 

stress situations. Furthermore, WRKY6 overexpressing plants were shown to exhibit strongly elevated 

TRXH5 expression. Overexpression of WRKY6 not only increased expression of TRXH5, but also of PR1 

(Laloi et al., 2004). The present RNAseq data indicate no differences in WRKY6 transcript levels 

between the genotypes, while they double after one hour in the cold (data not shown). As RAP2.4d 

and WRKY6 are both inducible within one hour at 4 °C and may inversely regulate TRXH5 expression, 
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it is possible that they represent a mechanism for the finetuning of TRXH5 expression in the early cold 

response and thus, for the regulation of NPR1 location and activity.  

 

  rap2.4c shows a weak rap2.4d phenotype 

The analysis of various hormone-related phenotypes revealed a recurring pattern that was observed 

over and over: Significant differences in phenotypes and correlations were always observed in rap2.4d 

KO plants. rap2.4c plants usually showed a similar trend, but in a weaker, not significant form or 

showed less correlation with other phenomena. Relative to rap2.4c, rap2.4d plants exhibited more 

genes with a stronger upregulation of hormone-related genes in the RNAseq (Figure 11 and Figure 12), 

a better correlation of these genes with the cold-induced NPR1-dependent genes (Figure 23) and 

stronger JA effects on root growth, shoot length and the number of siliques (Figure 22). RAP2.4d, but 

not RAP2.4c, was reported to have potentially JA-related functions in cell de-differentiation (Iwase et 

al., 2011) and expression of RAP2.4d was induced by JA treatment, while RAP2.4c was not (Figure 18A). 

The lack of RAP2.4d significantly improved freezing tolerance in naïve plants, whereas rap2.4c KO 

plants only showed a minor and not significant tendency towards improved tolerance and rather 

improving cold acclimation responses (Figure 2). Furthermore, TRXH5, which is hypothesized to be a 

direct target of RAP2.4d and whose induction may lead to the nuclear translocation of NPR1 is induced 

to an intermediate extent in rap2.4c (Figure 27). RAP2.4d expression quickly increased at 4 °C and then 

declined again (Figure 6). Such a cold-induced upregulation of RAP2.4d was also observed in the 

RNAseq data, but only in the wild type, not in rap2.4c (Figure 28A). RAP2.4d induction also failed in 

rap2.4c after JA treatments (Figure 28B). The data show that in rap2.4c, RAP2.4d transcripts were on 

a wild type level before the treatments, but their cold- or JA-triggered induction failed. Thus, stimulus-

triggered induction of RAP2.4d seems to be RAP2.4c-dependent. Also, the timing of induction of 

RAP2.4c and RAP2.4d in the cold supports this notion, as induction of RAP2.4c precedes that of 

RAP2.4d in Col-0 (Figure 6). However, as inducible overexpression of RAP2.4c had no detectable effect 

on RAP2.4d expression (Figure 21), RAP2.4c would depend on specific conditions or interaction 

partners to induce RAP2.4d expression. 
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Figure 28: Transcript data of RAP2.4d after treatments that induce RAP2.4d expression. 
A: RNAseq data of Col-0 and rap2.4c plants that were transferred to 4 °C (the experimental procedure was the 
same as described in the legend of Figure 7). B: RT-qPCR data of Col-0, rap2.4c and rap2.4d plants that were 
sprayed with 50 µM JA. Data were obtained in the experiment that is shown in Figure 18. n=3±SD, student’s t-
test relative to the wild type at the same time, p<0.05. 

 

These data hint towards RAP2.4d as the central protein that causes the failed hormone crosstalk also 

in the rap2.4c KO line. As rap2.4c plants failed to induce RAP2.4d upon cold and JA treatments 

(Figure 28), but basal RAP2.4d levels were expressed in rap2.4c, the various intermediate phenotypes 

that were observed in rap2.4c relative to rap2.4d may be due to the intermediate levels of RAP2.4d in 

rap2.4c.  

 

 

Figure 29: The proposed model for the function of RAP2.4c and RAP2.4d in the hormone crosstalk during the 
early cold response. 
Cold exposure leads to the expression of WRKY6, RAP2.4c and RAP2.4d, while RAP2.4d expression may be 
dependent on RAP2.4c. Accumulation of RAP2.4d inhibits WRKY6-driven TRXH5 expression (Laloi et al., 2004). 
TRXH5 catalyses the reduction of disulfide bonds in cytosolic NPR1 oligomers enabling their translocation into 
the nucleus (Olate et al., 2018). Nuclear NPR1 facilitates expression of its target genes PR1 and PR2 (Fan and 
Dong, 2002), while depletion of cytosolic NPR1 enables MYC2 downstream gene expression of JA-responsive 
(VSP1 and JAV1) (Spoel et al., 2003) and JA/ET-responsive (PDF1.2a and PDF1.2c) genes (Leon-Reyes et al., 2009; 
Zander et al., 2010). Solid lines indicate published interactions and dotted lines indicate hypothesised 
interactions from the present study. Blue genes are cold-responsive, black genes are involved in SA, red genes in 
JA and purple genes in JA/ET signalling. 
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The data that were presented and discussed in the previous chapters lead to a regulatory scenario, in 

which cold-induced accumulation of RAP2.4d in Col-0 plants inhibits WRKY6-driven expression of 

TRXH5. This in turn would prevent TRXH5-dependent monomerization of NPR1 and consequently its 

translocation into the nucleus and the induction of SA and JA responses. In this model, the lack of 

RAP2.4d expression fails to inhibit TRXH5 expression which results in the monomerization of NPR1 and 

in the induction of SA and JA responses (Figure 29).  

