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Abstract

Given p > 1, we denote by C, the class of all Banach spaces X
satisfying the equality X, (Y, X) = HZ(Y, X) for every Banach space Y,
X, (respectively, Hg) being the operator ideal of p-compact operators
(respectively, of operators with p-summing adjoint). If X belongs
to €, a bounded set A C X is relatively p-compact if and only if
the evaluation map Uj: X* — /(. (A) is p-summing. We obtain
p-compactness criteria valid for Banach spaces in €.
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1 Introduction

By a well known characterization due to Grothendieck [11], a subset A of a
Banach space X is relatively compact if and only if there exists (x,,) in ¢(X)
(the space of norm-null sequences in X') such that A C {>_ a,z, : Y, |a,| <
1}. Several authors have dealt with stronger forms of compactness studying
sets sitting inside the convex hulls of special types of null sequences. For
instance, it was observed in [20] (see also [5]) that if one considers, instead of
co(X), the space of g-summable sequences £,(X), for some fixed ¢ > 1, then
this stronger form of compactness characterizes the Reinov’s approximation
property of order p, 0 < p < 1. This latter form of compactness was recently
further strengthened by Sinha and Karn [21] as follows. Let 1 < p < 0o and
let p’ be the conjugate index of p (i.e., 1/p+ 1/p’ = 1). The p-convex hull of
a sequence (z,,) € £,(X) is defined as p-co (z,) = {>_, anzn : >, lan|? < 1}
(supla,| < 1ifp=1). Aset A C X is said to be relatively p-compact if there
exists (z,) € £,(X) ((zn) € co(X) if p = 00) such that A C p-co(z,,). This
nice notion has provoked the interest of several authors (see, for instance,
2], [6], [8] and [14]), whose contributions have made possible a deeper ac-
knowledge of p-compactness in arbitrary Banach spaces. Anyway, there is no
much information or examples of relative p-compact sets in concrete Banach
spaces.

In [8], it is proved that a bounded subset A of an arbitrary Banach
space X is relatively p-compact if and only if the corresponding evalua-
tion map Uj: 2% € X* +— ((2%,a))sea € loo(A) is p-nuclear ([8, Proposi-
tion 3.5]). However, for a wide class, say C,, of Banach spaces, the relatively
p-compactness of any bounded set A occurs whenever U} is just p-summing.
For instance, reflexive spaces or separable dual spaces belong to C, for all
p > 1. In Section 2, a characterization of relatively p-compact sets in Banach
spaces belonging to C, is given; as an application, we obtain a characteriza-
tion of p-compact sets in ¢;. Section 3 is devoted mainly to show some ways
to produce relatively p-compact sets in Banach spaces not belonging to C,,.

A Banach space X will be regarded as a subspace of its bidual X** under
the canonical embedding ix: X — X*. We denote the closed unit ball of
X by Bx. For Banach spaces X and Y, the Banach space of all bounded
linear operators from X to Y is denoted by £L(X,Y"). If A is a Banach ideal,
then A? denotes its dual ideal, that is, AYX,Y) = {T € L(X,Y): T* €
A(Y*, X*)}. We deal with the following operator ideals: N,— p-nuclear
operators, QN,— quasi p-nuclear operators, J,— p-integral operators and 11,,—
p-summing operators. We refer to Pietsch’s book [18] for operator ideals (see
also [9] by Diestel, Jarchow, and Tonge for common operator ideals as N,
and II,, and [17] by Persson and Pietsch for QN,,).

As usual, the space of all weakly p-summable sequences (respectively, p-
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summable sequences) in X is denoted by £}/ (X) (respectively, £,(X)) endowed

with its norm
1/p
[(zn)[l, = sup (ZIW,%W’) :

QC*EBX*

1/p
respectively, ||(z,)|, = <Z ||Ian>

Relying on the notion of p-compactness, the notion of p-compact operator is
defined in an obvious way (see [21]): an operator 7' € L(X,Y) is said to be
p-compact if T'(By) is relatively p-compact in Y. The space of all p-compact
operators from X into Y is denoted by K,(X,Y’). It is shown in [21] that
X, is an operator ideal. We list some properties related to p-compactness:

o If 1 < g < p < oo, every relatively g-compact set is relatively p-
compact.

e An operator T belongs to X,(X,Y’) (respectively, QN,(X,Y)) if and
only 7™ belongs to QN,(Y™*, X*) (respectively, K,(Y™*, X*)) [8, Corol-
lary 3.4 and Proposition 3.8].

