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Abstract. We prove that the standard cut is definable in each existentially closed model of I Δ0 +exp  by  a 
(parameter free) Π1–formula. This definition is optimal with respect to quantifier complexity and allows us to improve 
some previously known results on existentially closed models of fragments of arithmetic.

1. Introduction. This work was initially motivated by a gap in the proof of
Corollary 1.3 of [2] providing a parameter free Π1–definition of the standard cut, N, 
in each existentially closed (e.c.) model of I Δ0 + exp. Our aim is to provide a correct 
proof of the above result and, use it to obtain an updated view of the theory of e.c. 
models of I Δ0 + exp.
Existentially closed models of arithmetic were investigated in the 1970’s as a part 
of the efforts to get a full understanding of the model theory of existentially closed 
structures (existence of model completions and companion theories, finite and 
infinite forcing, etc.). The results obtained in the early 1970’s by A. Robinson, 
J. Hirschfeld, D. C. Goldrei, A. Macintyre, and H. Simmons pointed out the most 
important property of e.c. models of sufficiently strong arithmetic theories: there 
exist formulas defining N in each such model. These results were not stated in their 
full generality. In the 1970’s a systematic study of fragments of Peano arithmetic 
PA was still to come and the authors focused essentially on e.c. models of Π2(N)
(the set of true Π2–sentences) or of Π2(PA) (the set of Π2 consequences of PA), 
and more generally on e.c. models of Π2(TB ), where TB is any extension of Π2(PA).
Regarding Π2(N), Robinson (see [14]) proved N to be Σ3–definable in every e.c. 
model of Π2(N) and Hirschfeld (see [7]) improved Robinson’s result obtaining a 
Σ2–definition of N, or  even  a Π1–definition, if parameters are allowed. Hirschfeld 
also showed that these definitions are optimal (in terms of quantifier complexity) 
for e.c. models of Π2(N).
As to Π2(TB ), in [11] Macintyre and Simmons (see also [5]) extended Hirschfeld’s 
Σ2–definition of N to all e.c. models of Π2(TB ) and showed that the parametric Π1–
definition can be extended to those e.c. models of Π2(TB ) in which the Σ1–definable 
elements are not cofinal. However, these definitions are not best possible, since 
there is no general result ruling out the possibility of a parameter free Π1–definition 
of N valid in all e.c. models. As a matter of fact, such an optimal definition was
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obtained by K. McAloon in [12] for recursively axiomatized extensions of Π2(PA),
introducing new techniques in this topic. While previous definitions of N were
obtained using tools from Computability Theory (creative sets in [5] and simple
sets in [7] and [11])McAloon used consistency statements to produce his definition.
It is natural to ask ourselves whether these results can be extended to weaker
theories, ideally, to every extension of IΔ0. In fact, e.c. models of IΔ0 (or more pre-
cisely Σ1–closed models, a tightly related notion defined in Section 2) are connected
to notorious open problems in weak arithmetics. Remarkably, deciding whether
a Σ1–closed model of IΔ0 can satisfy the Σ1–collection scheme BΣ1 would have
important consequences: a positive answer would solve (in the negative) the End
Extension Problem; whereas a negative answer would provide us with a model
without Σ1–collection and without exponentiation. This points out the interest of
obtaining a better understanding of e.c. models of IΔ0 but also suggests that this
goal could be out of reach of currentmethods (see [3] and [4] formore information).
The situation is more satisfactory in the case of moderately weak theories prov-
ing that exponentiation is total. Let TE denote a recursively axiomatized extension
of IΔ0 + exp. It follows from Simmons’ remarks in [16] that the definitions of N
given in [11] apply equally well to e.c. models of Π2(TE). In contrast, McAloon’s
optimal Π1–definition seems to be valid only for theories extending PA, as its proof
uses the Arithmetized Completeness Theorem and, more importantly, requires TE
to be a reflexive theory. In [2] a parameter free Π1–definition of N valid in each e.c.
model ofΠ2(TE) was proposed. This definition is also based on a consistency notion
(introduced by H. Kotlarski in [9]) and avoids the use of the Arithmetized Com-
pleteness Theorem. But, unfortunately, there is a gap in the proof of Corollary 1.3
of [2] stating the correctness of such a definition. The proposed definition can be
shown to be correct if some form of reflection is provable in TE (see comments in
Section 3) but this seems to require TE to be an extension of PA again.
Here, and this is the main result of the paper, we give a corrected version of
Corollary 1.3 of [2]. By using a new restricted consistency notion different from
Kotlarski’s, we show N to be parameter free Π1–definable in each e.c. model of
Π2(TE) (see Theorem 3.4). Thus, we extend McAloon’s result to every recursive
extension of IΔ0 + exp and provide an optimal definition of N in each e.c. model of
such theories. As an application, we use this optimal definition to get answers to
some questions on e.c. models of arithmetic left over in [16].
The paper is organized as follows. In Section 2 we introduce the notion of a
Σ1–closed model (which coincides with the notion of an e.c. model when T extends
IΔ0+exp) and state its basic properties. We also discuss some simple applications of
consistency statements (the basic technique of this paper) to the study of Σ1–closed
models. In Section 3, we prove the main result, Theorem 3.4, discuss some natural
generalizations of it, and show that the parameter free Π1–definition given by that
theorem is optimal. The rest of the paper is devoted to applications of the obtained
results. In Section 4, we deal with recursive saturation and the distribution of
definable elements in Σ1–closedmodels, answering two questions posed by Simmons
in [16]. Finally, in Section 5 we characterize the Turing degrees of maximal theories.

