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ABSTRACT. In these notes we provide a new proof of the existence of a hyper-
cyclic uniformly continuous semigroup of operators on any separable infinite-
dimensional Banach space that is very different from —and considerably shorter
than— the one recently given by Bermudez, Bonilla and Martinén. We also
show the existence of a strongly dense family of topologically mixing opera-
tors on every separable infinite-dimensional Fréchet space. This complements
recent results due to Bes and Chan. Moreover, we discuss the Hypercyclic-
ity Criterion for semigroups and we give an example of a separable infinite-
dimensional locally convex space which supports no supercyclic strongly con-
tinuous semigroup of operators.

1. INTRODUCTION

Assume that X is a topological vector space over the field K = R or C. Let
L(X) denote the space of all operators on X, that is, all continuous linear mappings
X — X. Then an operator T € L(X) is called hypercyclic whenever there exists
some z € X such that the orbit {T"z : n € N} of x under T is dense in X. In
this case the vector x is also called hypercyclic. The theory of hypercyclic operators
has recently been studied intensively. We refer to the comprehensive survey [28],
see also [24, Section 1], [30], [13] and [37]. More generally, a sequence (T},),>1 of
operators on X is called hypercyclic provided there exists some x € X such that
{T,z : n € N} is dense in X. Observe that X must be separable in order to
support such a sequence. We continue to refer to the set {T,,x : n € N} as the
orbit of  under (T},). A vector x with dense orbit under (T,,) is called hypercyclic
for (T,). This more general notion of hypercyclicity is also sometimes referred to
as universality, see [28, Section 1].

The Hypercyclicity Criterion, which gives sufficient conditions under which a
sequence (T},) is hypercyclic, has turned out to be extremely useful in applications
(see, for instance, [6], [24], [29] and [36]). Recall that an F-space is a topological
vector space whose topology is induced by a complete translation-invariant metric.
A Fréchet space is a locally convex F-space.

Definition 1.1. Let X be a separable F-space. A sequence (T},) C L(X) satisfies
the Hypercyclicity Criterion provided there exist dense subsets Xy and Y of X
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and an increasing sequence (ny) of positive integers satisfying the following two
conditions:

(i) Th,x — 0 (k — oo) for all z € Xo;
(ii) for any y € Yj there is a sequence (uy) in X such that uy, — 0 and T),, up, —
y (k — 00).

The proof that (T7,) is hypercyclic under these conditions is an application of
the Baire category theorem, see, for example, [28, Theorem 2]. A corresponding
concept can be defined for a single operator T' € L(X) by looking at its sequence
(T™) of iterates. Diverse versions of the criterion are stated in [33], [23, Remark
2.3], [27], [24, Corollary 1.4] and [10, Definition 1.2 and Remark 2.6]; we refer to
[41] and [4] for a comparison of these versions. For properties that are equivalent
to the Hypercyclicity Criterion see [10], [7], [34], [42] and [26].

In recent years there has been considerable interest in the hypercyclicity of semi-
groups of operators. A strongly continuous semigroup (see for instance [20, Chapter
VIII] or [22]) on a topological vector space X is a family (T(¢))i>0 C L(X) such
that

(i) T(O) =T and T(t + s) = T(t)T(s) for t,s > 0;

(ii) the map t € [0,00) — T'(t)z € X is continuous for every x € X. In other
words, the map ¢ — T'(t) € L(X) is continuous when L(X) is endowed with
the strong operator topology (SOT).

If, in addition, X is a normed space and the map ¢t € [0,00) — T(t) € L(X) is
continuous in the uniform operator topology then the family (7'(t));>¢ is called a
uniformly continuous semigroup. According to Desch, Schappacher and Webb [19],
a semigroup (T'(t)):>0 is called hypercyclic if there exists a hypercyclic vector, that
is, some = € X such that the orbit {T'(¢)z : t > 0} is dense in X; and it is called
chaotic if, in addition, there is a dense set of periodic points, that is, points x € X
such that T'(t)z = x for some ¢ > 0.

