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Abstract

Given p ≥ 1, we denote by Cp the class of all Banach spaces X
satisfying the equality Kp(Y,X) = Πd

p(Y,X) for every Banach space Y ,
Kp (respectively, Πd

p) being the operator ideal of p-compact operators
(respectively, of operators with p-summing adjoint). If X belongs
to Cp, a bounded set A ⊂ X is relatively p-compact if and only if
the evaluation map U∗

A : X∗ −→ �∞(A) is p-summing. We obtain
p-compactness criteria valid for Banach spaces in Cp.
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1 Introduction

By a well known characterization due to Grothendieck [11], a subset A of a
Banach space X is relatively compact if and only if there exists (xn) in c0(X)
(the space of norm-null sequences in X) such that A ⊂ {∑n anxn :

∑
n |an| ≤

1}. Several authors have dealt with stronger forms of compactness studying
sets sitting inside the convex hulls of special types of null sequences. For
instance, it was observed in [20] (see also [5]) that if one considers, instead of
c0(X), the space of q-summable sequences �q(X), for some fixed q ≥ 1, then
this stronger form of compactness characterizes the Reinov’s approximation
property of order p, 0 < p < 1. This latter form of compactness was recently
further strengthened by Sinha and Karn [21] as follows. Let 1 ≤ p ≤ ∞ and
let p′ be the conjugate index of p (i.e., 1/p + 1/p′ = 1). The p-convex hull of
a sequence (xn) ∈ �p(X) is defined as p-co (xn) = {∑n anxn :

∑
n |an|p′ ≤ 1}

(sup |an| ≤ 1 if p = 1). A set A ⊂ X is said to be relatively p-compact if there
exists (xn) ∈ �p(X) ((xn) ∈ c0(X) if p = ∞) such that A ⊂ p-co (xn). This
nice notion has provoked the interest of several authors (see, for instance,
[2], [6], [8] and [14]), whose contributions have made possible a deeper ac-
knowledge of p-compactness in arbitrary Banach spaces. Anyway, there is no
much information or examples of relative p-compact sets in concrete Banach
spaces.

In [8], it is proved that a bounded subset A of an arbitrary Banach
space X is relatively p-compact if and only if the corresponding evalua-
tion map U∗

A : x∗ ∈ X∗ 	−→ (〈x∗, a〉)a∈A ∈ �∞(A) is p-nuclear ([8, Proposi-
tion 3.5]). However, for a wide class, say Cp, of Banach spaces, the relatively
p-compactness of any bounded set A occurs whenever U∗

A is just p-summing.
For instance, reflexive spaces or separable dual spaces belong to Cp for all
p ≥ 1. In Section 2, a characterization of relatively p-compact sets in Banach
spaces belonging to Cp is given; as an application, we obtain a characteriza-
tion of p-compact sets in �1. Section 3 is devoted mainly to show some ways
to produce relatively p-compact sets in Banach spaces not belonging to Cp.

A Banach space X will be regarded as a subspace of its bidual X∗∗ under
the canonical embedding iX : X → X∗∗. We denote the closed unit ball of
X by BX . For Banach spaces X and Y , the Banach space of all bounded
linear operators from X to Y is denoted by L(X, Y ). If A is a Banach ideal,
then Ad denotes its dual ideal, that is, Ad(X, Y ) = {T ∈ L(X, Y ) : T ∗ ∈
A(Y ∗, X∗)}. We deal with the following operator ideals: Np− p-nuclear
operators, QNp− quasi p-nuclear operators, Ip− p-integral operators and Πp−
p-summing operators. We refer to Pietsch’s book [18] for operator ideals (see
also [9] by Diestel, Jarchow, and Tonge for common operator ideals as Np

and Πp, and [17] by Persson and Pietsch for QNp).

As usual, the space of all weakly p-summable sequences (respectively, p-
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summable sequences) in X is denoted by �w
p (X) (respectively, �p(X)) endowed

with its norm

‖(xn)‖w
p = sup

x∗∈BX∗

(∑
n

|〈x∗, xn〉|p
)1/p

.