2. Σ1–closed models and consistency statements. In this paper we shall
work with a variant of the notion of an existentially closed model of a theory
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T : Σ1–closed models. Although for theories extending IΔ0 + exp both notions coin-
cide (IΔ0 + exp proves Matiyasevich’s theorem), they might differ for plain IΔ0
or other theories below exp. Let us give the precise definition. We assume familiar-
ity with basic notions and results concerning fragments of arithmetic (all relevant
information can be found in [6] and [8]). We denote by L the usual language of first
order arithmetic {0, 1,+, ·, <}. IfM and N are L–structures, we writeM ≺n N if
M is a substructure of N and, for all ϕ(x1, . . . , xm) ∈ Σn and all a1, . . . , am ∈ M ,
M |= ϕ(a1, . . . , am) ⇔ N |= ϕ(a1, . . . , am).
Definition 2.1. Let T be an extension of IΔ0. An L–structureM is a Σ1–closed
model of T ifM |= T and for each N |= T , we have:M ≺0 N ⇒ M ≺1 N .
It is worth noting that a structure Σ1–closed with respect to one theory may not
be Σ1–closed with respect to another one. However, often we will simply write ‘let
M |= T be Σ1–closed.’ This should be seen as a shorthand for ‘let M |= T be
Σ1–closed with respect to T .’
Thebasicmodel theoretic properties of Σ1–closedmodels can beobtained,mutatis
mutandis, as in the classical setting of existentially closed structures (see [15]):

Proposition 2.2. LetM |= T . The following are equivalent:
1. M is a Σ1–closed model of T .
2. For each ϕ(x) ∈ Π1 and each a ∈ M such that M |= ϕ(a), there exists
�(x) ∈ Σ1 such thatM |= �(a) and T � ∀x (�(x)→ ϕ(x)).

3. M is a Σ1–closed model ofΠ1(T ).
Proposition 2.3. Assume IΔ0 ⊆ T .
1. IfM |= T , there isM ≺0 N such thatN is a Σ1–closed model ofΠ2(T ).
2. IfM is a Σ1–closed model of T and N ≺1 M , then N is a Σ1–closed model of
Π2(T ).

3. IfM andN are Σ1–closed models of T andM ≺0 N , thenM ≺2 N .
A useful corollary is that if M is a Σ1–closed model of T and X ⊆ M , then

K(M,X ) (i.e., the substructure of the elements which are Σ1–definable in M with
parameters from X ) is a Σ1–closed model of Π2(T ) and so K(M,X ) ≺2 M .
Note that the standard model N is Σ1–closed with respect to a theory T if, and
only if, N |= T and T implies Π1(N). As to how much arithmetic a nonstandard
Σ1–closed model can satisfy, it is known that Σ1–closed models do not exist even for
moderately weak fragments of PA.

Proposition 2.4. Assume IΔ0 ⊆ T . LetM |= T be Σ1–closed.
1. IfM is nonstandard,M 
|= BΣ1 + exp.
2. If T is recursively axiomatized,M 
|= IΠ−

1 andM 
|= LΔ−1 + exp .
Proof. We only prove part (1), for part (2) see [4]. Let a ∈ M nonstandard.
Then K(M,a) ≺2 M . Thus,M 
|= BΣ1 + exp, for it is well known thatK(M,a) 
|=
BΣ1 + exp and this last theory is Π3–axiomatizable. �
The consistency assertion for T , Con(T ), is well known to fail in every Σ1–
closed model of T provided T is a sufficiently strong, recursive theory (see, e.g.,
Theorem 1.1 of [2]). We include a proof of this fundamental fact, which is a simpli-
fication of that of [2]. As usual, ProvT (x) denotes the standard provability predicate
for T .
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Proposition 2.5. Let T be a recursive extension of IΔ0 + exp and letM |= T be
Σ1–closed. Then

1. (Π1–completeness) For each ϕ(x) ∈ Π1,M |= ∀x (ϕ(x)→ ProvT (ϕ(ẋ))).
2. M |= ¬Con(T ).
Proof.

(1) Assume M |= ϕ(a), with ϕ(x) ∈ Π1. Since M is Σ1–closed, there is
�(x) ∈ Σ1 such that M |= �(a) and T � ∀x (�(x) → ϕ(x)). By provable
Σ1–completeness,M |= ProvT (�(ȧ)) and soM |= ProvT (ϕ(ȧ)).

(2) Towards a contradiction, assume M |= Con(T ). Then, for each sentence
ϕ ∈ Π1, M |= ϕ ↔ ProvT (ϕ). (The implication from left to right fol-
lows by part (1) and the converse follows by provable Σ1–completeness.)
This gives us a Σ1–definition of Π1–truth in M , contradicting Tarski’s
theorem. �

The above argument illustrates one of the main themes in this work: the use of
consistency statements to derive properties of Σ1–closed models. This idea can also
be applied to Σ1–closed models of theories below exp at the price of considering
some restricted provability notion. As a prominent example, we include a proof of
Theorem 2 of [1] (proved there by using a model–theoretic construction).

Theorem 2.6. LetM be a Σ1–closed model of IΔ0. ThenM 
|= exp.
Proof. Suppose M |= exp. We shall derive a contradiction as in the proof
of Proposition 2.5 but we replace the standard provability predicate by Cut–
free provability, (see [6], Chapter V, Section 5-(d) for details). Let RPrIΔ0(u, x)
denote a Σ1 formula expressing that “there exists a conjunction, c, of axioms
of IΔ0 (including equality axioms) and a proof of c → x (in the version of
Schwichtenberg’s calculus used in [6]) with cut–rank bounded by u.” In addition,
CFPrIΔ0(x) denotes the formula RPrIΔ0(0, x), and CFConIΔ0 denotes the sentence
¬CFPrIΔ0(0 = 1).
We shall show that for each Π1 sentence, ϕ,M |= ϕ ↔ CFPrIΔ0(ϕ), giving the

desired contradiction.
First, assumeM |= CFPrIΔ0(ϕ) andM |= ¬ϕ. By formalized Σ1–completeness
(Lemma 5.24 in [6]), M |= RPrIΔ0(k,¬ϕ) for some k ∈ �. Using formalized cut
elimination (available in IΔ0 + exp, see Theorem 5.17-(ii) in [6]) we obtain that
M |= CFPrIΔ0(¬ϕ). Then,M |= ¬CFConIΔ0 . But this is impossible since IΔ0+exp
proves CFConIΔ0 (see [17]).
Conversely, assume M |= ϕ. Since M is Σ1–closed, there is a sentence
� ∈ Σ1 such that M |= � and IΔ0 � � → ϕ. Then, M |= CFPrIΔ0(¬� ∨ ϕ).
Since M |= �, by formalized Σ1–completeness, there is k′ ∈ � such that
M |= RPrIΔ0(k′, �).Using formalized cut elimination, we getM |= CFPrIΔ0(�∨ϕ).
So,M |= CFPrIΔ0(ϕ). �

3. Defining the standard cut in Σ1–closed models. In this section we present a
corrected version of Corollary 1.3 of [2] and thus obtain an (optimal) definition of
N in every Σ1–closed model of a recursively axiomatized extension of IΔ0 + exp.
Before doing so, let us give the exact statement of Corollary 1.3 in [2] and explain
why that result is problematic.
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(†) “Assume T ⊆ T̂ and T ⊇ IΔ0 + exp. LetM |= T be Σ1–closed.
Then for v ∈M , v /∈ N iffM |= ¬ConsK(T̂ , v),”

where T̂ denotes a recursive and consistent extension of IΔ0 + exp and the formula
ConsK(T̂ , v) denotes a restricted notion of consistency introduced by H. Kotlarski
in [9]. Namely, if we put Q0 = Δ0 and Qn+1 = the closure of Qn ∪ ∃Qn under
conjunction, negation and bounded quantification, then ConsK(T̂ , v) denotes a
Π1 formula expressing that there is no proof of 0 = 1 in T̂ which consists of
Qv–formulas only.
First, it should be noted that the implication “v 
∈ N ⇒ M |= ¬ConsK(T̂ , v)”
is true (this is Theorem 1.2 in [2]). But for the opposite implication to be true a
necessary condition onM is missing.

Lemma 3.1. IfM |= T andM |= ConsK(T̂ , n) for all n ∈ N,M |= Π1(T̂ ).
Proof. Consider ϕ ∈ Π1(T̂ ). Let PrK,T̂ (x, v) express that there is a proof of x
in T̂ included in Qv . Then, M |= PrK,T̂ (ϕ, k) for some standard k. Now assume
M 
|= ϕ. By provable Σ1–completeness (see remark 1.3 in [2]),M |= PrK,T̂ (¬ϕ, 1).
But thenM |= ¬ConsK(T̂ , k), a contradiction. �

ˆ

a

a a a

1̃

ˆ

This first problem can be easily solved. Either we add the assumption M |= Π1(T̂ )
or, for the sake of simplicity, we take T = T̂ . Nevertheless, a second problem
arises. The implication “M |= ¬ConsK ( T̂ ,  v) ⇒ v /∈ N” is not justified unless we
assume T̂ PA. In fact, this implication follows from Lemma 3 (on consistency)

in [9], wher
⊇
e it is shown that T � ConsK ( T̂ ,  n) for all n ∈ N. But Lemma 3 of [9] isproved by means of Lemma 2 (on reflection) which, in turn, depends on an induction 

argument involving a formula in Qn+1. So Lemma 3 of [9] is valid only under the 
assumption that T̂ ⊇ PA.
Therefore, Corollary 1.3 of [2] is true if we assume M |= Π1(T̂ ) and T̂ ⊇ PA,
thus giving a new proof of McAloon’s result on Π1–definability of N in every e.c.
model of Π2(PA) by using Kotlarski’s consistency notion. But the general version
stated in [2] for each T̂ extending I Δ0 + exp is unjustified.
Nevertheless, and this is the main result of the present paper, it is possible to
get round this obstacle and obtain a corrected version of Corollary 1.3 of [2] by 
introducing a different restricted consistency notion.
Given a model M , for each b ∈ M , Cb denotes the set of Σ1 sentences
φ(ã1, . . .  ,  ˜u ), where, for a ∈ M , ã denotes the a-th numeral and φ(x1, . . .  , xu )
is a formula (in the sense of M ) with x1, . . .  , xu as free variables and such that
φ(x1, . . .  , xu ) ≤ b. In addition, Db denotes the set of all formulas which are of the
form φ(ã1, . . .  ,  ˜u ), where ˜1, . . .  ,  ˜u are some numerals and φ(x1, . . .  , xu ) ≤ b
(note that formulas from Db may contain other free variables than those which
are explicitly indicated).
Let Trn be the usual truth definition for Σn sentences given in I Δ0 + exp.  Let
PrS (ϕ, v) express the meaning that there is a proof of ϕ (in the theory S) included
in Dv whose length is at most v, and let  C̃ ons(S, v) be the formula ¬PrS (0̃ =  , v).
Then, the formula Cons( T̂ ,  v) is

∀φ ∈ Cv (Tr1(φ) → C̃ ons (T + φ, v)).
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That is to say, Cons(T̂ , v) expresses the meaning that T̂ is “v–consistent” (in the
sense C̃ ons) with any Σ1 true sentence. Now the corrected version of Corollary 1.3
in [2] is:

“Assume T̂ is recursive and IΔ0 + exp ⊆ T ⊆ T̂ . LetM |= T be Σ1–closed.
AssumeM |= Π1(T̂ ). Then for b ∈M , b /∈ N iffM |= ¬Cons(T̂ , b).”

In what follows we give a proof of this result (see Theorem 3.4). We first prove the
implication from left to right.

Proposition 3.2. Assume T̂ is recursive and IΔ0 +exp ⊆ T ⊆ T̂ . LetM |= T be
Σ1–closed. Then for every nonstandard b ∈M ,M |= ¬Cons(T̂ , b).
Proof. We repeat the proof of Theorem 1.2 in [2] with suitable modifications. By
way of contradiction, let b ∈M benonstandard and suppose thatM |= Cons(T̂ , b).
Consider the following formula �(ϕ, x, b):

Cons(T̂ + ϕ(x̃, b̃),
√
b).