Oxtoby and Ulam [40, Theorem 6] have shown that for any hypercyclic strongly
continuous semigroup (T'(t)):>o on an F-space X there is some ¢ > 0 such that the
operator T'(t) is hypercyclic, and the set of these ¢ is residual in (0, c0). Conejero [16]
has recently improved the result by showing that, in fact, if x € X is a hypercyclic
vector for (T'(t));>o then there is a residual set A C (0, 00) such that x is hypercyclic
for each operator T'(t) with ¢ € A. In this context we recall the following, cf. [3,
Open Problem 1].

Problem 1.2. If (T'(t)):>0 is a hypercyclic strongly continuous semigroup on an
F-space X, are then all T'(¢),t > 0, hypercyclic operators?

In these notes we provide a proof of the existence of a hypercyclic uniformly
continuous semigroup of operators on any separable infinite-dimensional Banach
space, see Section 3. This proof is very different from the one recently given by
Bermudez, Bonilla and Martinén [3]. The more restrictive class of topologically
mixing semigroups will be considered in Section 4. An example of a separable
infinite-dimensional locally convex space that supports no supercyclic (hence no
hypercyclic) strongly continuous semigroup is furnished in Section 5. There we
also show that the analogue of Problem 1.2 for real supercyclic semigroups has a
negative solution. We begin, in Section 2, with a discussion of the Hypercyclicity
Criterion for semigroups of operators.
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2. THE HYPERCYCLICITY CRITERION FOR SEMIGROUPS OF OPERATORS

There is a natural analogue of Definition 1.1 for semigroups that was recently
introduced by El Mourchid [21] and Conejero and Peris [17], see also [19, Theorem
2.3).

Definition 2.1. Let X be a separable F-space. A strongly continuous semigroup
(T(t))e>0 on X satisfies the Hypercyclicity Criterion provided there exist dense
subsets Xy and Yy of X and an increasing sequence (t,,) C [0,00) satisfying the
following two conditions:
(i) T(tp)r = 0 (n — oo) for all z € Xo;
(ii) for any y € Yp there is a sequence (u,) in X such that w, — 0 and
T(tp)un = y (n — 00).

As in the discrete case one can show that a strongly continuous semigroup
(T'(t))e>0 is hypercyclic whenever it satisfies the Hypercyclicity Criterion, see [21].
However, this is also a consequence of the corresponding result for sequences (7),)
of operators and the following simple observation, cf. also Conejero [16, Chapter
6].

Observation 2.2. Let (T(t)):>0 be a strongly continuous semigroup of operators
on a separable F-space X. Then we have the following:

(a) (T'(t))i>0 is hypercyclic if and only if (T'(t,)) is a hypercyclic sequence for
some increasing sequence (t,) C [0,00).

(b) (T'(t))i>0 satisfies the Hypercyclicity Criterion if and only if the sequence
(T'(tn)) satisfies the Hypercyclicity Criterion for some increasing sequence (t,) C
[0, 00).

In this way certain results on hypercyclic sequences (7},) translate immediately
to semigroups. In particular we obtain the following characterization of the Hyper-
cyclicity Criterion as an application of Theorems 3.3 and 3.4 of our earlier investi-
gation [7]. We recall that a sequence (T5,) is called hereditarily hypercyclic if every
subsequence (T,,) is hypercyclic.

Theorem 2.3. Let (T(t))i>0 be a strongly continuous semigroup of operators on a
separable F-space X. Then the following assertions are equivalent:
(1) (T'(t))e>0 satisfies the Hypercyclicity Criterion.
(ii) (T'(t))t>0 has a hereditarily hypercyclic subsequence (T'(ty,)).
(ili) (T(t) @ T(t))e>0 is hypercyclic on X x X.
(iv) For every pair U,V of nonempty open subsets of X and every neighbourhood
W of zero there is some t > 0 with T(¢)(U)NW # 0 and T(t)(W)NV # 0.

The equivalence of (i) and (iii) was also obtained, independently and with a
different proof, by Conejero and Peris [17].

Grivaux [26] has shown that a hypercyclic operator on a Banach space satisfies
the Hypercyclicity Criterion if it has a dense set of points whose orbits are bounded.
By the Oxtoby-Ulam theorem mentioned in the Introduction the result carries over
to semigroups. We will give here a direct proof based on the idea of proof of [26].