2 p-Compactness and p-summing evaluation
maps

A bounded subset A of a Banach space X is relatively p-compact if and only
if the corresponding evaluation map U} : 2* € X* —— ((2%,a))aeca € l(A)
is (quasi) p-nuclear [8, Proposition 3.5]. Nevertheless, for a wide class of
Banach spaces, the relative p-compactness of a set is characterized just by
the p-summability of its evaluation map. For the time being, let us focus our
attention on this type of spaces.

Definition 2.1. Let 1 < p < oo. A Banach space X belongs to the class
C, if for every bounded subset A of X, A is relatively p-compact if and only
if the evaluation map U} : z* € X* —— ((2*,a))aea € loo(A) is p-summing.

Recall that JC,(Y, X) C II4(Y, X) [21, Proposition 5.3]. Related to this,
the following are reformulations of the definition of the class C,.

Proposition 2.1. Let 1 < p < co. The following statements are equivalent
for a Banach space X:

a) X € C,.

b) K,(Y, X) = II(Y, X) for every Banach space Y.
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¢) Kp(61(T), X) = III(£1(T), X) for any set T.
d) K,(l1, X) = II(¢1, X).

Proof. a)=b) For a given Banach space Y, consider T' € Hg(Y, X) and put
A :=T(By). Since || Ujz*||c = ||T*z*||, we have that U} is p-summing so,
by hypothesis, A = T'(By) is relatively p-compact.

b)=-c) and ¢)=-d) are obvious.

d)=-a) Suppose A C X is a bounded set such that U} is p-summing.
To see that A is relatively p-compact, it suffices to show that each count-
ably subset of A is relatively p-compact. So consider {x,} C A and define
J: (an) € b — J(an) € 61(A), where J(ay,)(z) = a, if z = 2, and
J(ay)(x) = 0 otherwise. From d), it follows that Uy o J: ¢ — X is p-
compact. Thus, {z,} = {Ua o J(e,)} is relatively p-compact. O

Remark 2.2. Since {,(I") is an injective space, Hﬁ may be replaced with
J% in ¢) and d) of the above proposition ([9, Corollary 5.7]). In the same
direction, X, may be replaced with Ng in the mentioned statements since
Ko (T'), X) = N&(£1(I), X) for every Banach space X ([8, Proposition 3.8]
and [17, Theorem 38]). In particular, we have that X belongs to C, if and
only if NI(01, X) = J4(41, X).

The preceding remark reveals that the equality N, (Y, Z) = J,(Y, Z) be-
comes of great use to provide examples of Banach spaces belonging to C,.

Proposition 2.2. Let X be a Banach space and 1 < p < oo. Then

1. If X** has the Radon-Nikodym property then X € C,. In particular,
every reflexive Banach space belongs to C,.

2. If X** € €, then X € C,.
3. Co,goo ¢ C‘p.
4. If 11 is a finite measure, then L;(u) ¢ C,.

Proof. According to [1, Proposition 1.1], we have that N,(X*, ((A)) =
Jp(X*, loo(A)) whenever X** has the Radon-Nykodim property.
To see 2, consider A C X such that U} € IL,(X*, {,,(A)), that is,

N 1/p N 1/p
(Z |<x:;,.rn>|p> <m(U3) sup (Z |<x:;,x>|p) (1)

n=1

for all finite subsets {z1,...,zy} in A and {z,... 23} in X*. It suffices
to show that ix(A) is relatively p-compact in X** ([8, Corollary 3.6]). Given
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finite subsets {z1,...,zy} in A and {z7™,... 2§} in X**, we have from

(1)

<D »,,)”p (Zr >/

N 1/p
<m,(U}) sup (Z ) p)

z€Bx \ ,,

1/p
< mp(U}) sup (Z! T )

**EB**

It follows from the above reasoning that the evaluation map of ix(A) is p-
summing and, by hypothesis, ix(A) is relatively p-compact in X**.