⎛⎝respectively, ‖(xn)‖p =

(∑
n

‖xn‖p

)1/p
⎞⎠ .

Relying on the notion of p-compactness, the notion of p-compact operator is
defined in an obvious way (see [21]): an operator T ∈ L(X, Y ) is said to be
p-compact if T (BX) is relatively p-compact in Y . The space of all p-compact
operators from X into Y is denoted by Kp(X, Y ). It is shown in [21] that
Kp is an operator ideal. We list some properties related to p-compactness:

• If 1 ≤ q ≤ p ≤ ∞, every relatively q-compact set is relatively p-
compact.

• An operator T belongs to Kp(X, Y ) (respectively, QNp(X, Y )) if and
only T ∗ belongs to QNp(Y

∗, X∗) (respectively, Kp(Y
∗, X∗)) [8, Corol-

lary 3.4 and Proposition 3.8].

2 p-Compactness and p-summing evaluation

maps

A bounded subset A of a Banach space X is relatively p-compact if and only
if the corresponding evaluation map U∗

A : x∗ ∈ X∗ 	−→ (〈x∗, a〉)a∈A ∈ �∞(A)
is (quasi) p-nuclear [8, Proposition 3.5]. Nevertheless, for a wide class of
Banach spaces, the relative p-compactness of a set is characterized just by
the p-summability of its evaluation map. For the time being, let us focus our
attention on this type of spaces.

Definition 2.1. Let 1 ≤ p < ∞. A Banach space X belongs to the class
Cp if for every bounded subset A of X, A is relatively p-compact if and only
if the evaluation map U∗

A : x∗ ∈ X∗ 	−→ (〈x∗, a〉)a∈A ∈ �∞(A) is p-summing.

Recall that Kp(Y, X) ⊂ Πd
p(Y, X) [21, Proposition 5.3]. Related to this,

the following are reformulations of the definition of the class Cp.

Proposition 2.1. Let 1 ≤ p < ∞. The following statements are equivalent
for a Banach space X:

a) X ∈ Cp.

b) Kp(Y, X) = Πd
p(Y, X) for every Banach space Y .
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c) Kp(�1(Γ), X) = Πd
p(�1(Γ), X) for any set Γ.

d) Kp(�1, X) = Πd
p(�1, X).

Proof. a)⇒b) For a given Banach space Y , consider T ∈ Πd
p(Y, X) and put

A := T (BY ). Since ‖U∗
Ax∗‖∞ = ‖T ∗x∗‖, we have that U∗

A is p-summing so,
by hypothesis, A = T (BY ) is relatively p-compact.

b)⇒c) and c)⇒d) are obvious.
d)⇒a) Suppose A ⊂ X is a bounded set such that U∗

A is p-summing.
To see that A is relatively p-compact, it suffices to show that each count-
ably subset of A is relatively p-compact. So consider {xn} ⊂ A and define
J : (αn) ∈ �1 	−→ J(αn) ∈ �1(A), where J(αn)(x) = αn if x = xn and
J(αn)(x) = 0 otherwise. From d), it follows that UA ◦ J : �1 −→ X is p-
compact. Thus, {xn} = {UA ◦ J(en)} is relatively p-compact.

Remark 2.2. Since �∞(Γ) is an injective space, Πd
p may be replaced with

Id
p in c) and d) of the above proposition ([9, Corollary 5.7]). In the same

direction, Kp may be replaced with Nd
p in the mentioned statements since

Kp(�1(Γ), X) = Nd
p(�1(Γ), X) for every Banach space X ([8, Proposition 3.8]

and [17, Theorem 38]). In particular, we have that X belongs to Cp if and
only if Nd

p(�1, X) = Id
p(�1, X).

The preceding remark reveals that the equality Np(Y, Z) = Ip(Y, Z) be-
comes of great use to provide examples of Banach spaces belonging to Cp.

Proposition 2.2. Let X be a Banach space and 1 ≤ p < ∞. Then

1. If X∗∗ has the Radon–Nikodym property then X ∈ Cp. In particular,
every reflexive Banach space belongs to Cp.

2. If X∗∗ ∈ Cp then X ∈ Cp.

3. c0, �∞ /∈ Cp.