 

3.2 RAP2.4c, RAP2.4d, sAPX and tAPX in cold priming  

Plants can store information on a past stressful stimulus and modify their response to a future stress 

accordingly, a phenomenon which is called priming (Hilker et al., 2016). In the case of two 24-hour cold 

stimuli that were separated by five days under ambient temperatures, it was shown that plants that 

had experienced the first (priming) stimulus responded to the second (triggering) stimulus with a 

reduced induction of ZAT10 gene expression than naïve plants (van Buer et al., 2016). Reduced 

expression of ZAT10, which is a marker gene for plastid H2O2, indicates H2O2 signalling to be involved 

in the regulation of priming. The same study investigated the role of two prominent plastid H2O2 

detoxifying enzymes, sAPX and tAPX in cold priming. While sapx plants only slightly reduced their 

ability to inhibit triggering-induced ZAT10 expression in primed plants, the lack of tAPX resulted in 

ZAT10 expression that was significantly higher in primed plants than in naïve plants, suggesting the 

tAPX to be essential in the formation of the memory. tAPX transcript and protein levels started to 

increase, beginning at the end of the priming stimulus and were still elevated after five days of lag-

phase compared to naïve plants. It was hypothesized, that elevated tAPX levels at the end of the lag-

phase were responsible for improved ROS protection of the chloroplast leading to a reduced induction 

of ZAT10 (van Buer et al., 2016). 

 

 Cold priming in rap2.4c and rap2.4d 

Both RAP2.4c and RAP2.4d can bind the tAPX promoter in Yeast-One-Hybrid systems and modulate 

sAPX and tAPX expression in planta (Rudnik et al., 2017), suggesting that the two transcription factors 

RAP2.4c and RAP2.4d are candidates that may regulate tAPX-mediated cold priming of ZAT10 

expression. To analyse the influence of RAP2.4c and RAP2.4d on the expression of sAPX, tAPX and 

ZAT10 at the end of the lag-phase and after cold triggering, standard priming experiments were carried 

out as previously performed by van Buer et al. (2016) (Figure 30). Four-week-old Col-0, rap2.4c and 

rap2.4d plants were either cold-primed for 24 hours or further grown at 20 °C. After a lag-phase of five 

days, naïve (C) and primed (P) plants were analysed for their gene expression patterns prior to 
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triggering. After 24 hours of cold exposure, transcript levels were analysed in triggered (T) and in 

primed and triggered (PT) plants. 

 

 

Figure 30: sAPX, tAPX and ZAT10 transcript levels in cold-priming of Col-0, rap2.4c and rap2.4d. 
Col-0, rap2.4c and rap2.4d were subjected to the standard priming experiment established by van Buer et al. 
(2016). C (naïve) and P (primed) plants after five days of lag-phase, T (only triggered) and PT (primed and 
triggered) plants at the end of the triggering stimulus. n=3±SD, student’s t-test KO lines vs. Col-0 of the same 
treatment, p<0.05. 

 

sAPX, tAPX and ZAT10 transcript levels were induced by the cold treatment (T, PT) compared to plants 

that had grown under standard conditions for the last five days after priming (P) or constantly for 

34 days (C). Compared to the study by van Buer et al. (2016), cold induction of tAPX was stronger and 

sAPX induction was weaker. In contrast to Rudnik et al. (2017), no significant differences of tAPX 

transcript levels were found between any of the KO lines relative to the wild type under control 

conditions.  

sAPX, which was downregulated much stronger in rap2.4d than in rap2.4c in Rudnik et al. (2017), 

showed a similar slight upregulation in the present study, demonstrating that the effects are strongly 

conditional. After triggering, no differences in sAPX transcript levels were observable between the 

genotypes. Before the triggering stimulus, tAPX levels were similar in all lines. After triggering of 

rap2.4d plants, tAPX was slightly elevated in T plants and reduced in PT plants. In rap2.4c PT plants, 

tAPX levels were increased relative to Col-0.  

ZAT10 levels were at least slightly increased in rap2.4d irrespective of the treatment. In rap2.4c, ZAT10 

was reduced only in T plants and was otherwise similar to Col-0. As ZAT10 levels were similar in all 

three lines in PT plants, RAP2.4c and RAP2.4d appeared to have no influence on cold priming in 

Arabidopsis. Only cold-induced ZAT10 expression in previously naïve plants (T) was impaired in rap2.4c, 

which is independent of priming. As ZAT10 priming was not affected in rap2.4c and rap2.4d KO plants, 

they were not further analysed in the context of priming. 
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In contrast to the study by van Buer et al. (2016), tAPX transcript levels were not elevated in primed 

plants relative to naïve ones five days after priming and the ZAT10 priming effect that leads to a 

reduced ZAT10 induction in PT compared with T plants was weaker compared with the original finding 

(van Buer et al., 2016). An explanation for the difference could be that tAPX transcripts had already 

declined back to control levels after five days, while protein levels were still elevated to enable a mild 

ZAT10 priming effect. To follow-up the observation by van Buer et al. (2016) that ZAT10 priming is 

regulated by transient APX regulation, the roles of sAPX and tAPX in cold priming that were previously 

analysed in T-DNA KO lines, were investigated in more detail.  