Grothendieck’s Theorem ensures that the natural embedding i: ¢; — ¢g
has p-summing adjoint since ¢* factors through ¢s. So, if ¢y € C, then i €
XK, (€1, co) (Proposition 2.1) which is a contradiction because ¢ is not even
compact. Finally, 2 guarantees that /., does not belong to C,.

Finally, the formal identity iy: Loo(t) — Li(p) is l-integral, so 47 is
9, Theorem 5.15]. Then, iy is p-summing for all p > 1. Nevertheless, i, is
not p-compact for any p > 1 (in fact, it is not even compact). In view of
Proposition 2.1b, L;(p) ¢ C,. O

By definition, a 2-compact set A in X = /5 is that for which there exists a
2-summable sequence (x,,) in X such that A C {d> a,z,: (o) € By, }. The
sequence (x,) yields the Hilbert—-Schmidt operator ¢: e, € o — x,, € X
and we have A C ¢(By,). This idea establishes a way to obtain p-compact
sets (1 < p < 2) in Hilbert spaces:

Corollary 2.3. Let X be a Hilbert space and 1 < p < 2. A subset A of X
is relatively p-compact if and only if there exists a Hilbert—Schmidt operator
¢: Uy — X such that A C ¢(By,).

Proof. Since X* has cotype 2, it suffices to deal with p = 2 ([19, Proposi-
tion 3.6]). Suppose A C X is such that A C ¢(By,) for a given Hilbert—
Schmidt operator ¢: o — X. Now, ¢* € Ilo(X* ¢5) [9, Theorem 4.10]
and, by Proposition 2.1, ¢ € Ky(l2, X). So A C ¢(By,) must be relatively
2-compact. [

In order to show that ¢;(I") € €, for any set I', we need the following

Lemma 2.4. Let Y and Z be Banach spaces. If T: Y — Z* is a weakly
compact operator and R =17, then R™ =T".
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Proof. Let zi* € By« and choose a net (z5)s in By such that
2y =02, Z*)—lign 2s.
Since T* is o(Z**, Z*)-o(Y*, Y**)-continuous, we have
T 25" =o(Y, Y**)—lign T zs = o(Y*,Y™)- lign Rzs.

On the other hand, since R = T‘*Z is also a weakly compact operator, it follows
that R™(Z**) C Y* and R* is o(Z**, Z*)-o(Y™*, Y**)-continuous. Hence

R™zy" = o (Y™, Y™)- lign Rzs = o(Y",Y™)- lign RzsT 25",

Corollary 2.5. Every separable dual space belongs to C,.

Proof. Let X = Z* be a separable Banach space. It suffices to show that
J4(01, X) € N(£y, X) (Remark 2.2). Consider T': /1 — X such that T* €
J,(X* ls). Now, R = 17, is also p-integral and, according to [16, Theorem 5],
p-nuclear. From this and Lemma 2.4, we have R** = T™ is p-nuclear. U

Arguing as in the proof of d)=-a) in Proposition 2.1, Corollary 2.5 yields
Corollary 2.6. ¢;(I") € C, for any set I'.

Now, we deal with the problem of characterizing relatively p-compact sets
in /1. A necessary condition for a bounded subset A C /¢; to be relatively
p-compact is that U} maps the weakly p-summable sequence (e;) in £y, to a
p-summable sequence in ¢ (A). In this case, given a = (a(k)) € A we have

la(k)] = [{a, ex)| < Sggl(aa ex)| = [|U5exl|

In other words, if A C /¢, is relatively p-compact then there exists v =
(v(k)) € £, such that |a(k)| < v(k) for all k € N and a € A. Of course, the
converse is not true when p > 1: if a, = (1/n,.%.,1/n,0,...), the sequence
(a,) is “dominated” by v = (1/k) but it is not even relatively compact.