4. If μ is a finite measure, then L1(μ) /∈ Cp.

Proof. According to [1, Proposition 1.1], we have that Np(X
∗, �∞(A)) =

Ip(X
∗, �∞(A)) whenever X∗∗ has the Radon–Nykodim property.

To see 2, consider A ⊂ X such that U∗
A ∈ Πp(X

∗, �∞(A)), that is,(
N∑

n=1

|〈x∗
n, xn〉|p

)1/p

≤ πp(U
∗
A) sup

x∈BX

(
N∑

n=1

|〈x∗
n, x〉|p

)1/p

(1)

for all finite subsets {x1, . . . , xN} in A and {x∗
1, . . . , x∗

N} in X∗. It suffices
to show that iX(A) is relatively p-compact in X∗∗ ([8, Corollary 3.6]). Given
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finite subsets {x1, . . . , xN} in A and {x∗∗∗
1 , . . . , x∗∗∗

N } in X∗∗∗, we have from
(1) (

N∑
n=1

|〈x∗∗∗
n , iX(xn)〉|p

)1/p

=

(
N∑

n=1

|〈i∗X(x∗∗∗
n ), xn〉|p

)1/p

≤ πp(U
∗
A) sup

x∈BX

(
N∑

n=1

|〈i∗X(x∗∗∗
n ), x〉|p

)1/p

≤ πp(U
∗
A) sup

x∗∗∈B∗∗
X

(
N∑

n=1

|〈x∗∗∗
n , x∗∗〉|p

)1/p

It follows from the above reasoning that the evaluation map of iX(A) is p-
summing and, by hypothesis, iX(A) is relatively p-compact in X∗∗.

Grothendieck’s Theorem ensures that the natural embedding i : �1 −→ c0

has p-summing adjoint since i∗ factors through �2. So, if c0 ∈ Cp then i ∈
Kp(�1, c0) (Proposition 2.1) which is a contradiction because i is not even
compact. Finally, 2 guarantees that �∞ does not belong to Cp.

Finally, the formal identity i1 : L∞(μ) −→ L1(μ) is 1-integral, so i∗1 is
[9, Theorem 5.15]. Then, i1 is p-summing for all p ≥ 1. Nevertheless, i1 is
not p-compact for any p ≥ 1 (in fact, it is not even compact). In view of
Proposition 2.1b, L1(μ) /∈ Cp.

By definition, a 2-compact set A in X = �2 is that for which there exists a
2-summable sequence (xn) in X such that A ⊂ {∑n αnxn : (αn) ∈ B�2}. The
sequence (xn) yields the Hilbert–Schmidt operator φ : en ∈ �2 	−→ xn ∈ X
and we have A ⊂ φ(B�2). This idea establishes a way to obtain p-compact
sets (1 ≤ p ≤ 2) in Hilbert spaces:

Corollary 2.3. Let X be a Hilbert space and 1 ≤ p ≤ 2. A subset A of X
is relatively p-compact if and only if there exists a Hilbert–Schmidt operator
φ : �2 −→ X such that A ⊂ φ(B�2).

Proof. Since X∗ has cotype 2, it suffices to deal with p = 2 ([19, Proposi-
tion 3.6]). Suppose A ⊂ X is such that A ⊂ φ(B�2) for a given Hilbert–
Schmidt operator φ : �2 −→ X. Now, φ∗ ∈ Π2(X

∗, �2) [9, Theorem 4.10]
and, by Proposition 2.1, φ ∈ K2(�2, X). So A ⊂ φ(B�2) must be relatively
2-compact.

In order to show that �1(Γ) ∈ Cp for any set Γ, we need the following

Lemma 2.4. Let Y and Z be Banach spaces. If T : Y −→ Z∗ is a weakly
compact operator and R := T ∗

|Z , then R∗∗ = T ∗.
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Proof. Let z∗∗0 ∈ BZ∗∗ and choose a net (zδ)δ in BZ such that

z∗∗0 = σ(Z∗∗, Z∗)- lim
δ

zδ.