We shall show that � is universal inM for Σ1 formulas with one free variable and
the parameter b. That is, we shall show

(E) M |= ∀x (�(ϕ, x, b)↔ ϕ(x, b)), for ϕ ∈ Σ1.
To prove this, first assume M |= ϕ(a, b), for some a ∈ M . Let us show M |=
�(ϕ, a, b). Note that ϕ(x, v) ∈ N, whence ϕ ≤ √

b. Since M |= Cons(T̂ , b),
we infer

M |= ∀φ ∈ Cb (Tr1(φ)→ C̃ ons(T̂ + φ, b)).
Note that each φ ∈ C√

b is of the form �(ã1, . . . , ãu) for some u, a1, . . . , au ∈ M
and some Σ1 formula �(x1, . . . , xu) ≤

√
b. Therefore, from the fact that ϕ ≤ √

b,
we infer that φ ∧ ϕ(ã, b̃) is in Cb (we assume that our enumeration of formulas has
the property that � ∧ � ≤ � · �). Moreover, from the facts thatM |= ϕ(a, b) and
M |= Tr1(φ) we infer thatM |= Tr1(φ ∧ ϕ(ã, b̃)). Then, in particular

M |= ∀φ ∈ C√
b (Tr1(φ)→ C̃ ons(T̂ + φ ∧ ϕ(ã, b̃), b)).

Hence
M |= ∀φ ∈ C√

b (Tr1(φ)→ C̃ ons((T̂ + ϕ(ã, b̃)) + φ,
√
b))

for, if there was a proof of a contradiction using φ and ϕ(ã, b̃) as premises which
consists of instances of formulas ≤ √

b and has length ≤ √
b, then there would

be a proof of a contradiction using φ ∧ ϕ(ã , b̃) as a premise which would con-
sist of instances of formulas ≤ b and would have length ≤ b. Thus, we have
M |= Cons(T̂ + ϕ(ã , b̃),√b). HenceM |= �(ϕ, a, b).
Now assume thatM |= �(ϕ, a, b). We add to the language constants u, for all
u ∈M , and consider the following theory T ′ in this extended language:

T ′ = T̂ + {�(u1, . . . , uk) : � ∈ Σ1, u1, . . . , uk ∈M,M |= �(u1, . . . , uk)}+ ϕ(a, b).
That is, T ′ is T̂ plus the Σ1 diagram of M plus ϕ(a, b). We shall show that T ′ is
consistent. To see this, consider a finite fragment T ′′ ⊆ T ′:

T̂ ′ + {�1(u1,1, . . . , u1,k1 ), . . . , �n(un,1, . . . , un,kn )}+ ϕ(a, b)
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(where T̂ ′ denotes a finite fragment of T̂ ). By �(ϕ, a, b) and since the formula
�1(x1,1, . . . , x1,k1 )∧· · ·∧�n(xn,1, . . . , xn,kn ) (where each xi,j denotes a fresh variable)
is a standard Σ1 formula (and so ≤

√
b), we infer

M |= C̃ ons((T̂ + ϕ(ã, b̃)) + �1(ũ1,1, . . . , ũ1,k1 ) ∧ · · · ∧ �n(ũn,1, . . . , ũn,kn),
√
b).

Since b is nonstandard, in particular, there is no standardly finite sequence of
standard formulas which is a proof of contradiction from T ′′, since if there was
such a sequence it would belong toM (as a finite sequence of elements ofM ) and
it would give a (standard) proof of contradiction from the theory

T̂ + ϕ(ã, b̃) + �1(ũ1,1, . . . , ũ1,k1 ) ∧ · · · ∧ �n(ũn,1, . . . , ũn,kn)
inM . Thus, T ′′ is consistent and, by compactness, T ′ is consistent.
Let M ′ |= T ′. Then M ≺0 M ′ up to isomorphism since T ′ contains the Δ0

diagram of M . Moreover, since a is interpreted as a and b as b, we infer that
M ′ |= ϕ(a, b). Also,M ′ |= T since T ′ ⊇ T̂ . Hence, by the fact thatM is Σ1–closed,
M |= ϕ(a, b), which completes the proof of (E).
Now, to complete the proof of the theorem, we repeat the reasoning of Theo-
rem 1.1 in [2]: let ϕ(x, b) the formula ¬�(x, x, b). Then by (E), taking x = ϕ, we
have �(ϕ,ϕ, b)⇔ ϕ(ϕ, b)⇔ ¬�(ϕ,ϕ, b), a contradiction. �
In the proof of the opposite implication, we will have to restrict ourselves to
certain special axiomatizations of T̂ . Namely, we say that ϕS(x) ∈ Δ1 is a well–
behaved presentation of a theory S if: i) ϕS(x) defines in N an axiomatization
of S; and ii) there is some standard k such that IΔ0 + exp proves the formula
∀x (ϕS(x)→ Sent(x) ∧ “the numerals in x are among 0̃, . . . , k̃”).
Lemma 3.3. Each recursive theory admits well–behaved presentations.

Proof. (Sketch) Let S be a recursive theory. Let S′ be the axiomatization of S
obtained by replacing each axiom of S of the form ∀x �(x,m) (we identify m ∈ N

with its numeral) with

∀x ∀x0 . . . ∀xm (x0 = 0 ∧ x1 = x0 + 1 ∧ · · · ∧ xm = xm−1 + 1→ �(x, xm)).
Then,S′ is recursive inS and soS′ is recursive too.LetϕS′ (x) ∈ Δ1 be a presentation
of S′. It suffices to put

ϕS(x) = ϕS′(x) ∧ Sent(x) ∧ “the numerals in x are among 0̃, 1̃.” �

T̂ ˆ

Theorem 3.4. Assume T̂ is recursive and I Δ0 + exp  ⊆ T ⊆ T̂ . Let M |= T be
Σ1–closed. Assume M |= Π1(T̂ ). Then, for each well–behaved presentation of T̂ and
for all b ∈ M ,

b /∈ N iff M |= ¬Cons( T̂ ,  b).
Proof. The implication from left to right follows directly from Proposition 3.2.
To see the implication from right to left, consider the contrapositive form:

b ∈ N ⇒ M |= Cons( T̂ ,  b).

