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STRONG EXTENSIONS FOR ¢-SUMMING
OPERATORS ACTING IN p-CONVEX BANACH
FUNCTION SPACES FOR 1<p<g

0. DELGADO AND E. A. SANCHEZ PEREZ

ABSTRACT. Let 1 < p < ¢ < oo and let X be a p-convex Ba-
nach function space over a o-finite measure u. We combine the
structure of the spaces LP(u) and L%(£) for constructing the new
space S )%p (£), where £ is a probability Radon measure on a certain
compact set associated to X. We show some of its properties, and
the relevant fact that every g-summing operator T defined on X
can be continuously (strongly) extended to S)%p (€). This result
turns out to be a mixture of the Pietsch and Maurey-Rosenthal
factorization theorems, which provide (strong) factorizations for
g-summing operators through L?-spaces when 1 < ¢ < p. Thus,
our result completes the picture, showing what happens in the
complementary case 1 < p < ¢, opening the door to the study of
the multilinear versions of g-summing operators also in these cases.

1. INTRODUCTION

Fix1 <p<gqg<ooandlet T: X — E be a Banach space valued
linear operator defined on a saturated order semi-continuous Banach
function space X related to a o-finite measure p. In this paper we prove
an extension theorem for 7" in the case when 7" is ¢-summing and X is
p-convex. In order to do this, we first define and analyze a new class
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of Banach function spaces denoted by S )q(p (&) which have some good
properties, mainly order continuity and p-convexity. The space S _%p(f )
is constructed by using the spaces LP(u) and L9(), where ¢ is a finite
positive Radon measure on a certain compact set associated to X.

Corollary states the desired extension for 7. Namely, if T is
g-summing and X is p-convex then 7" can be strongly extended contin-
uously to a space of the type S )q(p (€). Here we use the term “strongly”
for this extension to remark that the map carrying X into S )%p (&) is
actually injective; as the reader will notice (Proposition B.1), this is
one of the goals of our result. In order to develop our arguments, we
introduce a new geometric tool which we call the family of p-strongly ¢-
concave operators. The inclusion of X into Sy (§) turns out to belong
to this family, in particular, it is g-concave.

If T is g-summing then it is p-strongly g-concave (Proposition [G1I).
Actually, in Theorem [£.4] we show that in the case when X is p-convex,
T can be continuously extended to a space Sy (§) if and only if 7" is
p-strongly g-concave. This result can be understood as an extension of
some well-known relevant factorizations of the operator theory:

(I) Maurey-Rosenthal factorization theorem: If 7" is g-concave and X
is g-convex and order continuous, then 7T can be extended to a
weighted L%-space related to p, see for instance [3, Corollary 5].
Several generalizations and applications of the ideas behind this
fundamental factorization theorem have been recently obtained,
see [11, 2, [ 5] @].

(IT) Pietsch factorization theorem: If T'is g-summing then it factors
through a closed subspace of L9(), where ¢ is a probability Radon
measure on a certain compact set associated to X, see for instance
[6l, Theorem 2.13].

In Theorem [£.4] the extreme case p = ¢ gives a Maurey-Rosenthal
type factorization, while the other extreme case p = 1 gives a Pietsch
type factorization. We must say also that our generalization will allow
to face the problem of the factorization of several p-summing type
of multilinear operators from products of Banach function spaces —a
topic of current interest—, since it allows to understand factorization
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of g-summing operators from p-convex function lattices from a unified
point of view not depending on the order relation between p and gq.

As a consequence of Theorem [1.4] we also prove a kind of Kakutani
representation theorem (see for instance [7, Theorem 1.b.2]) through
the spaces S )q(p (&) for p-convex Banach function spaces which are p-
strongly g-concave (Corollary EL.H]).