Since T ∗ is σ(Z∗∗, Z∗)-σ(Y ∗, Y ∗∗)-continuous, we have

T ∗z∗∗0 = σ(Y ∗, Y ∗∗)- lim
δ

T ∗zδ = σ(Y ∗, Y ∗∗)- lim
δ

Rzδ.

On the other hand, since R = T ∗
|Z is also a weakly compact operator, it follows

that R∗∗(Z∗∗) ⊂ Y ∗ and R∗∗ is σ(Z∗∗, Z∗)-σ(Y ∗, Y ∗∗)-continuous. Hence

R∗∗z∗∗0 = σ(Y ∗, Y ∗∗)- lim
δ

R∗∗zδ = σ(Y ∗, Y ∗∗)- lim
δ

RzδT
∗z∗∗0 .

Corollary 2.5. Every separable dual space belongs to Cp.

Proof. Let X = Z∗ be a separable Banach space. It suffices to show that
Id
p(�1, X) ⊂ Nd

p(�1, X) (Remark 2.2). Consider T : �1 −→ X such that T ∗ ∈
Ip(X

∗, �∞). Now, R = T ∗
|Z is also p-integral and, according to [16, Theorem 5],

p-nuclear. From this and Lemma 2.4, we have R∗∗ = T ∗ is p-nuclear.

Arguing as in the proof of d)⇒a) in Proposition 2.1, Corollary 2.5 yields

Corollary 2.6. �1(Γ) ∈ Cp for any set Γ.

Now, we deal with the problem of characterizing relatively p-compact sets
in �1. A necessary condition for a bounded subset A ⊂ �1 to be relatively
p-compact is that U∗

A maps the weakly p-summable sequence (ek) in �∞ to a
p-summable sequence in �∞(A). In this case, given a = (a(k)) ∈ A we have

|a(k)| = |〈a, ek〉| ≤ sup
a∈A

|〈a, ek〉| = ‖U∗
Aek‖.

In other words, if A ⊂ �1 is relatively p-compact then there exists γ =
(γ(k)) ∈ �p such that |a(k)| ≤ γ(k) for all k ∈ N and a ∈ A. Of course, the

converse is not true when p > 1: if an = (1/n, n). . ., 1/n, 0, . . . ), the sequence
(an) is “dominated” by γ = (1/k) but it is not even relatively compact.

Corollary 2.7. A bounded subset A ⊂ �1 is relatively 1-compact if and
only if it is order bounded.

Proof. Suppose that A ⊂ �1 is order bounded. In view of [9, Theorem 5.19],
UA is 1-integral, so U∗

A is. In particular, U∗
A is 1-summing and, according to

Corollary 2.6, A is relatively 1-compact.
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The criterion of p-compactness in �1 (p > 1) will need the following result
that characterizes bounded sets with p-summing evaluation map. Recall
that a sequence (xn) in X is strongly p-summable if

∑
n |〈x∗

n, xn〉| < ∞ for
all (x∗

n) ∈ �w
p′(X

∗) ([7]). This notion has been extended and studied later by
several authors in a natural way: (xn) ⊂ X is said to be (p, q)-summing if∑

n |〈x∗
n, xn〉|p < ∞ for all (x∗

n) ∈ �w
q (X∗) (see, for instance, [3], [4] and [12]).

Theorem 2.8. Let X be a Banach space and p ≥ 1. The following state-
ments are equivalent for a bounded set A ⊂ X:

a) The evaluation map U∗
A : X∗ −→ �∞(A) is p-summing.

b) For all (xn) ∈ A� and β = (βn) ∈ �p′ (β ∈ c0 if p = 1), the operator
φ : �p −→ X defined by φ(en) = βnxn is nuclear.

c) For all (xn) ∈ A� and β = (βn) ∈ �p′ (β ∈ c0 if p = 1), the sequence
(βnxn) is strongly p′-summable.

d) For all (xn) ∈ A�, the sequence (xn) is (p, p)-summing.