Theorem 2.4. Let (T(t))i>0 be a hypercyclic strongly continuous semigroup of
operators on an F-space X. If there is a dense set of points x € X with bounded
orbits {T'(t)x : t > 0} then (T'(t))i>0 satisfies the Hypercyclicity Criterion.
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Proof. We claim that condition (iv) of Theorem 2.3 is satisfied. Let U,V be
nonempty open subsets of X and W a neighbourhood of zero. By assumption
there is a point 2y € U whose orbit is bounded, hence there is some p > 0 such
that pT'(t)xg € W for all ¢ > 0. On the other hand, by hypercyclicity of (T'(¢))
we have that pT(tg)W NV # 0 for some to > 0. Then, by continuity of T'(tq) and
the density of hypercyclic vectors there is a hypercyclic vector x € U such that
pT (to)x € W. By hypercyclicity of x there is some s > 0 such that T'(s)z € W and
pT(to)T(s)z € V. In addition we can approximate pT'(fp)z arbitrarily closely by
suitable T'(r)z. Hence there is some r > 0 such that T'(r)z € W and T'(s)T(r)z € V.
This shows that T(r)U NW # 0 and T'(r)W NV # 0, which proves the claim. O

In particular, every chaotic strongly continuous semigroup of operators on an
F-space X satisfies the Hypercyclicity Criterion.

As we mentioned in the Introduction it is an open problem if for a hypercyclic
strongly continuous semigroup (7'(t));>0 every operator T'(t), t > 0, hence every
sequence (T'(nt)), is hypercyclic. If, instead, we ask for the hypercyclicity of any
subsequence (T'(t,)) with ¢, — oo and sup,,>1(tn+1 — t) < oo then the property
turns out to be equivalent to the Hypercyclicity Criterion. This follows from the
recent solution of the Bounded Steps Problem, see [42] and [26].

Theorem 2.5. Let (T(t));>0 be a strongly continuous semigroup of operators on
a separable F-space X. Then (T(t,)) is hypercyclic for any increasing sequence
(tn) with t, — 00 and sup,s (tn4+1 — tn) < 00 if and only if (T'(t))i>0 satisfies the
Hypercyclicity Criterion.

Proof. We assume that (T'(t));>o satisfies the Hypercyclicity Criterion with respect
to the sequence (1,,) C [0,00). Let (¢,) be an increasing sequence with ¢, — oo and
sup,,>1(tn+1 — tn) < 0o. Then there are M > 0, m,, € N and §,, > 0 with 6,, < M
such that 7,, = t,,, — ,,n > 1. Hence we have that T(t,, ) = T(6,)T(7,)z for
all z € X. Without loss of generality we may assume that §,, converges to some
0 € [0, M]. This easily implies that the sequence (T'(¢,)) satisfies the Hypercyclic-
ity Criterion and hence is hypercyclic. We need only observe that, by pointwise
continuity, the family (T'(¢))o<t<n is equicontinuous so that T'(0y)x, — T(0)z if
xn — x, and, by hypercyclicity of (T'(t)):>0, T'(0) has dense range so that T'(6)(Y)
is dense in X whenever Y C X is dense.

Conversely, the hypothesis implies in particular that (T (m,,)) is hypercyclic for
any strictly increasing sequence (m,,) of positive integers with bounded differences.
The solution of the Bounded Steps Problem [42, Theorem 2.3] shows that the
operator T'(1) satisfies the Hypercyclicity Criterion, hence so does (T'(t))i>0. O

Remark 2.6. In this context we might note that, trivially, there is no version
of Theorem 2.5 for sequences of operators, even if they are commuting. To see
this, let .S be an operator that satisfies the Hypercyclicity Criterion and define, for
n>1, To,—1 = S™ and Ty, = I, the identity operator. Then (T;,) satisfies the
Hypercyclicity Criterion but (7%,,) is not hypercyclic.