So, let b ∈ N. Since  Cons( T̂ ,  b) ∈ Π1 and M |= Π1(T̂ ), it is sufficient to show that
� Cons( T̂ ,  b). To this end, let M ′ |= T and let φ ∈ M ′ such that φ ∈ Cb and

M ′ |= Tr1(φ). Let us show M ′ |= C̃ ons(T̂ + φ, b). By way of contradiction,
suppose that there is a proof from T̂ + φ of 0̃ =  1̃, d = 〈�0, . . .  , �b−1〉 ∈ M ′,
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such that for all k < b, �k ∈ Db . Since b ∈ N, for each k < b there exist a
(standard) formula �k(x1, . . . , xrk ) and elements ak,1, . . . , ak,rk ∈ M ′ such that �k

is the formula �k(ãk,1, . . . , ãk,rk ). Let us prove thatM
′ |= �k(ak,1, . . . , ak,rk ).

It is easy to check that if �k is a logical axiom then �k(x1, . . . , xrk ) is also a
logical axiom and, therefore, M ′ |= �k(ak,1, . . . , ak,rk ). If �k is φ, then M ′ |=
Tr1(�k(ãk,1, . . . , ãk,rk )) and, as a consequence,M

′ |= �k(ak,1, . . . , ak,rk ). Regarding
the axioms of T̂ , since we are assuming that T̂ is axiomatized by sentences not
containing arbitrarily large numerals, if some �k in d is an axiom of T̂ then it must
be a standard formula.Thus,M ′ |= �k and soM ′ |= �k(ak,1, . . . , ak,rk ). Thenwe can
showby a straightforward induction on k < b thatM ′ |= �k(ak,1, . . . , ak,rk ) (passing
through modus ponens is evident). It follows thatM ′ |= 0 = 1, contradiction. �
Taking T = T̂ , we obtain a simplified version of Theorem 3.4 that will suffice for
applications.

Corollary 3.5. Let T be a recursive extension of IΔ0 + exp and letM |= T be
Σ1–closed. Then, for b ∈ M , b /∈ N iff M |= ¬Cons(T, b), for each well–behaved
presentation of T .

Corollary 3.5 has a natural generalization to arbitrary, not necessarily recursively
axiomatized extensions of IΔ0 +exp. Namely, assumeM is a Σ1–closed model of T
in which T is coded, i.e., there is some c ∈M such that the axioms of T are given by
{n ∈ N : M |= (c)n 
= 0}. We define the notion of a well–behaved code of T inM
in the natural way. Reasoning as in the proof of Lemma 3.3, we get that T also has
a well–behaved code inM , say a. Then, we can construct the formula Cons(T, v, a)
as above but now we use a as a parameter in order to express the set of axioms of
T . By repeating the proofs of Proposition 3.2 and Theorem 3.4, we get

Corollary 3.6. Suppose IΔ0 +exp ⊆ T . LetM |= T be Σ1–closed with T coded
inM and let a ∈M be a well–behaved code of T . Then, for b ∈M ,

b /∈ N iff M |= ¬Cons(T, b, a).
Remark 3.7. In Theorem 8.29 of [7] Hirschfeld showed N to be Π1–definable in
each e.c. model of Π2(N). In Theorem 6.2 of [16] Simmons proved that ifM is an
e.c. model ofT ⊇ IΔ0 +exp withK(M ) < M (i.e., K(M ) = K(M, ∅) is not cofinal
in M ), then N is Π1–definable in M . It is worth noting that both facts can be
recovered from Corollary 3.6. Firstly, assume that M is an e.c. model of Π2(N).
Then,M is a Σ1–closedmodel of Π1(N)+exp by Proposition 2.2. Since Π1(N)+exp
is coded in every nonstandard model of Π2(N), it follows from Corollary 3.6 that
N has a Π1–definition in M . Secondly, assume that M is an e.c. model of T ⊇
IΔ0 + exp with K(M ) < M . Again by Proposition 2.2,M is a Σ1–closed model of
Π1(M ) + exp; and it follows from K(M ) < M that Π1(M ) + exp is coded inM .
Thus, by Corollary 3.6, N is Π1–definable inM .

Remark 3.8. In Theorem 2.4 of [11] Macintyre and Simmons proved N to
be (parameter free) Σ2–definable in every Σ1–closed model of T ⊇ Π2(PA).
Corollary 3.6 improves this result toΠ1–definability at the price of assumingT to be
coded in the model. A natural question then arises: can this assumption be avoided?
(I.e., does N have a Π1–definition in every Σ1–closed model of T ⊇ IΔ0 + exp?)
Let us observe that the answer to this question is negative. To see this, consider a
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recursive binary tree the paths of which correspond to 1–complete extensions of
IΔ0 + exp. Then, by the Low Basis Theorem, there is Tlow ⊆ Σ1 ∪ Π1 which is a
1–complete extension of IΔ0 +exp of low degree. TakeM |= Tlow . Firstly, it is easy
to see thatK(M ) is a Σ1–closedmodel ofTlow . In addition,K(M ) must be nonstan-
dard, for otherwiseΠ1(N) would be recursive inTlow . Now suppose that �N(x) ∈ Π1
defines N in K(M ). (Note that we can eliminate the possible parameters in �N(x)
by using a Σ1 definition of them.) By Δ0–overspill in K(M ), for each ϕ(x) ∈ Δ0,

N |= ∀x ϕ(x)⇔ K(M ) |= ∃x (¬�N(x) ∧ ∀y ≤ x ϕ(y)).
Hence, Π1(N) would be recursive in Σ1(K(M )) and so in Tlow as well, which is
impossible.

We close this section by showing that Theorem 3.4 is best possible with respect to
the quantifier complexity of a definition of N (an alternative model theoretic proof
can be given reasoning as in Theorem 8.30 of [7]).