2. PRELIMINARIES

Let (92,3, 1) be a o-finite measure space and denote by L°(u) the
space of all measurable real functions on €2, where functions which are
equal p-a.e. are identified. By a Banach function space (briefly B.f.s.)
we mean a Banach space X C L%(u) with norm || - ||x, such that if
feLn), g€ X and |f| < |g| prace. then f € X and [|f[|x < [lg]x.
In particular, X is a Banach lattice with the p-a.e. pointwise order, in
which the convergence in norm of a sequence implies the convergence
p-a.e. for some subsequence. A B.f.s. X is said to be saturated if there
exists no A € ¥ with u(A) > 0 such that fy4 =0 p-a.e. for all f € X
or equivalently, if X has a weak unit (i.e. g € X such that g > 0 p-a.e.).

Lemma 2.1. Let X be a saturated B.f.s. For every f € L°(u), there
exists (fn)n>1 C X such that 0 < f, T |f| p-a.e.

Proof. Consider a weak unit g € X and take g, = ng/(1 + ng). Note
that 0 < g, < ng p-a.e., so g, is a weak unit in X. Moreover, (g,)n>1
increases p-a.e. to the constant function equal to 1. Now, take f, =
Gl fIX{wea: |f|<ny- Since 0 < f,, < ng, p-a.e., we have that f, € X, and

fo T1f] p-a.e. O

The Kdthe dual of a B.f.s. X is the space X’ given by the functions
h € L°(u) such that [|hf|dp < oo for all f € X. If X is saturated
then X' is a saturated B.f.s. with norm ||h||x: = supscp, [ |hf|dp for
h € X'. Here, as usual, By denotes the closed unit ball of X. Each
function h € X’ defines a functional ((h) on X by (C(h), f) = [ hf dp
for all f € X. In fact, X’ is isometrically order isomorphic (via ¢) to a
closed subspace of the topological dual X* of X.

From now and on, a B.f.s. X will be assumed to be saturated. If for
every f, f, € X such that 0 < f, T f p-a.e. it follows that || f.|x T
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|| fllx, then X is said to be order semi-continuous. This is equivalent to
((X’) being a norming subspace of X, i.e. || f[|x = supjep,, [ 1fh|du
for all f € X. A B.fs. X is order continuous if for every f, f, € X
such that 0 < f, 1 f p-a.e., it follows that f, — f in norm. In this
case, X' can be identified with X™*.

For general issues related to B.f.s.” see [7], [§] and [I0, Ch.15] con-
sidering the function norm p defined as p(f) = ||f||x if f € X and
p(f) = oo in other case.

Let 1 < p < oco. A B.fis. X is said to be p-conver if there exists a
constant C' > 0 such that

()|, = o(Z ) ”

for every finite subset (f;)~, C X. In this case, MP(X) will denote
the smallest constant C' satisfying the above inequality. Note that
MP(X) > 1. A relevant fact is that every p-convex B.f.s. X has an
equivalent norm for which X is p-convex with constant MP?(X) = 1,
see [7, Proposition 1.d.8].

The p-th power of a B.f.s. X is the space defined as

Xp=A{f e L) : |fIV" € X},

endowed with the quasi-norm || f||x, = || |f|'/?|%. for f € X,. Note
that X, is always complete, see the proof of [8, Proposition 2.22]. If X
is p-convex with constant M?(X) = 1, from [3, Lemma 3|, || - ||x, is a
norm and so X, is a B.f.s. Note that X, is saturated if and only if X
is so. The same holds for the properties of being order continuous and

order semi-continuous.

3. THE SPACE Sg (&)

Let 1 <p < g < ooand let X be asaturated p-convex B.f.s. We can
assume without loss of generality that the p-convexity constant MP(X)
is equal to 1. Then, X, and (X,,) are saturated B.f.s.”. Consider the
topology o ((X,)’, X,) on (X,) defined by the elements of X,. Note
that the subset B&p), of all positive elements of the closed unit ball of
(X,)" is compact for this topology.
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Let ¢ be a finite positive Radon measure on B&p),. For f € L%(u),
consider the map ¢;: B&p), — [0, 00] defined by

os(h) = [ 17 dute))"”

for all h € B&p),. In the case when f € X, since |f|P € X,,, it follows
that ¢ is continuous and so measurable. For a general f € L°(u), by
Lemma 2T we can take a sequence (f,,)n,>1 C X such that 0 < f,, T |f|
p-a.e. Applying monotone convergence theorem, we have that ¢, 1 ¢

pointwise and so ¢ is measurable. Then, we can consider the integral
[ &p(h)dE(R) € [0, 00] and define the following space:
(Xp)!