3. EXISTENCE OF HYPERCYCLIC SEMIGROUPS

In the setting of separable infinite-dimensional Banach spaces Rolewicz [43]
had posed the problem if every such space supports a hypercyclic operator T'. The
problem was solved in the affirmative by Ansari [1] and the first author [5]; see
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also [14]. The operator T' can be constructed to be a compact perturbation of the
identity I, that is T'= I + K, where K is a compact operator. In addition, T can
be selected so that it satisfies the Hypercyclicity Criterion, cf. [35, p. 530].

Bermiidez, Bonilla and Martinén [3, Theorem 2.4] have recently established the
existence of a hypercyclic uniformly continuous semigroup of operators on any sep-
arable infinite-dimensional Banach space in the case K = C. Their proof, which is
based on results due to Desch, Schappacher and Webb [19], Martinez-Giménez and
Peris [36], and Ovsepian and Pelczynski [39], seems to work also for real Banach
spaces. We shall obtain here the same result with a proof that is quite different
from (and considerably shorter than) that of [3].

Theorem 3.1. FEvery separable infinite-dimensional Banach space X supports a
uniformly continuous semigroup (T(t))i>o0 satisfying the Hypercyclicity Criterion.
In particular, (T'(t))t>0 s hypercyclic.

Proof. We first select an operator S = I + K € L(X) satisfying the Hypercyclicity
Criterion such that K is compact. At this point we distinguish the cases K = C
and K = R.

Assume that K = C. Then by a result due to Chan and Shapiro [15, p. 1446] we
have that the spectrum of K is o(K) = {0}, so o(S) = {1}. Therefore the origin
belongs to the unbounded connected component of the complement of (), hence
S has a logarithm in the Banach algebra L(X) (see [44, Theorem 10.30]), that is,
there is an operator A € L(X) such that

oo An
exp A = Z P S.

n=0
Let us define T'(t) := exp(tA) (¢t > 0), which is clearly a uniformly continuous
semigroup of operators on X. But if we take ¢, = n (n € N) then the sequence
(T'(tn)) = (S™) satisfies the Hypercyclicity Criterion, hence so does (T'(t))i>0 by
Observation 2.2. N

As for the case K = R, let us consider the complexification X = X + ¢X of

X and the complexification S of S, that is, §(x +1y) = Sz + iSy. Then X
is a complex Banach space if we endow it with, for instance, the Taylor norm
lx+iy||- = supg<i<an || cost—ysint|, and for R € L(X) we have that the operator
norms of R and of its complexification R satisfy | R|| = ||R| (see for instance [38]).
From Corollary 2.8 of [10] we have that S satisfies the Hypercyclicity Criterion,
so it is hypercyclic. Since the constructions in [1] and [5] work equally when we
replace K by any AK, A # 0, we may assume that ||K|| = ||K|| < 1. At this point we
combine Dunford’s symbolic calculus (see for instance [44]) with complexification.
Consider the operator

e Sy
n=1

(0"

(K)™ is a well-defined member of L(X) and equals A.
oo (=™ n
n=1 n Z

The operator > °°

n=1 n

But the principal branch ¢ of the logarithm of 14z satisfies p(z) = )

on the open unit disk of C and, trivially, exp(¢(z)) = 1+ 2. Therefore exp(A) =
I+ K = §, that is, > °° W — S If we apply this equality to the vectors of

n=0 n!

the form z + i0 of X and take into account that (g)” = A" for all n then we get
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that exp A = 3.°° A7 = S, When we now define T'(t) := exp(tA) (t > 0) the

n=0 n!
conclusion follows as in the complex case. ([

Remarks 3.2. (a) The operator A such that T(t) = exp(tA) obtained in the
preceding proof is the infinitesimal generator of (T'(t));>o. In fact, a semigroup of
operators on a Banach space X is uniformly continuous if and only if it has the
form exp(tA) for some A € L(X), cf. [20, Chapter VIII] or [22]. Of course, in the
first part of the proof we could have defined the operator A explicitly, exactly as in
the second part.

(b) In [3, Theorem 3.3] it is proved that there are separable infinite-dimensional
Banach spaces that admit no chaotic strongly continuous semigroups. This is anal-
ogous to a negative result on chaotic operators due to Bonet, Martinez-Giménez
and Peris [12].