Proposition 3.9. Suppose IΔ0 + exp ⊆ T . LetM |= T be Σ1–closed such that T
is coded inM . Then N has no Σ1–definition inM .
Proof. Towards a contradiction, assume that �(x, a) ∈ Σ1 defines N inM . Let b
be a code for T in M . It follows from Proposition 2.2 that for any Π1–formula,
ϕ(x, a, b), and any element c ∈M :
M |= ϕ(c, a, b) ⇔ There is 	(v, u, z) ∈ Σ1 such that

M |= 	(c, a, b) and T � ∀v∀u∀z (	(v, u, z)→ ϕ(v, u, z))
⇔ M |= ∃
 ∈ Σ1 ∃y

{
�(
, a) ∧ �(y, a) ∧ Tr1(
(c̃ , ã, b̃))∧
PrfT (∀v∀u∀z (
(v, u, z)→ ϕ(v, u, z)), y, b),

where PrfT (w, y, b) expresses “y encodes a proof of a formula w in T” (we use the
parameter b to express the set of axioms of T ). Hence, Π1 truth of (M,a, b) turns
out to be Σ1–definable in (M,a, b), which contradicts Tarski’s theorem. �
Since the recursive sets are coded in every nonstandard model of IΔ0, we get

Corollary 3.10. Suppose T is a recursive extension of IΔ0 + exp. Then, N does
not have a Σ1–definition in any Σ1–closed model of T .

4. Recursive saturation and distribution of definable elements. In this section we
determine the precise amount of recursive saturation available in each Σ1–closed
model of IΔ0 + exp and derive some applications. First of all, recall that a model
M satisfies Σ1–overspill for the standard cut if for every ϕ(x, a) ∈ Σ1,

∀k ∈ �, M |= ϕ(k, a)⇒ ∃b > �, M |= ∀x ≤ b ϕ(x, a).
Proposition 4.1. Suppose IΔ0 + exp ⊆ T . LetM |= T be Σ1–closed such that T
is coded inM . Then,M has Σ1–overspill for the standard cut.
Proof. Consider ϕ(x, a) ∈ Σ1 such that M |= ϕ(k, a) for all standard k. Put

ϕ(x, v) ≡ ∃y ϕ0(x, y, v), withϕ0 ∈ Δ0. Then,�(k) ≡ ∃u ∀x ≤ k ∃y ≤ u ϕ0(x, y, a)
is true inM for all standard k. SinceN has no Σ1–definition inM (Proposition 3.9),
there must be some b > � such thatM |= �(b) and the result follows. �
In [16], Simmons proved Proposition 4.1 for each Σ1–closed model of
T ⊇ IΔ0+exp in which the Σ1 definable elements are not cofinal, and askedwhether
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this assumption could be eliminated (Problem 6.5 of [16]). Notice that Proposi-
tion 4.1 answers in the positive this question if we restrict ourselves to recursively
axiomatized theories, as the recursive sets are always coded. In contrast, the answer to
Simmons’s question forT arbitrary is negative. To see this, considerM |= IΔ0+exp
witha ∈M nonstandard andΔ0–definable.As usual, 2xy stands for the function 2x0 =
x; 2xy+1 = 2

2xy (cf. [6]). Let I be the initial segment ofM given by {b ∈M : b < 2an
for some n ∈ N} and put N = K(I ). (Note that a is in N since a is Δ0–definable.)
Then,N is easily seen to be a Σ1–closed model of Π1(N) + exp. But the Σ1 formula
∃z (z = 2ay) defines N in N and thus N does not have Σ1–overspill for N.
Observe that the previous argument shows that Simmons’s question has a negative
answer already forΔ2 definable theories. It suffices to justify thatΠ1(N) can be taken
Δ2 definable. Take S = IΔ0 + exp+¬ϕ consistent, with ϕ ∈ Π1(N). Take T ∗ ⊆ Π1
recursive in 0′ (and so Δ2 definable) and maximally consistent with S, i.e. there is
no Π1 sentence consistent with S +T ∗ which is not in T ∗. For the existence of such
a set, fix a recursive enumeration of Π1–sentences and consider the leftmost path
of a recursive binary tree the paths of which correspond to 1–complete extensions
of S, see the proof of Theorem 5.2 for a similar construction. Now start with
M |= S + T ∗ and define I and N = K(I ) as before (note that M contains
nonstandardΔ0 definable elements by¬ϕ). Then,N |= S+T ∗ and soΠ1(N) = T ∗

by the maximality condition for T ∗.

Putting together overspill and the ability of coding automatically gives some
amount of recursive saturation in a model of arithmetic. In fact, we have

Proposition 4.2. Suppose IΔ0+exp ⊆ T . LetM |= T be Σ1–closed withT coded
inM . Then,M is Σ1–recursively saturated and not shortΠ1–recursively saturated.

Proof. By Corollary 3.6, there is �T (x, a) ∈ Π1 defining N in M . Hence, M is
not short Π1–recursively saturated; the type overM

{x < b} ∪ {x > n ∧ �T (x, a) : n ∈ �}
is omitted, where b is any nonstandard element. In order to prove that M is
Σ1–recursively saturated, let p(v, a) be a recursive Σ1 type over M and let b ∈ M
be a code of p(v, a) inM . Since BΣ1 + exp is Π2 conservative over IΔ0 + exp, there
exists N |= BΣ1 + exp satisfying thatM ≺1 N . Put

ϕ(x, z, a, b) ≡ ∀i ≤ z ((b)i 
= 0→ Sat1(i, x, a)),
where Sat1(i, x, v) denotes the usual satisfaction predicate for Σ1–formulas. Then,
for each n ∈ �, N |= ∃x ϕ(x, n, a, b). Consider ϕ′(x, z, a, b) ∈ Σ1 equivalent in
BΣ1 to ϕ(x, z, a, b). Then,M |= ∃x ϕ′(x, n, a, b) for each n ∈ �. SinceM satisfies
Σ1–overspill for N, there must be some c ∈ M nonstandard and d ∈ M such that
M |= ϕ′(d, c, a, b) and henceN |= ϕ(d, c, a, b). It is easy to see that such an element
d realizes p(v, a) inM . �
Let us observe that the use of BΣ1 in the previous argument is inessential. As sug-
gested by the anonymous referee, one could avoid appealing to theΠ2–conservation
of BΣ1 + exp over IΔ0 + exp by assuming that the type p(v, a) is enumerated
as {�i(v, a) : i ∈ �}, in which each �i+1(v, a) is a Σ1–formula of the form
�i(v, a) ∧ �i(v, a) for some �i ∈ Σ1.
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We say that a modelM is regular (or Σ1–tall in Lessan’s terminology, cf. [10]) if
for every a ∈M , K(M,a) is not cofinal inM . Regular Σ1–closed models have nice
properties, especially in connection with immersion theorems à la Friedman (see [7]
or [16]). In [16] Simmons introduced the notion of a well built model in order to
isolate the most important features of regular Σ1–closed models. Namely,M is well
built ifM is Σ1–closed and