Corollary 2.7. A bounded subset A C /¢, is relatively 1-compact if and
only if it is order bounded.

Proof. Suppose that A C ¢ is order bounded. In view of [9, Theorem 5.19],
Uy is l-integral, so U} is. In particular, U} is 1-summing and, according to
Corollary 2.6, A is relatively 1-compact. O
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The criterion of p-compactness in ¢; (p > 1) will need the following result
that characterizes bounded sets with p-summing evaluation map. Recall
that a sequence (z,,) in X is strongly p-summable if )~ |(z}, x,)| < oo for
all (z;,) € £(X™*) ([7]). This notion has been extended and studied later by
several authors in a natural way: (z,) C X is said to be (p, q)-summing if
> o (T, m0) [P < o0 for all (x;,) € £7(X™) (see, for instance, [3], [4] and [12]).

Theorem 2.8. Let X be a Banach space and p > 1. The following state-
ments are equivalent for a bounded set A C X:

a) The evaluation map Uj: X* — ((A) is p-summing.

b) For all (x,) € AN and 8 = (8,) € £y (B € ¢ if p = 1), the operator
¢: 0, — X defined by ¢(e,) = B2, is nuclear.

c¢) For all (z,) € AY and 8 = (B,) € £y (B € o if p = 1), the sequence
(Bnzy) is strongly p/-summable.

d) For all (x,) € AN, the sequence (z,) is (p, p)-summing.
Proof. a)=b) Fixed (z,,) € A" and 8 = (83,) € {,, consider the operators

Dg: ¢, — 4 P: (o (A) — Iy

The adjoint of ¢ factors as follows:

*

X — Ep/

N
loo(A) =l

It is easy to check that Dj = > B.e; ® e, where (e,) and (e},) denote the
unit vector basis of ¢, and ¢, respectively. Thus, Ds is p’-nuclear and, since
U} is p-summing, we conclude that ¢* = Djo PoUj € Ny(X*,€y) ([17,
Theorem 48]). According to [10, Theorem VIIL.3.7], ¢ is a nuclear operator.

b)=-c) According to [3, Theorem 2], the space J;(¢,, X) is isometrically
isomorphic to the space of all strongly p’-summable sequences in X and the
isometry is given by ¢ € J1(¢,, X) — (¢e,). Now, c) is concluded since
every nuclear operator is, in particular, integral.

c)=d) It is straightforward.

d)=-a) By contradiction, suppose U} is not p-summing. Then, for each
k € N there exist sequences (znx)n € A" and (2} ), € Byw(x+) such that
> K iy T ) P > k. Ifz e X,

»s

1 *
<ﬁxn,k7 l‘>

P 1
S§ﬁ7
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that is to say, (k‘%;*%k)mk is weakly p-summable in X*. Nevertheless,
p 1 )
4P —
) 2D k=00
k n k

in contradiction to d). O

1 *
<ﬁ‘rn,k7 $n7k>

Given a nuclear operator ¢: £, — {1, let us denote (0, (k))r = ¢(en).
Then ¢* is also nuclear and, in particular, 1-summing. Hence,

1/p
o> S Dl = 3 (zwn(mw) o)

where (ex)* denotes the canonical vector sequence in /¢. Conversely, if
the matrix (0, (k)),, verifies (2), then ¢ admits the nuclear representation

Y on(on(k))k @ ex.

Corollary 2.9. Let p > 1. A bounded subset A C ¢ is relatively p-compact
if and only if

1/p’
> (zmnw) <oo

for all (z,,) € AY and 8 = (83,) € .

3 Final notes

In Proposition 2.2, we have mentioned that neither ¢y nor ¢, belong to C,.
Anyway, we have the following way to generate 2-compact sets in ¢q: if A C /5
is relatively compact, then A is relatively 2-compact as a subset of ¢q. In fact,
the identity map from ¢y to ¢y has 1-summing (hence, 2-summing) adjoint,
so that operator maps relatively compact sets in ¢y to relatively 2-compact
sets in ¢y [8, Theorem 3.14]. This example inspires the following lemma:

Lemma 3.1. Let X be a L-space and 1 < p < 2. Then A C X is
relatively p-compact if and only if there exist a relatively compact set K C /5
and an operator ¢: /o — X such that A C ¢(K).