Proof. a)⇒b) Fixed (xn) ∈ A� and β = (βn) ∈ �p′, consider the operators

Dβ : �p −→ �1

(αn) 	−→ (βnαn)
P : �∞(A) −→ �∞

ξ 	−→ (ξ(xn))

The adjoint of φ factors as follows:

X∗

U∗
A

��

φ∗
�� �p′

�∞(A)
P

�� �∞

D∗
β

��

It is easy to check that D∗
β =

∑
n βne∗n ⊗ en where (en) and (e∗n) denote the

unit vector basis of �p′ and �1, respectively. Thus, Dβ is p′-nuclear and, since
U∗

A is p-summing, we conclude that φ∗ = D∗
β ◦ P ◦ U∗

A ∈ N1(X
∗, �p′) ([17,

Theorem 48]). According to [10, Theorem VIII.3.7], φ is a nuclear operator.
b)⇒c) According to [3, Theorem 2], the space I1(�p, X) is isometrically

isomorphic to the space of all strongly p′-summable sequences in X and the
isometry is given by φ ∈ I1(�p, X) 	−→ (φen). Now, c) is concluded since
every nuclear operator is, in particular, integral.

c)⇒d) It is straightforward.
d)⇒a) By contradiction, suppose U∗

A is not p-summing. Then, for each
k ∈ N there exist sequences (xn,k)n ∈ A� and (x∗

n,k)n ∈ B�w
p (X∗) such that∑

n |〈x∗
n,k, xn,k〉|p ≥ k2p. If x ∈ X,∑

k

∑
n

∣∣∣∣〈 1

k2
x∗

n,k, x〉
∣∣∣∣p ≤∑

k

1

k2p
,
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that is to say, (k−2x∗
n,k)n,k is weakly p-summable in X∗. Nevertheless,

∑
k

∑
n

∣∣∣∣〈 1

k2
x∗

n,k, xn,k〉
∣∣∣∣p ≥∑

k

1

k2p
k2p = ∞

in contradiction to d).

Given a nuclear operator φ : �p −→ �1, let us denote (σn(k))k = φ(en).
Then φ∗ is also nuclear and, in particular, 1-summing. Hence,

∞ >
∑

k

‖φ∗(e∗k)‖p′ =
∑

k

(∑
n

|σn(k)|p′
)1/p′

(2)

where (ek)
∗ denotes the canonical vector sequence in �∞. Conversely, if

the matrix (σn(k))n,k verifies (2), then φ admits the nuclear representation∑
n(σn(k))k ⊗ ek.

Corollary 2.9. Let p > 1. A bounded subset A ⊂ �1 is relatively p-compact
if and only if ∑

k

(∑
n

|βnxn(k)|p′
)1/p′

< ∞

for all (xn) ∈ A� and β = (βn) ∈ �p′.

3 Final notes

In Proposition 2.2, we have mentioned that neither c0 nor �∞ belong to Cp.
Anyway, we have the following way to generate 2-compact sets in c0: if A ⊂ �2

is relatively compact, then A is relatively 2-compact as a subset of c0. In fact,
the identity map from �2 to c0 has 1-summing (hence, 2-summing) adjoint,
so that operator maps relatively compact sets in �2 to relatively 2-compact
sets in c0 [8, Theorem 3.14]. This example inspires the following lemma:

Lemma 3.1. Let X be a L∞-space and 1 ≤ p ≤ 2. Then A ⊂ X is
relatively p-compact if and only if there exist a relatively compact set K ⊂ �2

and an operator φ : �2 −→ X such that A ⊂ φ(K).

Proof. The dual space X∗ is a L1-space. Hence, X∗ has cotype 2, so it suffices
to deal with p = 2 ([19, Proposition 3.6]). If A ⊂ X is relatively 2-compact,
there exists (xn) ∈ �2(X) such that A ⊂ 2-co (xn). Choose (αn) ↘ 0 so that
(α−1

n xn) remains to be 2-summable. Now consider the operators D : (en) ∈
�2 	−→ (αnen) ∈ �2 and φ : en ∈ �2 	−→ (α−1

n xn) ∈ X. It is clear that
A ⊂ φ(K), K being the relatively compact set D(B�2). Conversely, suppose
A ⊂ X is such that there exist a relatively compact set K ⊂ �2 and an
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operator φ : �2 −→ X verifying A ⊂ φ(K). According to [9, Theorem 3.1], φ∗

is 2-summing, so φ map relatively compact sets in �2 to relatively 2-compact
sets in X [8, Theorem 3.14].