54,(6) = {feLo(u): [ (| irepn) due) " agn) <oo}.

(Xp)!

Let us endow Sy (£) with the seminorm

1/q
75z, 0 = (/ (] \f(w)\ph(W)dM(W))q/pdg(h)>

(Xp)!
— 1/p
- H h— Hf|h| HLP(M) Lq(g).
In general, | - [lss () is not a norm. For instance, if ¢ is the Dirac
P

measure at some hg € B&p), such that A = {w € Q : ho(w) = 0}
satisfies u(A) > 0, taking f = gxa € X with ¢g being a weak unit of
X, we have that
1/p
fllsg, 0= (] lot)Pho(e) dute)) " =0
and

pfw e flw) #0}) = p(Anfw e Q: g(w) # 0}) = p(A) > 0.

Proposition 3.1. If the Radon measure £ satisfies

/B+ (/Ah(aJ) du(w)>q/pd§(h) =0 = p(A)=0 (3.1)

(Xp)!
then, S§ (§) is a saturated B.f.s. Moreover, Sy (§) is order continuous,
p-conver (with constant 1) and X C Sy (§) continuously.
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Proof. Tt is clear that if f € L%(u), g € Sy, (§) and |f[ < |g| p-a.e. then
f e 5x,(6) and [|fllsg ¢ < lgllsg - Let us see that || - [|sg () is a
norm. Suppose that Hf||s§p(§) =0andset 4, ={we Q: |f(w) > 1}
for every n > 1. Since x4, < n|f| and

q/
[ (] merant)™ dem = eallsy o < i1 =0
B(x)/ An

from (B.1]) we have that u(A,) = 0 and so
(e €9 f() £ 0}) = lim p(4) = 0.

Now we will see that S _%p(f ) is complete by showing that ) -, f, €
S;gp(g) whenever (f,,)n>1 C S;’(p(g) with C'=>_ ||anS§ () < 0o. First
let us prove that 3 - [fu| < co p-a.e. For every N,n > 1, taking

={weQ: 37 |fj(w)| > N}, since x4y < %Z?:l |fj], we have

that
/B . ( /A X ) du))"" dEn) = raylty o

C’q

q .

Sq

Note that, for N fixed, (AY),>; increases. Taking limit as n — oo and
applying twice the monotone convergence theorem, it follows that

/| / )" de() <

(Xp)’

Then,

/
[ D))" de(h) < fim =0
B(er ) Nn>1Up>1 AY N—oo N4
and so, from (B1]),

p({wea: Y lh@l=o})=u( N UAY) =0

n>1 N>1n>1
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Hence, » -, fu € L°(u). Again applying the monotone convergence
theorem, it follows that

f (LI

(X’ n>1

[ (] (i) he) dute)) den) =

(xp)! nzl

hiw) dn(w))"" de(h) <

lim (/Q (]Z: |fj(w)\)ph(w) d,u(W))q/pdg(h) -

n—oo | p+
n
lim || > 1]
n—oo
j=1

(Xp)!

q
% (©)

and thus > -, f, € S% (§).
Note that if f € X, for every h € B&p), we have that

/Q\f(w)\”h(W) dp(w) < P 1 12l oy < 11

and so

/B+ (/Q|f(w)|ph(w) du(w)>q/pd§(h) < IFI% € (B ).

(Xp)!

Then, X C S% (&) and [|fllsg ¢ < (Bl )" I fllx for all f € X. In
particular, S )%,, (&) is saturated, as a weak unit in X is a weak unit in
S2 (©).