 

 Generation of transgenic lines that transiently overexpress plastidic APX 

T-DNA insertions leading to the knock-out of genes belonging to multi gene families often lead to 

compensatory effects by other family members during development, as it was shown for sAPX and 

tAPX (Kangasjärvi et al., 2008). To avoid such effects and to further clarify the roles of the sAPX and 

tAPX, 17β-estradiol inducible overexpression lines were generated.  

These lines were made and tested for strong XVE expression following the same protocol that was 

used to generate and test the RAP2.4c and RAP2.4d lines in chapter 3.1.6, but with specific primers for 

sAPX and tAPX (sAPX forward: GTTGATCAACAATTAAACACAAAAAC; reverse: 

ACAAAACCAAGGGTGTGTAGTTATA; and tAPX forward: TCAGCTGATAGAAATCATTATCCA; reverse: 

AAGAAACTCACACTAATCTCAAAATTCT). Plants with strongest XVE expressions were chosen for further 

characterisation and experiments (sAPX OE: 3, tAPX OE: 16) (Figure 31). Inducible tAPX silencing plants 

were obtained from Shigeru Shigeoka (Maruta et al., 2012). 

 

 

Figure 31: Semi-quantitative PCR for the determination of XVE expression.  
RNA was extracted from four-week-old homozygous transgenic plants and reverse transcribed into cDNA. PCRs 
with only 25 cycles were performed using XVE and ACT7 specific primers. 
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Figure 32: Relative expression of sAPX and tAPX determined by RT-qPCR.  
Four-week-old plants were sprayed with 100 µM 17β-estradiol for induction of overexpression or silencing. 
Plants were either sprayed only once or a second time three days later (5+ samples). APX expression was 
monitored over five days after the treatments. The figures at the top show tAPX and the figure at the bottom 
shows sAPX expression. tAPX expression data are shown in two separate figures for better visibility of tAPX 
expression in the tAPX RNAi silencing line. n=3±SD, Student’s t-test inducible lines vs. Col-0 at the same time, 
p<0.05. 

 

To test APX overexpression, a 100 µM 17β-estradiol solution was sprayed on four-week-old plants to 

induce transcription of the inserts in the estrogen-inducible system. After three days, some of the 

plants were sprayed a second time to keep APX expression high for the entire lag-phase. APX 

expression was monitored over five days, as this would later be the length of the lag-phase in priming 

experiments. These plants were used for transcript analysis by RT-qPCR (Figure 32) and protein 

detection by Western blot (Figure 33). Transcript analysis confirmed successful overexpression of both 

transcripts and silencing in the RNAi line. Overexpression of tAPX and sAPX continually increased until 

day three or five, respectively. While the second estradiol treatment after three days did not influence 

sAPX overexpression, tAPX transcripts were clearly more abundant after five days if the plants were 

sprayed twice. tAPX silencing efficiency also increased over time, while the second treatment had no 

obvious effect. Because the second treatment had a positive effect on tAPX overexpression and no 
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negative effect on both other inducible systems, the second treatment was always conducted in 

priming experiments. 

 

 

Figure 33: Immunological detection of sAPX and tAPX in non-induced and estradiol induced plants. 
Four-week-old Col-0, estradiol-inducible sAPX and tAPX overexpression plants and estradiol-inducible tAPX 
silencing plants were sprayed with 100 µM 17β-estradiol for induction of overexpression or silencing (the 
treatment was repeated after three days). Samples were taken before (0) the treatment and after five days (5). 
Proteins were extracted from whole rosettes and analysed by Western blots. 

 

 Priming in sAPX and tAPX inducible lines 

Priming experiments were conducted with Col-0, the inducible sAPX and tAPX overexpressors and the 

inducible tAPX RNAi line. As controls, all four lines were grown following the standard priming protocol 

consisting of four weeks of growth, 24 hours of priming at 4 °C, five days of lag-phase back under 

standard conditions and 24 hours of triggering at 4 °C (van Buer et al., 2016).  