(a) M satisfies Σ1–overspill for the standard cut,
(b) DefΣ1(M )∩N ⊆ SSy(M ), i.e., the standard part of each Σ1–definable subset
ofM is coded inM .

Simmons asked for exhibiting a countable well built model which is not regular
(see Problem 6.15 in [16]). However, our next result shows that both notions coin-
cide. We are able to prove even a stronger result: condition (b) alone is equivalent
to regularity.

Proposition 4.3. Suppose IΔ0 + exp ⊆ T . Let M |= T be Σ1–closed. The
following are equivalent.

1. M is regular.
2. DefΣ1(M ) ∩N ⊆ SSy(M ).
3. For all a ∈M , the Σ1–type of a inM , tpMΣ1 (a), is coded inM .
Proof. (1⇒2): Consider ϕ(x, v) ∈ Σ1 and a ∈M . Put ϕ(x, v) = ∃y ϕ0(x, y, v),
with ϕ0 ∈ Δ0, and suppose that K(M,a) is bounded by b. Then, for each n ∈ �,
M |= ϕ(n, a)↔ ∃y ≤ b ϕ0(n, y, a) and so {n ∈ N : M |= ϕ(n, a)} is coded inM .
(2⇒3): Immediate.
(3⇒1): By part (3), Σ1(M ) is coded in M and hence so is Π1(M ) + exp. By
Proposition 2.2,M is a Σ1–closedmodel of Π1(M )+exp. Then,M is Σ1–recursively
saturated by Proposition 4.2. Now pick a ∈M . Suppose that b codes tpMΣ1 (a) inM
and consider the Δ0 type p(z, a, b) given by {(b)�∃y ϕ(y,x)� 
= 0→ ∃y ≤ z ϕ(y, a) :
ϕ(x, v) ∈ Δ0}. By recursive saturation, there is c ∈M realizing p(z, a, b) inM . It is
clear thatK(M,a) is bounded by c. �
AmodelM is simple ifM = K(M,a) for some a ∈M . Clearly, simple Σ1–closed
models are examples of nonregular Σ1–closed models. In [7] Hirschfeld raised the
question whether some other examples could exist. That is to say, can a Σ1–closed
model be neither regular nor simple? To the best of our knowledge, the answer to this
question is still unknown. Here we have only obtained the following related result.

Proposition 4.4. Suppose IΔ0 ⊆ T . LetM |= T be Σ1–closed.
1. Every Σ2–definable element ofM is also Σ1–definable.
2. If T is recursive, there is a ∈ K(M ) with K(M, (≤ a)) cofinal inM .
3. If T � exp, for every nonstandard a ∈ K(M ),M = K(M, (≤ a)).
Proof. (1) Let a ∈ M and let 	(x) ∈ Σ2 such that M |= 	(a) ∧ ∀x (	(x) →
x = a). Put 	(x) ≡ ∃y 	0(x, y) with 	0(x, y) ∈ Π1. Then there exists b ∈ M such
thatM |= 	0(a, b). Since 	0(x, y) ∈ Π1 andM is Σ1–closed, there exists �(x, y) ∈ Σ1
such that M |= �(a, b) and T � ∀x ∀y (�(x, y) → 	0(x, y)). As a consequence,
K(M ) |= ∃x ∃y �(x, y), since K(M ) ≺1 M . So there are c, d ∈ K(M ) such that
M |= �(c, d ). Thus, we get M |= 	0(c, d ) and it follows that M |= 	(c). Hence,
a = c ∈ K(M ).
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(2) For the sake of a contradiction assume that for all element a ∈ K(M ),
K(M, (≤ a)) is bounded inM . We shall prove thatM |= LΣ−1 (least number prin-
ciple for parameter free Σ1–formulas). Since LΣ−1 and IΠ

−
1 are well known to be

equivalent over IΔ0, this would contradict Proposition 2.4. So let ϕ(x, y) ∈ Δ0 such
thatM |= ∃x∃y ϕ(x, y). Pick a ∈ K(M ) such thatM |= ∃y ϕ(a, y). By hypothesis,
K(M, (≤ a)) is bounded inM by some b ∈M . Then, for all d ≤ a,
M |= ∃y ϕ(d, y)⇐⇒K(M, (≤ a)) |= ∃y ϕ(d, y)⇐⇒M |= ∃y < b ϕ(d, y).

By IΔ0, there exists c = min{d ∈ M : M |= d ≤ a ∧ ∃y < b ϕ(d, y)}. Then, in
M , c = (�x)(∃y ϕ(x, y)), as required.
(3) Let �(a) denote the Π2 formula ∀x ∃y ∃z ≤ a (Min0(z, y) ∧ x = (y)0), where
Min0(z, y) is a Σ1–formula expressing (in IΔ0 + exp) that “y is the least element
satisfying theΔ0–formula z.” Since every Σ1–definable element ofM canbeobtained
as a projection of a Δ0–minimal element, we obtain that, for every nonstandard
a ∈ K(M ), K(M ) |= �(a). Therefore, M |= �(a) (recall that K(M ) ≺2 M ).
Thus, given b ∈ M , there are p ≤ a and a (unique) c ∈ M such that M |=
Min0(p, c) ∧ b = (c)0. So, b ∈ K(M, (≤ a)), as required. �

5. Turing degrees of maximal theories. Let S be a recursive theory. We say that
a theory T� consisting of Σ1 sentences is maximal with respect to (w.r.t.) S if T� is
maximal consistent with S, i.e., there is no Σ1 sentence consistent with S+T� which
is not already in T�. Maximal theories and Σ1–closed models are tightly connected.
(Actually, Lemma 5 of [4] shows that T� ⊆ Σ1 is maximal w.r.t. S if, and only
if, there exists some M |= Π2(S) Σ1–closed with Σ1(M ) = T�.) In studying the
complexity of a maximal theory from the point of view of the Turing degrees, the
first author proved that:

Theorem 5.1 ([1]). Let S be a recursive extension of IΔ0 + exp. Then 0′ ≤T T �
for every theory T� which is maximal w.r.t. S.