Let us show that S¢ (£) is order continuous. Consider f, f, € Sy (€)
such that 0 < f,, 1 f p-a.e. Note that, since

a/p
/B&py (/Q|f(w)| h(w) du(w)> de(h) < oo,

there exists a &-measurable set B with & (B&p),\B) = 0 such that
Jo lf(@)|Ph(w) du(w) < oo for all h € B. Fixed h € B, we have that
|f — fulPh L 0 prae. and |f — fu[Ph < |f|Ph p-a.e. Then, applying
the dominated convergence theorem, [, |f(w)— fa(w)|Ph(w) dp(w) 1 0.
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Consider the measurable functions ¢, ¢, : B&p), — [0, 0o] given by

o(h) = /uwwmmwwom
out) = ([ 17) = fulPh@) du)"”

for all h € B&p),. It follows that ¢, | 0 £-a.e. and ¢, < ¢ £-a.e. Again
by the dominated convergence theorem, we obtain

If = fullsg ¢ = /+ dn(R)dE(R) 1 0.

B(Xp)’

Finally, let us see that Sy () is p-convex. Fix (f;)i; C S¥, (§) and
consider the measurable functions ¢, : B&p), — [0, 00] (for 1 § i <mn)
defined by

=mewmwww»
for all h € B&p),. Then,

(S0 T - [, (LS wemese) e

Bixpy
_ /+ (Z@ )q/pd§
Bixyy =1

a/p
< (X1
=1

Since ||¢i| pa/ne) = IIfill’;;p(o for all 1 <7 < n, we have that

Mé}mﬂw (Zﬂmwg)

O

Example 3.2. Take a weak unit ¢ € (X,)" and consider the Radon
measure £ as the Dirac measure at g. If A € 3 is such that

oaé%(émmwwﬁ“%w:(émmwwﬁ”

(Xp)!
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then, gxa = 0 p-a.e. and so, since g > 0 p-a.e., u(A) = 0. That is, £
satisfies (B.I). In this case, S§ () = LP(gdu) with equal norms, as

/B+ (/Q|f(uJ)|ph(w) du(w)>4/Pd§(h) - (/Q|f(w)|pg(w) d,u(w))q/p

(Xp)!

for all f € L°(p).

Ezxample 3.3. Write Q = U,,>19,, with (€2,,),>1 being a disjoint sequence
of measurable sets and take a sequence of strictly positive elements
(an)n>1 € €. Let us consider the Radon measure & = > _, Unlgye,.
on B&p),, where 0,4y, is the Dirac measure at gxq, Withj(] € (X,)
being a weak unit. Note that for every positive function ¢ € L°(¢), it
follows that fB&p)/ ¢pdE =37, -1 and(gxa,). If A € X is such that

o= [ ()" acm = o [

(Xp) n>1

o) du())""

Ny

then, [, g(w)du(w) =0 for all n > 1. Hence,

[adn) =% [ glw)dute) =0

n>1 7 AN

and so gxa = 0 p-a.e., from which p(A) = 0. That is, £ satisfies (B1]).
For every f € L°(u) we have that

J (e anten)"™ o -
(Xp)’
Zo‘n</ |f(w)|Pg(w) d,u(w)>q/p_

n>1 n

Then, the B.fs. S§ (§) can be described as the space of functions
f € Nu>1LP(gxa,dp) such that (Oérlz/q!|f||Lp(gXQndu))n>l € (7. Moreover,

1/q
17052 © = ( Szt @ I Wign, ) for all f € SE, ().

4. p-STRONGLY ¢-CONCAVE OPERATORS

Let 1 <p<g<ooandlet T: X — FE be a linear operator from a
saturated B.f.s. X into a Banach space E. Recall that T is said to be
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q-concave if there exists a constant C' > 0 such that

- 1/q - 1/q
(S ureg) " <ol ()
i=1 1=1
for every finite subset (f;)!.; C X. The smallest possible value of C' will
be denoted by M,(T"). For issues related to g-concavity see for instance
[7, Ch.1.d]. We introduce a little stronger notion than g-concavity: T
will be called p-strongly q-concave if there exists C' > 0 such that

(Bi)i>1€Ber

(i) < s [(Siaar)”|.
i=1 =1

for every finite subset (f;)", C X, where 1 < r < oo is such that
111

r = 5 — 5 In this case, My (T) will denote the smallest constant
C satisfying the above inequality. Noting that % and % are conjugate
exponents, it is clear that every p-strongly ¢-concave operator is ¢-
concave and so continuous, and moreover ||T'|| < M (T) < M, ,(T).
As usual, we will say that X is p-strongly q-concave if the identity map
I: X — X is so, and in this case, we denote M, ,(X) = M, ,(I).