Given an absolutely convex and weakly compact set B ⊂ X, span(B) is
denoted by XB. This space is normed by the Minkowski’s functional of B:

ρB(x) = inf{t > 0: x ∈ tB}.

It is well known that (XB, ρB) is complete and B is its closed unit ball. The
canonical inclusion map from XB into X is denoted by jB.

Proposition 3.1. Let X be a L∞-space and 1 ≤ p ≤ 2. Then A ⊂ X
is relatively p-compact if and only there exists (xn) ∈ �w

2 (X) such that the
following conditions are satisfied:

1. A ⊂ B := 2-co (xn);

2. A is relatively compact in XB.

Proof. As in the previous proof, it suffices to deal with the case p = 2. If
A ⊂ X is relatively 2-compact, Lemma 3.1 guarantees the existence of a
relatively compact set K ⊂ �2 and φ : �2 −→ X such that A ⊂ φ(K). Put
xn = φ(en) and and B := 2-co (xn). To prove that A is relatively compact in
XB, let us consider the quotient map Q : �2 −→ �2/Ker φ and the operator

φ̂ : �2/Ker φ −→ X defined so that φ̂(Q(βn)) = φ(βn) for every (βn) ∈ �2.
Then, the following diagram is conmutative:

�2

Q
��

φ �� X

�2/Ker φ
�φ

�����������

On the other side, it is not difficult to see that the operator I : �2/Kerφ −→
XB defined by I([(αn)]) =

∑
n αnxn is an isomorphism between Banach

spaces satisfying φ̂ = jB ◦ I:

�2

Q
��

φ �� X

�2/Ker φ
�φ

������������

I
�� XB

jB

��

Now, since jB(A) = A ⊂ φ(K), it is clear that φ̂
(
I−1(A)

) ⊂ φ̂
(
Q(K)

)
. From

the injectivity of φ̂, it follows that A ⊂ I
(
Q(K)

)
.
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Conversely, assume that A ⊂ X verifies (1) and (2). If φ is the operator
induced by the sequence (xn), then the isomorphism I : �2/Kerφ −→ XB

defined as above enables to see XB as a Hilbert space. According to [22,
Theorem 10.8], j∗B is 2-summing and, since A is relatively compact in XB,
A = jB(A) is relatively 2-compact in X [8, Theorem 3.14].

As an application, we show a relatively compact set in c0 inside of the
2-convex hull of (ek) but failing to be relatively 2-compact (here, (ek) denotes
the unit vector basis of c0).

Example 3.2. For each n ∈ N, put xn =

(
1√
n

, n). . .,
1√
n

, 0 . . .

)
∈ c0 and

consider A = {xn : n ∈ N} ⊂ B := 2-co (ek). Then A is relatively compact;
in fact,

lim
n

‖xn‖∞ = 0. (3)

In order to see that A is not relatively ρB-compact, we first prove that
ρB(xn) = 1 for all n ∈ N. By contradiction, assume that there exists n ∈ N

so that ρB(xn) < 1 and choose t ∈ [ρB(xn), 1) such that xn ∈ tB. Then

xn =
∑

n

tαkek

for a fixed (αk)k ∈ B�2. Thus 〈x∗, xn〉 =
∑

n tαk〈x∗, ek〉 for all x∗ ∈ �1. In
particular,

tαk =
1√
n

if k ≤ n

tαk = 0 if k > n.

From this

1 ≥
∑

k

α2
k =

1

t2
,

which is a contradiction to t < 1. Now, if A is relatively ρB-compact, then
there exists a subsequence (xk(n)) of (xn) ρB-convergent to x �= 0. Since jB

is continuous, (xk(n)) is ‖ · ‖∞-convergent to x �= 0, a contradiction to (3).