(c) Bonet and Peris [14] were able to show that every separable infinite-dimensio-
nal Fréchet space supports a hypercyclic operator. Conejero [16] has recently proved
that each such space, different from the space w = KV of all scalar sequences,
also admits a hypercyclic (and even mixing, see Section 4) strongly continuous
semigroup, while in the special case of KV there is no hypercyclic semigroup of the
form T'(t) = exp(tA),t > 0, for some A € L(w).

Solving a problem of Halperin, Kitai and Rosenthal, Grivaux [25] has shown that
every linearly independent sequence of vectors in a separable infinite-dimensional
Banach space is contained in the orbit of the first vector under some operator. Since
Grivaux constructs such an operator in the form I + K, where K is compact, the
proof of Theorem 3.1 immediately gives the following.

Theorem 3.3. Let (z)n>0 be a linearly independent sequence of vectors in a
separable infinite-dimensional Banach space X. Then there exists a uniformly con-
tinuous semigroup (T(t))i>0 on X such that each x,,n > 1, is contained in the
orbit of xy under (T'(t))i>0.

4. TOPOLOGICALLY MIXING OPERATORS ON FRECHET SPACES

During the preparation of an earlier version of this paper we were kindly
informed by A. Bonilla that in a recent joint work with Bermidez, Conejero and
Peris [2, Theorem 2.4] it was shown that on every separable infinite-dimensional
Banach space there exists a uniformly continuous semigroup of operators (T'(t)):>0
that is not only hypercyclic but also topologically mixing. (In fact, such a semigroup
can even be chosen to be topologically mixing in the right half-plane, see [2] for
details.)

An operator T' € L(X) on a separable F-space X is said to be topologically
mixing if for any pair of nonempty open subsets U, V' of X there exists N € N such
that T"(U) NV # @ for all n > N. It is well known that T is hypercyclic if and
only if it is topologically transitive in the sense of Birkhoff, that is, if for any pair
of nonempty open subsets U, V of X there exists N € N such that TV (U)NV # 0
(see [28]). Thus every topologically mixing operator is hypercyclic. A semigroup
(T'(t))+>0 of operators on X is said to be topologically mizing when for any pair of
nonempty open subsets U, V of X there exists tg > 0 such that T(¢)(U) NV # )
for all ¢ > ty. It is easy to see that if (T'(t));>0 is topologically mixing then every
single operator T'(t) (¢ > 0) is topologically mixing, hence hypercyclic, from which
it is trivial that (T'(t)):>0 is hypercyclic as semigroup.
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Hence the mentioned result of [2] improves [3, Theorem 2.4]. One also derives
that every separable infinite-dimensional Banach space supports a topologically
mixing operator. This has also been obtained, independently, by S. Grivaux [26,
Theorem 2.6]. We point out that there are Banach spaces (for instance, the space
I, of scalar sequences with absolutely summable p-power, where 1 < p < co) that
support hypercyclic operators which are not topologically mixing, see [18] and [26].

We will show here that every separable infinite-dimensional Fréchet space X
admits a topologically mixing operator. In fact, using recent ideas of Beés and
Chan, we even obtain that the set of such operators is SOT-dense in L(X).

Bés and Chan had proved [8, Theorem 2] that the set of hypercyclic operators on
L(X) is not only nonempty (see [14]) but even SOT-dense. Then they realized |9,
Corollary 6] that the proof could be considerably simplified by using the following
result that is essentially due to Hadwin, Nordgren, Radjavi and Rosenthal ([31],
see also [9, Theorem 1 and the note following it]).

Lemma 4.1. Let X be an infinite-dimensional locally convez space, and let T €
L(X). Then the following statements are equivalent:
(i) The set of conjugates {ST S~ : S invertible} of T is SOT-dense in L(X).
(ii) For all n € N, there exist vectors x1,...,T, in X so that the set
{z1,...,2n,T21,..., Ty} is linearly independent.

We will employ the lemma to prove the main result of this section. As can be
observed its proof is independent of the mentioned result of Bermidez et al. [2,
Theorem 2.4].

Theorem 4.2. Let X be a separable infinite-dimensional Fréchet space. Then the
class M of surjective topologically mixing operators on X is SOT-dense in L(X),
in particular nonempty.