In a separate set of plants, instead of priming at 4 °C, Col-0 and the overexpressing lines were sprayed 

with estrogen at normal growth temperatures at the time the control plants were taken out of priming 

to mimic the priming event by inducing APX expression. tAPX silencing plants were cold primed and 

subsequently estrogen treated directly after the cold stress ended to suppress tAPX induction which 

starts as plants are transferred back to control conditions (van Buer et al., 2016). To ensure high levels 

of expression, the plants were sprayed again after three days. The trigger was uniformly applied as 

24 hours at 4 °C. 
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Figure 34: Relative gene expression after a priming experiment shown as PT/T ratios. 
Col-0 and estradiol-inducible plants (sAPX OE, tAPX OE and tAPX RNAi) were grown for four weeks and subjected 
to a priming experiment. Col-0 and inducible APX overexpression (OE) plants were either not primed (only 
triggered, T), cold-primed or sprayed with 100 µM estradiol to induce APX overexpression to mimic priming 
(primed and triggered, PT). tAPX RNAi plants were either not primed, cold-primed or cold-primed and 
immediately sprayed to suppress tAPX expression during the lag-phase. Results are shown as the PT/T gene 
expression ratios of either 4 °C or estradiol primed plants. The PT/T ratios were calculated independently for 
each biological replicate first and their means ±SD are shown. Different small letters show significance of 
difference in cold primability, different capital letters show significance of difference in the cold response after 
estradiol spraying (ANOVA, Tukey tests, p < 0.05). The asterisks label significantly different results between cold- 
and estradiol-priming (student’s t-test, p < 0.05). 

 

Transcript levels of ZAT10 and COR15a were determined at the end of the triggering stimulus 

(Figure 34). The cold marker gene COR15a that was shown to be not primable, again showed no 

significant priming effects in cold or estrogen primed plants, indicating no significant differences in the 

perception of cold stress in estrogen-treated plants (van Buer et al., 2016).  

ZAT10 showed a reduction of transcript levels of approximately 50 % in all four lines when primed at 

4 °C compared to naïve (only triggered) plants (ratio of primed and triggered plants (PT) and triggered 

only plants (T) ≈ 0.5), which indicates that all inducible lines were primable to a similar extent as the 

wild type. Estrogen treated wild type and sAPX OE plants had a PT/T ratio of ~1, indicating that the 

chemical treatment did not induce priming in Col-0 and that sAPX overexpression did not mimic a 

priming event. However, induction of tAPX overexpression at 20 °C five days before triggering resulted 

in a PT/T ratio that was similar to the ratio of plants that were primed at 4 °C. Thus, induction of the 

tAPX but not of the sAPX five days before a triggering cold stimulus successfully mimicked a cold 

priming stimulus in terms of ZAT10 expression. Additionally, tAPX RNAi plants that had been cold 

primed and subsequently treated with estrogen to suppress cold-induced tAPX induction, did not show 

the cold-cold priming effect. 

These data prove the hypothesis, that tAPX plays the predominant role in the formation of the cold 

memory (van Buer et al., 2016). This indicates that H2O2 scavenging directly at the site of its formation 

during photosynthesis is of key importance. During cold stress, H2O2 is generated at the photosystems 

in the thylakoid membrane of the chloroplasts (Genty and Harbinson, 1996). The tAPX is bound to the 
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thylakoid membrane and due to its large stromal domain, it is localised in the unstacked stretches that 

also harbour photosystem I (Miyake et al., 1993; Dekker and Boekema, 2005). This proximity of the 

H2O2 generating complexes (the photosystems) and the H2O2 scavenging enzymes (tAPX) seems to play 

a pivotal role in the cold priming process, as transient overexpression of the sAPX which has similar 

enzymatic properties in mature leaves (Kangasjärvi et al., 2008) but is localised in the stroma 

surrounding the photosystems was not able to mimic a priming event. Since both sAPX and tAPX 

scavenge plastidic H2O2 in neighbouring, yet different sub-compartmental locations and only tAPX 

modulates the ZAT10 response in cold priming experiments, cold-induced H2O2 signalling differs 

depending on which of the APX isoforms is upregulated. ZAT10 is encoded in the nucleus and is a 

marker gene for plastidic H2O2 as its expression is induced upon various stresses that elevate plastidic 

H2O2 levels (Sakamoto et al., 2000; Sakamoto et al., 2004; Davletova et al., 2005; van Buer et al., 2016). 

Thus, the signals of primed and unprimed plants as well as of sAPX or tAPX overexpressing plants differ 

in their H2O2-dependent signalling upon transfer to 4 °C. This in turn modulates gene expression of the 

nuclear gene ZAT10. The regulation of nuclear gene expression that is mediated by signals that 

originate from plastids or mitochondria a called retrograde signalling (Nott et al., 2006).  

A possible mechanism for tAPX-dependent retrograde signalling involves the influence of H2O2 on the 

photosynthetic electron transport chain (PET). In the water-water cycle, as it was described by Asada 

(1999), electrons from the PET are transferred to oxygen, resulting in the formation of ROS. These ROS 

are detoxified by molecules, that were previously reduced by electrons from the PET as well. Thus, 

both the formation and detoxification of ROS drain electrons from the PET which reduces electron 

pressure during cold exposure. tAPX accumulation in primed plants enhances efficiency of this process, 

consuming ascorbate at elevated levels, which increases pools of its oxidised variants: 

Monodehydroascorbate (MDA) and dehydroascorbate (DHA). Both molecules are reduced to 

ascorbate at the expense of FER, NAD(P)H or glutathione (Miyake and Asada, 1994; Shimaoka et al., 

2003; Sano et al., 2005), which are finally regenerated using electrons from NADPH, the final electron 

acceptor of the PET (Mhamdi et al., 2010). This way, tAPX accumulation leads to the elevated drainage 

of electrons from the PET that are used for the detoxification of ROS, reducing electron pressure and 

avoiding further ROS production.  