Proof. The dual space X* is a L1-space. Hence, X™* has cotype 2, so it suffices
to deal with p = 2 ([19, Proposition 3.6]). If A C X is relatively 2-compact,
there exists (z,,) € lo(X) such that A C 2-co (z,,). Choose (a;,) \, 0 so that
(e, 'x,) remains to be 2-summable. Now consider the operators D: (e,) €
ly — (ane,) € by and ¢: e, € by — (a;'x,) € X. Tt is clear that
A C ¢(K), K being the relatively compact set D(By,). Conversely, suppose
A C X is such that there exist a relatively compact set K C ¢, and an



On p-compact sets in classical spaces 59

operator ¢: lo — X verifying A C ¢(K). According to [9, Theorem 3.1], ¢*
is 2-summing, so ¢ map relatively compact sets in /5 to relatively 2-compact
sets in X [8, Theorem 3.14]. O

Given an absolutely convex and weakly compact set B C X, span(B) is
denoted by Xpg. This space is normed by the Minkowski’s functional of B:

pp(x) =inf{t > 0: = € tB}.

It is well known that (Xp, pp) is complete and B is its closed unit ball. The
canonical inclusion map from Xp into X is denoted by jg.

Proposition 3.1. Let X be a L -space and 1 < p < 2. Then A C X
is relatively p-compact if and only there exists (z,) € £5(X) such that the
following conditions are satisfied:

1. AC B :=2-co(x,);
2. A is relatively compact in Xp.

Proof. As in the previous proof, it suffices to deal with the case p = 2. If
A C X is relatively 2-compact, Lemma 3.1 guarantees the existence of a
relatively compact set K C fy and ¢: {5 — X such that A C ¢(K). Put
x, = ¢(e,) and and B := 2-co (z,,). To prove that A is relatively compact in
Xp, let us consider the quotient map @: ¢ — ¢5/Ker ¢ and the operator
o ly/Ker ¢ — X defined so that a(Q(ﬁn)) = ¢(B,) for every (8,) € (s.
Then, the following diagram is conmutative:

l

| <

ly/Ker ¢

On the other side, it is not difficult to see that the operator I: ¢y /Ker p —
Xp defined by I([(ow,)]) = >, o, is an isomorphism between Banach

spaces satisfying ¢ = jgo I:

ly X

7

KQ/KGY¢I—>XB

Now, since jp(A) = A C ¢(K), it is clear that 5(171(14)) C g/g(Q(K)) From
the injectivity of ¢, it follows that A C I(Q(K)).
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Conversely, assume that A C X verifies (1) and (2). If ¢ is the operator
induced by the sequence (x,), then the isomorphism I: fy/Ker¢p — Xp
defined as above enables to see Xp as a Hilbert space. According to [22,
Theorem 10.8], j} is 2-summing and, since A is relatively compact in Xp,
A = jp(A) is relatively 2-compact in X [8, Theorem 3.14]. O

As an application, we show a relatively compact set in ¢y inside of the
2-convex hull of (ex) but failing to be relatively 2-compact (here, (ex) denotes
the unit vector basis of ¢).

n

1 1
— W, —,0... | € d
\/ﬁ’ ’\/ﬁ’ ) Cp an

consider A = {x,: n € N} C B :=2-co(eg). Then A is relatively compact;
in fact,

Ezample 3.2. For each n € N, put z,, =

lim ||z,]|e0 = 0. (3)

In order to see that A is not relatively pg-compact, we first prove that
pp(x,) =1 for all n € N. By contradiction, assume that there exists n € N
so that pp(z,) < 1 and choose t € [pp(x,), 1) such that z,, € tB. Then

T, = E tageg
n

for a fixed (ag)r € By,. Thus (2%, z,) = Y tay(z*, ey) for all z* € ¢;. In
particular,

tay, = ifk<n

5=

tay, =0 if £ > n.