Our goal is to get a continuous extension of 7" to a space of the type
S )q(p (&) in the case when T is p-strongly g-concave and X is p-convex.
To this end we will need to describe the supremum on the right-hand

side of the p-strongly g-concave inequality in terms of the Kothe dual
of X,,.

Lemma 4.1. If X is p-convexr and order semi-continuous then

o (S )
=1

sup
(Bi)i>1€Br

(S isr)”
i=1

for every finite subset (f;)f, C X, where 1 < r < oo is such that

% = % — % and B&p), is the subset of all positive elements of the closed

unit ball Bx,y of (X,)".
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Proof. Given (f;)~, C X, since X,, is order semi-continuous, as X is
so, and (£2/P)* = ("/P | as » is the conjugate exponent of %, we have that

(Z aufl) "

p
sup
(Bi)€Byr

= sup
(Bi)EBr

— s s / Zw W] dy

(Bi)EB,r hEB(X )

; B

= sup su /Z |ﬁz.fz|phd,u

(Bi)EByr hEB(X y i=1

= o S [l

hGBEFX ) (Bi)eByr ;7

- sp  swp / fiPhdy

heB&,y(azeB

q/p r/q
= s (S ([ 1arnan) )"
1

+
heBly ), P

r/p =1

O

In the following remark, from Lemma [4.1] we obtain easily an exam-
ple of p-strongly ¢-concave operator.

Remark 4.2. Suppose that X is p-convex and order semi-continuous.
For every finite positive Radon measure £ on B&p), satisfying (B.1), it
follows that the inclusion map i: X — § )%p (€) is p-strongly g-concave.
Indeed, for each (f;)", C X, we have that

Sl = X[ (ferne) i

(xp)

< 685, sw 3 ([ IR ae)”

(X )/ i=1
and so, Lemma [l gives the conclusion for M, (i) < (B (X, )1/ ‘

Now let us prove our main result.
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Theorem 4.3. If T is p-strongly q-concave and X 1is p-convexr and

order semi-continuous, then there exists a probability Radon measure &
on B&p), satisfying B1) such that

TNl < ]\41,,(1(T)</B+ (/Q|f(w)|ph(w) d#(w)>q/pd§(h)>1/q
(Xp)’

(4.1)
forall f € X.

Proof. Recall that the stated topology on (X,) is o((X,)", X,), the
one which is defined by the elements of X,. For each finite subset
(with possibly repeated elements) M = (f;)7, C X, consider the map
Yart By, — [0,00) defined by war(h) = S0, (fo [filP hdp)™” for
h e B&p),. Note that i), attains its supremum as it is continuous on a

compact set, so there exists hy; € B&p), such that sup, .5+ Yu(h) =
(Xp)!

¥ar(har). Then, the p-strongly g-concavity of T, together with Lemma
4.1, gives

i”T(m”% < Mpy(T)" sup i([llmphdu)w
)

+ X
heB(XP)I =1

IN

M, (T)" sup Yu(h
heB(*Xp),

= My (T)" i (har)- (4.2)

Consider now the continuous map ¢y, : B&p), — R defined by

Ou(h) = My o(T)" has(h) — Z 1T (f)ll

for h € B&p),. Take B = {¢p : M is a finite subset of X'}. Since for
every M = (fi)m,, M' = (f))5, C X and 0 < t < 1, it follows that
téar + (1= D)par = dapr where M" = (1Y f)™ U (1 — t)Vaf)* |
we have that B is convex. Denote by C (B&p),) the space of continuous
real functions on B&p),, endowed with the supremum norm, and by A
the open convex subset {¢ € C(B/y )+ ¢(h) <0 forall h € B )}
By (42]) we have that AN B = ). From the Hahn-Banach separation
theorem, there exist & € C(B&p),)* and a € R such that (£, ¢) < a <