tAPX/ascorbate-dependent enhanced drainage of PET electrons supports the redox state control of 

plastoquinone and particularly of FER and TRX downstream of PSI, as more oxidised electron acceptors 

are available in the form of MDA, DHA and oxidised glutathione. The redox state of the plastoquinone 

pool has been suggested to play a central role in retrograde signalling, as it carries information on the 

state of photosynthetic balance and the potential requirement for adjustments of nuclear gene 

expression (Karpinski et al., 1997; Lepetit et al., 2013). Also, the redox states of FER and TRX have been 
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reported to play a role in retrograde signalling, particularly in the early stress response (Piippo et al., 

2006). The redox state of the former additionally represents the source of retrograde regulation of 

2CPA expression (Baier et al., 2000; Baier et al., 2004). 

The enhanced tAPX-dependent turnover of ascorbate may also play a role in retrograde signalling, as 

levels of reduced ascorbate may drop in the cold due to elevated production of H2O2 and low ascorbate 

levels have been demonstrated to influence retrograde signalling in an ABI4-dependent manner 

(Kerchev et al., 2011; Foyer et al., 2012; Kerchev et al., 2013).  

Alternatively, H2O2 signalling may alter nuclear gene expression by the oxidation of plastidic proteins 

which alters their activity and leads to retrograde signalling. One example of a chloroplast located 

protein that directly or indirectly perceives various changes in the plastids is GENOMES UNCOUPLED 1 

(GUN1) (Strand et al., 2003). GUN1-dependent signalling causes the nuclear located transcription 

factor ABA INSENSITIVE 4 (ABI4) to modify nuclear gene expression (Koussevitzky et al., 2007). As 

transient overexpression of sAPX did not mimic a priming effect, whereas tAPX overexpression did so, 

it is unlikely that H2O2 leaking from the chloroplasts and oxidation of stromal components play a role 

in cold-priming of ZAT10 (Figure 34). Consequently, cold-induced H2O2 production at the photosystems 

that regulates cold priming would have to be perceived in close proximity. This includes sensor 

molecules that are bound to the thylakoid membrane and that may function in the photosynthetic 

electron transport chain (PET).  

One such protein that is located at the thylakoid membrane is WHIRLY1 (WHY1) (Grabowski et al., 

2008). This protein has been demonstrated to translocate from the chloroplasts into the nucleus where 

it induces expression of PR genes (Isemer et al., 2012). As WHY1 was proposed as a high light-sensitive 

protein that is localised in the thylakoid membrane and translocates into the nucleus where it induces 

gene expression, it was hypothesized as a chloroplast PET redox sensor involved in retrograde 

signalling (Foyer et al., 2014). In the chloroplasts, WHY1 forms oligomers that are likely to be stabilized 

by conserved cysteine residues that form disulfide bonds (Desveaux et al., 2002; Cappadocia et al., 

2010; Cappadocia et al., 2012). As conditions such as high light and cold stress lead to both, a reduced 

plastoquinone pool and H2O2 production, the tAPX level-dependent efficiency of H2O2 scavenging 

modifies the ratio of both signals and may alter WHY1 monomeric/oligomeric states by modulating 

intramolecular disulfide bonds and thus, its signalling activity. The mechanism behind WHY1 transport 

to the nucleus remains elusive. But its oligomeric structure in the chloroplast and its potential 

monomerization upon redox signals suggests that redox signal-induced monomerization may facilitate 

WHY1 translocation in a similar way as it has been described for NPR1 (Mou et al., 2003).  
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An sapx/tapx double KO line has previously been shown to mediate retrograde signals after 30 minutes 

of exposure to high light, although their levels of H2O2 accumulation were only slightly higher than in 

the wild type, indicating that minute APX-dependent differences in plastid H2O2 levels are sufficient 

for the induction of retrograde signals (Kangasjärvi et al., 2008). The mechanism behind this 

phenomenon was not experimentally addressed in this study, but it was hypothesized that the altered 

phosphorylation state of the LIGHT HARVESTING COMPLEX II (LHCII) that was detected in their study 

may have resulted from the slightly elevated H2O2 levels in the sapx/tapx background. H2O2 has been 

shown to serve as an oxidant and to activate the LHCII kinase STATE TRANSITION 7 (STN7)  (Martinsuo 

et al., 2003) that usually gets inactivated via reduction by TRX during high light stress, which is similar 

to cold stress in terms of electron pressure and TRX reduction levels (Huner et al., 1998; Rintamäki et 

al., 2000; Bellafiore et al., 2005; Rosso et al., 2006). As such, STN7 is regulated by the ratio of redox 

and H2O2 signals in a similar way as it was proposed above for WHY1.  