1
12 ai=g
k

which is a contradiction to ¢ < 1. Now, if A is relatively pg-compact, then
there exists a subsequence (wy(n)) of (x,) pp-convergent to x # 0. Since jp
is continuous, (zy()) is || - [|s-convergent to & # 0, a contradiction to (3).

From this

In the previous section, we have also showed that L, (u) fails to be in C,, if
p > 1. Anyway, a criterion of 1-compactness in L;(u) can be deduced using
the characterization of nuclear operators into Ly (1) due to Grothendieck (see
[10, p. 258)):

Proposition 3.2. A bounded subset A of L;(u) is relatively 1-compact if
and only if

1. A is order bounded, i.e., there exist g € Li(u) such that |f| < g p-
almost everywhere for each f € A, and
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2. Ais equimeasurable, i.e., given € > 0, there is a measurable set (). such
that u(2\Q:) < € and {fXQE fe A} is relatively compact in Ly (p).

Proof. It A C Lyi(p) is relatively 1-compact, then U} is nuclear. According
o [10, Theorem VIIL.3.7], U, is itself nuclear and this leads up to con-
clude that A C Ua(By,(a)) is order bounded and equimeasurable [10, p. 258].
Conversely, let us see that U} is nuclear whenever A is order bounded and
equimeasurable in L;(p). For if, notice that Ua(By,a)) C co (A) is also or-
der bounded and equimeasurable (here, co (A) denotes the closed absolutely
convex hull of A). Then, Uy is nuclear, as well as Uj. O

Since operators from any L.-space to any space with cotype 2 are 2-
summing [9, Theorem 11.14], we can reproduce the proof of Lemma 3.1 to
obtain 2-compact sets in L;-spaces.

Proposition 3.3. Let X be a Li-space. Then A C X is relatively 2-compact
if and only if there exist a relatively compact set K C ¢, and an operator
¢: l5 — X such that A C ¢(K).

We finish with some results concerning to the equality L(Y l,) =XK,(Y, ¢,
The following is a consequence of the equality K, (Y, (1) = II4(Y,¢;) and [9
Theorem 11.14].

Proposition 3.4. Let Y be a Banach space such that Y* has cotype s > 2.
We have:

1. If s =2, then L(Y, ¢1) = Ko(Y, 41).

2. If s > 2, then L(Y, (1) = K, (Y, 41) for every p > s.
Corollary 3.3. Let p > 2. We have:

1. L(l., t) = Ky(l,, £q) for every r > 2.

2. Itp>2, L0, 0) =K, 4) for every r > p'.

Remark 3.4. Notice that L(¢,,0;) # Ko(l,,¢1) whenever r < 2. For if,
consider an operator T € L(cq, £,/) failing to be r’-summing [13, Theorem 7).
Thus, T* ¢ T4(¢,, 01) = Ka(L,, 7). If p > 2, the same argument can be used
to explain that L(¢,, () # K, (¢,, 1) whenever r < p'.

If p < 2, the equality L(Y, (1) = K,(Y, (1) implies that Y is finite dimen-
sional. Indeed, if L(Y, (1) = ITI4(Y, £1) holds, it follows that the identity map
on Y* is (p,1)-summing, a contradiction to [9, Theorem 10.5].

Now we make clear that, if the rank space is ¢, with ¢ > 1, then, for each
p > 1, there are bounded operators failing to be p-compact.

Proposition 3.5. Let p > 1 and ¢ > 1. If L(Y,{,) = K,(Y,{,) then Y is
finite dimensional.
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Proof. Since {;, € C,, then L(Y,{,) = I4(Y,{,). According to [15, The-
orem 1.3], L(¢,,Y*) = II,({y,Y*). This implies that Y* must be finite
dimensional ([15, p. 22]). O

Remark 3.5. The proof of Lemma 3.1 essentially works because £(l2, X) =
¢(ly, X) if X is a Lo-space. If ¢ > 1, the above result reveals that
L(ly, bg) # Ky(ly,lg) = II¥(L,£y). Thus, the procedure used to prove
Lemma 3.1 and Proposition 3.3 is not useful to obtain characterizations of
p-compact sets in £, (¢ > 1).
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