Proof. Tt is clear that the class M is invariant under conjugation. On the other
hand, if T" is topologically mixing then it is hypercyclic, so condition (ii) in Lemma
4.1 is fulfilled; indeed, pick a hypercyclic vector x for T" and choose r1 = x, x5 =
T?z,...,x, = T? 2z for each n € N. Thus, it is enough to exhibit a surjective
topologically mixing operator 7" on X.

In fact, such operators have already been constructed by Bonet and Peris [14,
Theorem 1]. If X = w, then the backward shift B, given by B(zy) = (zx+1),
is surjective, and it is topologically mixing: by the first part of the proof of [14,
Theorem 1] it satisfies Criterion 3.1 of [2], which also holds for F-spaces.

For X # w the proof of Theorem 1 in [14] constructs a surjective hypercyclic
operator 7" on X. In addition, the operator T : 13 — 1y defined there is topologically
mixing by [26, Lemma 2.3], hence so is T as follows from [2, Lemma 2.2], which
also holds for Fréchet spaces. (I

By [2, Theorem 3.5], which also holds for Fréchet spaces, a strongly continu-
ous semigroup (T'(t));>o is topologically mixing if and only if some T'(¢),¢ > 0,
is topologically mixing. Hence, the existence of topologically mixing operators
on separable infinite-dimensional Fréchet spaces other than KV also follows from
Conejero’s result mentioned in Remark 3.2(c). Conversely, we note the following.

Remark 4.3. In the case of separable infinite-dimensional Banach spaces the con-
struction in the proof of Theorem 4.2 can be used to obtain a new proof of the
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existence of topologically mixing uniformly continuous semigroups. It suffices to
use the procedure of the proof of Theorem 3.1 and to apply [2, Theorem 3.5].

5. NON-EXISTENCE OF HYPERCYCLIC SEMIGROUPS

It is well-known that no operator on a finite-dimensional topological vector
space X is hypercyclic, see [43, p. 17]. But even on a separable infinite-dimensional
topological vector space the family of hypercyclic operators may be empty. This can
happen, for instance, in the class of complete LB-spaces, that is, complete inductive
limits of Banach spaces. In fact, the second author [28, Remark 4(a)] showed that
the countable direct sum ¢ = @,y K of copies of the scalar field equipped with
the natural inductive topology does not support any hypercyclic operators. The
same result was also obtained by Bonet and Peris [14, Proposition 6], who even
show that no operator on ¢ can be supercyclic. Recall that an operator T' € L(X)
is supercyclic if there is a vector x € X —called supercyclic for T— such that its
projective orbit {A\T"z : A € K, n > 1} is dense in X. It is easy to extend this
notion from the discrete to the continuous case: We say that a strongly continuous
semigroup of operators (T'(t))¢>0 on X is supercyclic whenever there is some vector
x € X such that its projective orbit {A\T'(¢t)x : A € K, t > 0} is dense in X. The
following result shows that the earlier negative result also holds for semigroups.

Theorem 5.1. There is no supercyclic strongly continuous semigroup of operators
on the space .

Proof. Suppose that (T'(t));>0 is a strongly continuous semigroup of operators on
¢ having some supercyclic vector x € ¢. Then the projective orbit {\T'(t)x : A €
K, t > 0} is dense in . Since the set {A\T'(0)z : A € K} = {Az : A € K} is
nowhere dense we have that span{T'(t)z : ¢ > 0} is a dense subspace of ¢. But
every subspace of ¢ is closed because ¢ carries the finest locally convex topology.
Consequently

(1) o =span{T(t)x : t > 0}.

In particular, there are finitely many scalars ay, ..., a, with a,, # 0 and positive
numbers 0 < t; < --- < t,,, such that x = Z;”:I a;T(t;)z. Hence, since T(0)z = z,
there are scalars b, ..., b, _1 such that

m—1
(2) T(tm)z =Y _ b;T(t))z,
j=
where tg := 0.
We now claim that
(3) p=span{T(t)x: 0 <t <tp}.
According to (1) it is enough to show that
4) T(u)z € span{T(t)x : 0 <t <t}
for all w > 0. This is evident for u € (0,%,,]. Let 0 < h < A, where A = t,,, —t,,—1 >
0. Then, by (2),
m—1
T(tm + h)x = T(W)T (tm)x = > bT(t; + h)w € span {T(t): 0 <t < by},
§=0
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hence (4) also holds for v € (0, t,, + A].
Moreover, the above implies that

T(A)span{T(t)x: 0 <t <tp} Cspan{T(t+A)x: 0 <t <tp}
Cspan{T(t)x: 0 <t <tp}.