Notably, activity of the LHCII complex and of STN7 have been linked with retrograde signalling 

processes (Bonardi et al., 2005; Kangasjärvi et al., 2008). stn7 KO plants have been shown to fail long-

term adjustment of nuclear encoded photosynthetic genes in different light regimes (Bonardi et al., 

2005). In another study, stn7 KO plants failed to adjust gene expression of approximately 800 nuclear 

encoded genes that were differentially regulated in Col-0 plants that were shifted between PSI and 

PSII stimulating light conditions (Bräutigam et al., 2009). Pesaresi et al. (2009) have demonstrated, that 

both short-term adaptations to changing light conditions via state transitions and long-term responses 

via regulation of nuclear gene expression depend on STN7, while only the former involves LHCII 

phosphorylation, suggesting a STN7 signalling function that is independent of LHCII phosphorylation. 

STN7 is bound to the thylakoid membrane (Bennett, 1979; Reiland et al., 2009) and is predominantly 

located in the unstacked areas, bound to the Cytochrome b6f complex (Wunder et al., 2013; Shapiguzov 

et al., 2016; Kirchhoff et al., 2017), making it a prime candidate as a thylakoid membrane H2O2 sensor 

protein.  

Cold-induced H2O2 may oxidise STN7 in naïve plants that do not accumulate tAPX to elevated levels. 

This putatively induces a retrograde signalling pathway that may or may not depend on 

phosphorylation of LHCII (Pesaresi et al., 2009). In plants that accumulate tAPX upon cold priming or 

chemical induction (van Buer et al. (2016) and Figure 34), cold-induced H2O2 that is produced at the 

photosystems is detoxified more efficiently. This protects STN7 from oxidation and retrograde 

signalling that leads to the induction of ZAT10 may be suppressed.  

Chi et al. (2013) hypothesized that plastid ROS and PET redox signals converge on the GUN1-ABI4 

retrograde signalling pathway and that STN7 may contribute to both of these signals, as it is activated 

by H2O2 (Martinsuo et al., 2003) and inactivated by high reduction of TRX (Huner et al., 1998; Rintamäki 
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et al., 2000; Bellafiore et al., 2005). GUN1 and ABI4 are well-characterised proteins that take part in 

plastid retrograde signalling. Single KO lines of both genes were shown to delay and reduce high light-

induced ZAT10 and ZAT12 induction (Koussevitzky et al., 2007), highlighting the importance of both 

proteins in plastid ROS/redox signal retrograde signalling. Plants lacking ABI4 display a weaker gun1 

phenotype, supporting its GUN1 downstream function (Koussevitzky et al., 2007). However, as GUN1 

has various regulatory functions in the chloroplast, several of these may influence ABI4 activity in the 

nucleus (reviewed in Colombo et al. (2016)). While the interaction of STN7 and GUN1 was only 

hypothesised and not experimentally tested, the discussed findings indicate the following retrograde 

signalling pathway: Priming-dependent tAPX levels regulate cold-induced H2O2 concentrations that 

leak from the photosystems and that modulate STN7 activity at the thylakoid membrane, which acts 

as an H2O2/redox sensor, transmitting its signals via the GUN1-ABI4 pathway resulting in the 

modulation of nuclear ZAT10 expression (Figure 35).  

 

 

Figure 35: Proposed model for the tAPX-dependent regulation of cold priming of ZAT10 expression. 
24 hours of cold priming lead to the induction of tAPX expression over the following five days (lag-phase) (van 
Buer et al., 2016). Elevated tAPX levels protect thylakoid membrane bound proteins from triggering-induced 
H2O2. In naïve plants, cold-induced H2O2 production leads to oxidation and activation of STN7 (Martinsuo et al., 
2003) which triggers retrograde signalling, probably via a GUN1-ABI4 pathway (Chi et al., 2013) either directly or 
indirectly via phosphorylation of LHCII (Pesaresi et al., 2009). Nuclear ABI4 induces ZAT10 expression in a GUN1-
dependent manner (Koussevitzky et al., 2007). Chloroplasts of cold primed or tAPX induced plants are prepared 
to detoxify triggering-induced H2O2 and STN7 is protected from oxidation, omitting retrograde signalling and 
ZAT10 expression. Solid lines, represent published interactions, dotted lines represent hypothesized interactions. 
Grey background indicates nuclear and white background indicates chloroplast localised interactions. 

 

Irrespective of the mechanism that facilitates priming responses, priming is discussed to enable plants 

to respond in a more stress-specific way (Avramova, 2017). The author hypothesizes the response to 

the first stress to be a general “panic-like” response of the plant, that induces various genes that are 

not specific to the present stressful situation, but to a broader group of stressors. Such general 
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responses may involve any response that is induced by ROS signalling, which is activated upon various 

challenges. One such general response is the induction of ZAT10 expression upon ROS signalling 

(Sakamoto et al., 2000; Sakamoto et al., 2004; Davletova et al., 2005; van Buer et al., 2016). Memory 

of the first stress would then enable plants to respond with a more specific and appropriate response 

to the second stress, avoiding costly induction of other non-specific responses. Following this 

hypothesis, reduced ZAT10 expression in primed (or tAPX induced) and triggered plants may represent 

a mechanism that confers specificity to the plants’ response to a second cold stimulus, focusing on the 

induction of more specific cold responses. The specific necessity of thylakoid bound APX in this 

response supports this notion, as it detoxifies its substrate directly at the site of its production during 

cold stress and thus confers specificity cold stress.  