(&, 0p) for all @ € A and ¢y € B. Since every negative constant
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function is in A, it follows that 0 < «. Even more, o = 0 as the
constant function equal to 0 is just ¢g0y € B. It is routine to see
that (£, ¢) > 0 whenever ¢ € C(B&p),) is such that ¢(h) > 0 for all
h € B&p),. Then, ¢ is a positive linear functional on C(B&p),) and
so it can be interpreted as a finite positive Radon measure on B&p),.
Hence, we have that
0< [ oude
Bly

for all finite subset M C X. Dividing by & (B&p),), we can suppose
that & is a probability measure. Then, for M = {f} with f € X, we
obtain that

TN < Mpa(0) [ ([ 1 Phe) du)”" deih)

(Xp)!

and so (1)) holds. O

Actually, Theorem says that we can find a probability Radon
measure & on B&p), such that T: X — FE is continuous when X is
considered with the norm of the space S )%p(f). In the next result we
will see how to extend 7" continuously to Sy, (§). Even more, we will
show that this extension is possible if and only if T is p-strongly g¢-

concave.

Theorem 4.4. Suppose that X is p-convex and order semi-continuous.

The following statements are equivalent:

(a) T is p-strongly q-concave.

(b) There exists a probability Radon measure & on B&p), satisfying
B.I) such that T can be extended continuously to Sy (§), i.e. there
1s a factorization for T as

X E

S2(6)

where T is a continuous linear operator and i is the inclusion map.

If (a)-(b) holds, then M, (T) = ||T||.
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Proof. (a) = (b) From Theorem [I.3] there is a probability Radon mea-
sure £ on B&p), satisfying (B.1) such that ||T'(f)||r < Mp7q(T)||f||S§p(§)
forall f € X. Given 0 < f € S)%p (£), from Lemma 2T], we can take
(fu)n>1 € X such that 0 < f,, T f p-a.e. Then, since S;J(p(g) is order
continuous, we have that f, — f in S¢ (£) and so (T(fn)),~, con-
verges to some element e of E. Define T(f) = e. Note that 7" is well
defined, since if (g,)n>1 C X is such that 0 < g,, 1 f p-a.e., then

1T (fn) = T(gu)lle < My o(T)[ fo = gnllsg &) = O-

Moreover,

ITHlle = lim [T()]z
Mp,q(T) nh_{go ||anS§p(§)
My o(T)[[ Fllsg o)-

IN

For a general [ € S)%p(é), writing f = fT — f~ where f™ and f~ are
the positive and negative parts of f respectively, we define T (f) =
T(f*)=T(f). Then, T Sy, (§) — L is a continuous linear operator
extending 7. Moreover ||T|| < M, ,(T). Indeed, let f € Sy, (€) and
take (fF)n>1, (f, Jn>1 € X such that 0 < fF 4+ fTand 0 < f 1 f~
pa.e. Then, fi — fo — fin Sg () and

T(ff—f) =T - T(f7) = T(f) = T(f) =T(f)
in £. Hence,

ITHlle = lim [T~ )]s
< M,,(T) nh_{lgo 1fy - fn_”s;gp(g)
= Mp,q(T)Hst;?(p(g)-
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(b) = (a) Given (f;)", C X, we have that
Zl 1T (f)lls Zl IT(fl% < ||TH"§ Ifillsg o)

71y [ ([ Irrne )

(Xp)’
~ - a/p
<171 swp Y ([ 1) du)""
heB(JrXp)/ =1 Q

That is, from Lemma 1] 7" is p-strongly g-concave with M, (7)) <
1T O

A first application of Theorem (.4 is the following Kakutani type
representation theorem (see for instance [7, Theorem 1.b.2]) for B.f.s.’
being order semi-continuous, p-convex and p-strongly g-concave.

Corollary 4.5. Suppose that X is p-convex and order semi-continuous.
The following statements are equivalent:

(a) X is p-strongly q-concave.