Thus, span {T'(t)x : 0 <t <t} is invariant under T'(A). An induction procedure
shows that (4) holds for all u > 0, hence (3).

Now, since (T'(t))¢>0 is strongly continuous and the interval [0,¢,,] is compact
the set {T'(t)x : 0 <t <t,} is compact, hence bounded in . Since ¢ is the strict
inductive limit of the spaces E, = {(z1,22,...) € ¢ : z; =0 for all j > n},n >1,
the set {T'(t)x : 0 <t <t} is in fact contained in some step E,, see [32, p. 161].
In view of (3) this implies that ¢ = E,,, which is absurd. This contradiction proves
the theorem. (]

Remark 5.2. In contrast, by Conejero [16] there do exist strongly continuous
semigroups (T'(t)):>0 on ¢ that are topologically transitive, that is, for any pair of
nonempty open subsets U, V of ¢ there exists ¢t > 0 such that T()(U) NV # 0.
The analogous result for operators is due to Bonet, Frerick, Peris and Wengenroth
[11].

Theorem 5.1 would follow directly from the corresponding result for operators
if a suitable analogue of the Oxtoby-Ulam theorem mentioned in the Introduction
was true. Thus we pose the following problem.

Problem 5.3. If (T'(t));>0 is a supercyclic (hypercyclic) strongly continuous semi-
group on a complete LB-space does it follow that for some ¢ > 0 the operator T'(¢)
is supercyclic (hypercyclic)?

We remark that, it is not even clear if the Oxtoby-Ulam theorem holds for
supercyclic operators on F-spaces.

To end these notes we give an example to show that, in the larger class of (real)
supercyclic semigroups, Problem 1.2 has a negative solution.

Example 5.4. There is a real supercyclic uniformly continuous semigroup (7'(¢)):>0
on Hilbert space such that some operator T'(t),t > 0, is not supercyclic. Such a
semigroup is given by T'(t) = S(t) @ R(t),t > 0, where (S(t));>0 is a topologically
mixing uniformly continuous semigroup on real Hilbert space H, see Remark 4.3,
and (R(t));>0 is the semigroup on R? given by the matrices

R(t) = (COS 21t —sin 27Tt) '

sin27wt  cos2mnt
We first show that the operator T'({y) is supercyclic whenever to > 0 is irrational.
This will then imply that (T(t)):>0 is a supercyclic semigroup. The supercyclicity
of T(tp), in turn, follows once we have shown that, for any nonempty open subsets
U,V of H and U, V of R? there are A € R and n € N such that

(5) AT (t)" (U U)N (Ve V)40,
see [28, Theorem 1]. Indeed, we can choose p,o > 0 such that pﬁ NS # 0 and

oV NS # 0, where S denotes the unit sphere in R?. Now, since (S(t)):>0 is
topologically mixing there is some N € N such that

(6) S(to)"(2U)NV #0 foralln> N.
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Moreover, since tg is irrational, there are ny,no € N with no > ny + N such that

hence

R(to)™ ()€ pUNS and R(to)" (1) e oV NS,

LR(to)" ()€U and LR(to)™ ™ (LR(to)" (})) € V.

This implies that

LR(to)™> ™ (U) NV # 0.

o

By (6) we also have that

2S(to)" "™ (U)NV #0,

so that (5) is satisfied with A = £ and n = ny —ny.
On the other hand, the operator T'(1) is clearly not supercyclic because R(1) = I.

Acknowledgement. We are grateful to Antonio Bonilla for bringing to our atten-
tion the interesting paper [2]. In addition we wish to thank Antonio Bonilla and
Alfredo Peris for helpful discussions.
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