 

  



92 
 

4 Conclusion 

 

The two AP2/ERF-Ib transcription factors RAP2.4c and RAP2.4d have been reported to positively 

regulate the expression of the H2O2-detoxifying enzymes sAPX and tAPX under standard conditions 

(Rudnik et al., 2017) and to negatively regulate various COR genes in the cold (Bulcha, 2013). Both 

transcription factors are transiently inducible by various stresses, among them cold stress (Kilian et al., 

2007). RAP2.4d and RAP2.4c both directly bind to the tAPX promoter (Rudnik et al., 2017) and they 

have been shown to bind the DRE-motif in vitro or a DRE-like motif in vivo, respectively (Rae et al., 

2011; Bulcha, 2013).  

This study demonstrates RAP2.4d to regulate the JA/ET, JA and SA crosstalk, as genes that are involved 

in these hormone pathways were upregulated in rap2.4d after one hour at 4 °C in a transcriptomic 

analysis, while these pathways inhibited each other in Col-0 (Figure 11, Figure 12 and Figure 15). These 

genes strongly correlated with cold-inducible genes that require nuclear NPR1 for their expression 

(Olate et al., 2018), indicating RAP2.4d to function upstream of NPR1 in the regulation of cold-induced 

expression of hormone-related genes (Figure 23).  

TRXH5, which is involved in quaternary structure regulation and, consequently, nuclear translocation 

of NPR1 (Olate et al., 2018), was strongly induced in rap2.4d compared with Col-0 after one hour at 

4 °C, indicating RAP2.4d to be a negative regulator of TRXH5 in the wild type (Figure 27). The TRXH5 

promoter contains a DRE-motif, which is a known RAP2.4d target (Rae et al., 2011) and another binding 

motif that was determined in the present study using a Yeast-One-Hybrid approach (Figure 5). In 

rap2.4d, cold-induced and TRXH5-dependent translocation of NPR1 into the nucleus enables 

expression of NPR1 target genes (Olate et al., 2018) and at the same time reduces its inhibitory effect 

on JA-signalling which requires cytosolic NPR1 (Spoel et al., 2003).  

No differences in hormone contents and sensitivity to phytohormones could be found between 

rap2.4c, rap2.4d and Col-0 (Figure 16 and Figure 18). Additionally, transient overexpression of RAP2.4c 

and RAP2.4d did not affect expression of hormone related marker genes (Figure 21). These results 

demonstrated that the failed hormone crosstalk in rap2.4c and rap2.4d was not caused by altered 

sensitivity to hormones or changes in their metabolism, but rather in RAP2.4d-dependent redox-

signalling via the TRXH5-NPR1 pathway (Figure 29). 

Furthermore, this study demonstrated that stress-induced expression of RAP2.4d is RAP2.4c-

dependent, as RAP2.4d induction failed in rap2.4c in the cold and after JA-treatments (Figure 28). 

Failed RAP2.4d induction in rap2.4c can explain the weak phenotypes that were observed regarding 

the upregulation of hormone-related genes, shoot length, number of siliques, root growth (Figure 22), 
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freezing tolerance (Figure 2), TRXH5 induction (Figure 27) and cell de-differentiation (Iwase et al., 

2011). 

Using knock-out plants, a previous study has found tAPX but not sAPX to be of central importance in 

the formation of a memory in cold-priming experiments (van Buer et al., 2016). Using estrogen-

inducible transient sAPX and tAPX overexpressor and silencing (RNAi) lines, it was proven that the 

formation of the memory is located at the thylakoid membrane. Transient overexpression of tAPX at 

ambient temperatures five days before the cold stimulus resulted in ZAT10 expression levels that were 

similar to those of plants that had been cold primed, while counteracting cold-induced tAPX 

accumulation in tAPX RNAi plants resulted in ZAT10 expression similar to unprimed plants (Figure 34). 

sAPX overexpression did not mimic a cold-priming stimulus, demonstrating H2O2 detoxification 

specifically at the thylakoid membrane to be a key in the formation of the cold-memory. A putative 

signalling pathway in which tAPX-dependent detoxification of H2O2 specifically at the thylakoid 

membrane results in the modification of nuclear ZAT10 expression via the STN7-GUN1-ABI4 pathway 

is shown in Figure 29. 
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6 Appendix 

 

Table S1: List of primers used in qRT-PCR experiments. 