(b) There exists a probability Radon measure & on B&p), satisfying
BI), such that X = Sy (§) with equivalent norms.

Proof. (a) = (b) The identity map I: X — X is p-strongly g-concave
as X is so. Then, from Theorem 4] there exists a probability Radon
measure £ on B&p), satisfying (B0, such that I factors as

X X
5%, (&)
where I is a continuous linear operator with ||I]| = M, ,(X) and i

is the inclusion map. Since £ is a probability measure, we have that
Hf||5)q(p(§) < || f]lx for all f € X, see the proof of Proposition Bl Let
0 < fe Sy (§). By Lemma 1] we can take (f,),>1 C X such that
0 < fu 1 f p-ae. Since S;gp(g) is order continuous, it follows that

fo = fin SY (§) and so f, = I(f,) — I(f) in X. Then, there is a
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subsequence of (f,,),>1 converging u-a.e. to I(f) and hence f = I(f) €
X. For a general f € S¢ (§), writing f = f* — f~ where f* and f~
are the positive and negative parts of f respectively, we have that f =
I(fY)=I(f7) =1(f) € X. Therefore, X = Sy, (€) and I is de identity
map. Morcover, ||f]1x = [7(F)llx < 711 1/llsg. o = MpaX)Flls3 o
for all f e X.

(b) = (a) From Remark [£.2]it follows that the identity map I: X —
X is p-strongly g-concave. O

Note that under conditions of Corollary .5, if X is p-strongly ¢-
concave with constant M,,(X) = 1, then X = Sy (£) with equal

norms.

5. ¢-SUMMING OPERATORS ON A p-CONVEX B.F.s.

Recall that a linear operator T: X — FE between Banach spaces is
said to be g-summing (1 < ¢ < oo) if there exists a constant C' > 0
such that

u 1/q " 1/q
(M Iray) " < swp (31t @)
i=1 1=1

SC*EBx*

for every finite subset (z;)?; C X. Denote by m,(7) the smallest
possible value of C. Information about ¢-summing operators can be
found in [6].

One of the main relations between summability and concavity for
operators defined on a B.f.s. X, is that every ¢g-summing operator is
g-concave. This is a consequence of a direct calculation which shows
that for every (f;)?, C X and z* € X* it follows that

(iux*,faw)wsuxﬂ (i|fi|q)”qHX, (5.1)

see for instance [7, Proposition 1.d.9] and the comments below. How-

X*

ever, this calculation can be slightly improved to obtain the following
result.

Proposition 5.1. Let 1 < p < q < oo. FEvery q-summing linear
operator T: X — E from a B.f.s. X into a Banach space E, is p-
strongly q-concave with M, ,(T) < m,(T).
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Proof. Let 1 < r < oo be such that % =
subset (f;)".; € X. We only have to prove

n 1/q
wp (1) < s
i=1

T*E€Bx* (Bi)i>1€Ber

% - % and consider a finite

X.

(S isr)”
i=1

Fix #* € Byx~. Noting that % and % are conjugate exponents and
using the inequality (5.]), we have

(S = s (Sl )"

(@i)i>1€Byrp 1

= sup (Z\ @ﬂ)

(Bi)i>1€Br 4

(Z aufil) "

Taking supremum in z* € By~ we get the conclusion. U

< sup
(Bi)i>1€Ber

From Proposition (., Theorem [.4] and Remark [4.2], we obtain the
final result.

Corollary 5.2. Set1 <p < q < oo. Let X be a saturated order semi-
continuous p-convex B.f.s. and consider a q-summing linear operator
T: X — E with values in a Banach space E. Then, there exists a
probability Radon measure £ on B&p), satisfying BJ) such that T can
be factored as

X E

S2(6)

where T is a continuous linear operator with |T| < my(T) and i is
the inclusion map which turns out to be p-strongly q-concave, and so
q-concave.

Observe that what we obtain in Corollary[5.2lis a proper extension for
T, and not just a factorization as the obtained in the Pietsch theorem
for g-summing operators through a subspace of an L9-space.
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