In the previous section, we have also showed that L1(μ) fails to be in Cp if
p ≥ 1. Anyway, a criterion of 1-compactness in L1(μ) can be deduced using
the characterization of nuclear operators into L1(μ) due to Grothendieck (see
[10, p. 258]):

Proposition 3.2. A bounded subset A of L1(μ) is relatively 1-compact if
and only if

1. A is order bounded, i.e., there exist g ∈ L1(μ) such that |f | ≤ g μ-
almost everywhere for each f ∈ A, and
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2. A is equimeasurable, i.e., given ε > 0, there is a measurable set Ωε such
that μ(Ω\Ωε) < ε and {fχΩε : f ∈ A} is relatively compact in L∞(μ).

Proof. If A ⊂ L1(μ) is relatively 1-compact, then U∗
A is nuclear. According

to [10, Theorem VIII.3.7], UA is itself nuclear and this leads up to con-
clude that A ⊂ UA(B�1(A)) is order bounded and equimeasurable [10, p. 258].
Conversely, let us see that U∗

A is nuclear whenever A is order bounded and
equimeasurable in L1(μ). For if, notice that UA(B�1(A)) ⊂ co (A) is also or-
der bounded and equimeasurable (here, co (A) denotes the closed absolutely
convex hull of A). Then, UA is nuclear, as well as U∗

A.

Since operators from any L∞-space to any space with cotype 2 are 2-
summing [9, Theorem 11.14], we can reproduce the proof of Lemma 3.1 to
obtain 2-compact sets in L1-spaces.

Proposition 3.3. Let X be a L1-space. Then A ⊂ X is relatively 2-compact
if and only if there exist a relatively compact set K ⊂ �2 and an operator
φ : �2 −→ X such that A ⊂ φ(K).

We finish with some results concerning to the equality L(Y, �q) = Kp(Y, �q).
The following is a consequence of the equality Kp(Y, �1) = Πd

p(Y, �1) and [9,
Theorem 11.14].

Proposition 3.4. Let Y be a Banach space such that Y ∗ has cotype s ≥ 2.
We have:

1. If s = 2, then L(Y, �1) = K2(Y, �1).

2. If s > 2, then L(Y, �1) = Kp(Y, �1) for every p > s.

Corollary 3.3. Let p ≥ 2. We have:

1. L(�r, �1) = K2(�r, �1) for every r ≥ 2.

2. If p > 2, L(�r, �1) = Kp(�r, �1) for every r > p′.

Remark 3.4. Notice that L(�r, �1) �= K2(�r, �1) whenever r < 2. For if,
consider an operator T ∈ L(c0, �r′) failing to be r′-summing [13, Theorem 7].
Thus, T ∗ /∈ Πd

2(�r, �1) = K2(�r, �1). If p > 2, the same argument can be used
to explain that L(�r, �1) �= Kp(�r, �1) whenever r ≤ p′.

If p < 2, the equality L(Y, �1) = Kp(Y, �1) implies that Y is finite dimen-
sional. Indeed, if L(Y, �1) = Πd

p(Y, �1) holds, it follows that the identity map
on Y ∗ is (p, 1)-summing, a contradiction to [9, Theorem 10.5].

Now we make clear that, if the rank space is �q with q > 1, then, for each
p ≥ 1, there are bounded operators failing to be p-compact.

Proposition 3.5. Let p ≥ 1 and q > 1. If L(Y, �q) = Kp(Y, �q) then Y is
finite dimensional.
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Proof. Since �q ∈ Cp, then L(Y, �q) = Πd
p(Y, �q). According to [15, The-

orem 1.3], L(�q′ , Y
∗) = Πp(�q′, Y

∗). This implies that Y ∗ must be finite
dimensional ([15, p. 22]).

Remark 3.5. The proof of Lemma 3.1 essentially works because L(�2, X) =
Πd

1(�2, X) if X is a L∞-space. If q > 1, the above result reveals that
L(�2, �q) �= Kp(�2, �q) = Πd

p(�2, �q). Thus, the procedure used to prove
Lemma 3.1 and Proposition 3.3 is not useful to obtain characterizations of
p-compact sets in �q (q > 1).
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