Gene   AGI code forward primer reverse primer 
ACT7 At5g09810 GTTGCCATTCAGGCCGTTCTTTC CAGAATCGAGCACAATACCGGTTG 
AOC1 At3g25760 GGCTAATGATTTGCCACTGG CAACTCCACTGGGCTTAAGC 
CBF1 At4g25490 GCTCCGATTACGAGCCTCAAG GACAACTCGTGGCCAACG 
CBF3 At4g25480 CAACTTGCGCTAAGGACA TCTCAAACATCGCCTCAT 
COR15A At2g42540 AACGAGGCCACAAAGAAAGC CAGCTTCTTTACCCAATGTATCTGC 
COR47 At1g20440 TCTTCGAGCGATGAAGAAGG GTGTCCTGGGGACTTCTC 
IAR3 At1g51760 CGCCGTACTTTGAAGTTAACG ATCTTGTGGCCATGGAAGC 
JAZ1 At1g19180 GAATGCTAACCACCCTCAAGC TCAAAAAGCATGAAGATAGGAGC 
LEA7 At1g52690 GAAGCACACTTTAGGGCTTCG CCTCTGTGTCTCACGAGTAGTGG 
MYC2 At1g32640 TGAAGATAATTGGTTGGGACG CAACTCCAAATCCATCAACG 
ORA59 At1g06160 ATCAGGCGGCTTTCGCTTTG CTTCCGGAGAGATTCTTCAACGAC 
PAL1 At2g37040 GCAGTGCTACCGAAAGAAGTGG TGTTCGGGATAGCCGATGTTCC 
PDF1.2a At5g44420 TTTGCTTCCATCATCACCCTTA GCGTCGAAAGCAGCAAAGA 
PR1 At2g14610 GATGTGATCATGCATACACACG ACATCCTGCATATGATGCTCC 
PR4 At4g02520 GCGGCAAGTGTTTAAGGGTGAAG CGTTGCTGCATTGGTCCACTATTC 
RAP2.4c At2g22200 TAGACGTAGCACAATCTCAAACC CAGTGCCTTTGCCTTACG 
RAP2.4d At1g22190 CTCCAATTTCATACGGGTCG GTTTAGCCGCGGAAGTACC 
sAPX At4g08390 AGAATGGGATTAGATGACAAGGAC TCCTTCTTTCGTGTACTTCGT 
tAPX At1g77490 GCTAGTGCCACAGCAATAGAGGAG TGATCAGCTGGTGAAGGAGGTC 
VSP2 At5g24770 AGGACTTGCCCTAAAGAACGACAC TCGGTCTTCTCTGTTCCGTATCC 
XVE non plant AGATCACAGACACTTTGATCCACC GAGAGGATGAGGAGGAGCTGG 
YLS8 At5g08290 TTACTGTTTCGGTTGTTCTCCATTT CACTGAATCATGTTCGAAGCAAGT 
ZAT10 At1g27730 TCACAAGGCAAGCCACCGTAAG TTGTCGCCGACGAGGTTGAATG 
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Table S2: List of genes that were upregulated in rap2.4c and rap2.4d after one or three hours at 4 °C and that 
were also found to be upregulated in npr1 KO plants after 24 hours at 4 °C by Olate et al. (2018) (Figure 22). 
 

rap2.4c rap2.4d 
AT5G52640 AT3G55970 AT5G52640 AT3G57260 AT3G26210 
AT3G28210 AT4G11890 AT3G12580 AT4G14365 AT3G55970 
AT1G14870 AT4G18250 AT3G28210 AT1G24140 AT4G11890 
AT1G57630 AT4G23140 AT5G12020 AT1G35230 AT4G18250 
AT2G18690 AT4G23220 AT5G12030 AT1G47370 AT4G23140 
AT1G52690 AT4G34770 AT1G14870 AT1G66090 AT4G23150 
AT1G52890 AT5G10760 AT1G57630 AT1G74930 AT4G23220 
AT3G57260 AT5G22380 AT4G12400 AT1G75050 AT4G34770 
AT4G39670 AT5G24110 AT2G18690 AT2G17040 AT5G10760 
AT1G75050 AT5G24530 AT1G02920 AT2G18660 AT5G24110 
AT2G01170 AT5G27420 AT1G15010 AT2G20142 AT5G24530 
AT2G18660 AT5G49120 AT5G25250 AT2G25735 AT5G27420 
AT2G43570 AT5G66650 AT1G52690 AT2G34600 AT5G39670 
AT3G17520  AT1G76650 AT2G43570 AT5G59220 

    AT5G66650  
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Supplemental Figure 1: Maps of vectors that were used in this study. 
A: pCR8/GW/TOPO. T1 and T2: Transcription termination sequences; attL1 and attL2: Attachment sites 1 and 2 
for LR-reactions; pUC ori: Origin of replication. B: pMDC7. G10-90: G10-90 promoter; XVE: chimeric estrogen-
responsive transcription factor; HYG: Hygromycin B resistance gene; lexA: lexA -46 35S promoter; attR1 and 
attR2: Attachment sites 1 and 2 for LR-reactions; ccdB: Suicide gene. C: pGADT7. Ampr: Ampicillin resistance gene; 
LEU2: Leucine synthesis gene; PADH1: constitutive ADH1 promoter; SV40 NLS: SV40 nuclear localisation signal; 
GAL4 AD: GAL4 activation domain; MSC A and MSC B: Multiple cloning sites A and B; TADH1: ADH1 transcription 
termination signal. D: pGBKT7. TRP1: Tryptophan synthesis gene; GAL4 DNA-BD: GAL4 DNA binding domain; PT7: 
T7 promoter; TT7: T7 transcription terminator; Kanr: Kanamycin resistance gene. E: pOPINF. N-His-tag: N-terminal 
6x histidine-tag. MscI/KpnI: Restriction recognition sites. PChicken β-ACTIN: Constitutive β-ACTIN promoter from 
chicken. LEF2/ORF1629: Baculoviral recombination sites.  
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