Here we observe that Theorem 5.1 can also be obtained as a direct consequence of
the existence of Π1–definitions of the standard cut in Σ1–closed models.

Proof of Theorem 5.1. Let T� be maximal w.r.t. S. We shall identify 0′ with
Π1(N). Let M be a model of S + T�. It is easy to see that the submodel of Σ1–
definable elements K(M ) is a Σ1–closed model of Π2(S). It then follows from
Corollary 3.5 that there exists �(x) ∈ Π−

1 defining N in K(M ). By an overspill
argument, for each ϕ(x) ∈ Δ0

N |= ∀x ϕ(x) ⇐⇒ K(M ) |= ∃y (¬�(y) ∧ ∀x ≤ y ϕ(x)).
Hence, Π1(N) ≤T Σ1(K(M )) = T�. �
Theorem 5.1 is best possible in that for each recursive theory S ⊇ IΔ0 + exp

there is T� which is maximal w.r.t. S and of Turing degree 0′. (Take the leftmost
path of an appropriate recursive binary tree, see the proof of Theorem 5.2 below for
details.) On the other hand, it is natural to ask: is every Turing degree above 0′ the
degree of a maximal theory? The next result gives a positive answer to this question.

Theorem 5.2. Let S be a recursive extension of IΔ0 +exp and letA ⊆ N such that
0′ ≤T A. Then, there exists T� which is maximal w.r.t. S and such that A ≡T T �.
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Proof. Since 0′ ≤T A, it follows by the Jump Inversion Theorem that the degree
ofA is the jump of a degree realizing the least possible jump, i.e., there exists B ⊆ N

satisfying that A ≡T B ′ ≡T B ⊕ 0′ (for a proof see, e.g., Theorem V.2.24 of [13]).
We first show that there is 	(x) ∈ Σ1 such that
• IΔ0 � ∀x, y (	(x) ∧ 	(y)→ x = y), and
• the theory SB given by

S + {∃x (	(x) ∧ (x)i 
= 0) : i ∈ B}+ {∃x (	(x) ∧ (x)i = 0) : i 
∈ B}
is consistent.

To this end, we adapt the proof of Proposition 4.2.6 in [10], where it is shown
that every X ⊆ N can be coded by a Σ1 definable element in some model of PA.
Pick ϕ ∈ Π1(N) such that S′ = Π1(S) + IΣ1 + ¬ϕ is consistent. Let �(x) ∈ Σ1 be
a flexible formula w.r.t. S′; that is to say, �(x) has the property that if we choose
arbitrarily �(n) or¬�(n), but not both, for every numeral n, then this set of sentences
together with S ′ is consistent for every such choice. (See Theorem III–2.15 of [6]
for a proof of the existence of flexible formulas.) In particular, the theory given by
S′ augmented with

{�(2n) : n ∈ B} + {¬�(2n) : n 
∈ B} +
{�(2n + 1) : n 
∈ B}+ {¬�(2n + 1) : n ∈ B}

is consistent and so has a model, say M . Note that K(M ) contains nonstandard
elements since ¬ϕ is true inM . Pick a ∈ K(M ) nonstandard. By applying IΣ1 in
M it follows that

M |= ∃x ∀i ≤ a [((x)i 
= 0→ �(2i)) ∧ ((x)i = 0→ �(2i + 1))].
Since K(M ) ≺1 M , there exists b ∈ K(M ) such that

M |= ∀i ≤ a [((b)i 
= 0→ �(2i)) ∧ ((b)i = 0→ �(2i + 1))]
and hence b codes B inM . SinceM satisfies Π1(S), there is N |= S satisfying that
M ≺0 N . Clearly, b codes B in N too. Let ∃z 	′(x, z) be a Σ1 definition of b inM ,
with 	′(x, z) ∈ Δ0. It is easy to see that 	(x) = ∃u (x = (u)0 ∧u = �t. 	′((t)0, (t)1))
satisfies the required properties.
Now we extend SB to a maximal theory by taking the leftmost path of a binary

tree. Fix a recursive enumeration of Σ1 sentences, ϕ1, ϕ2, . . . We put


 ∈ C ⇔ SB + {ϕi : 
(i) = 0}+ {¬ϕi : 
(i) = 1}
does not prove a contradiction with proof ≤ length(
).

Then C is a binary tree recursive in B. Let f : N → {0, 1} be the leftmost path of
C and put T ∗ = {ϕi : f(i) = 0}. Then, we have

• T ∗ is maximal w.r.t. S by construction.
• T ∗ ≤T A. Being determined by the leftmost path of the binary tree C , T ∗ is
recursive in C ′ and hence T ∗ ≤T B ′ ≡T A.

• A ≤T T ∗. First, B ≤T T ∗ since i ∈ B ⇔ ∃x (	(x) ∧ (x)i 
= 0) ∈ T ∗. Second,
0′ ≤T T ∗ by Theorem 5.1. Thus, A ≡T B ⊕ 0′ ≤T T ∗.

This completes the proof. �
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Concerning Scott sets, it is well known that every countable Scott set closed under
arithmetical definability is the standard system of a regular Σ1–closed model of
IΔ0 + exp (see [7] or [16]). In addition, it is a result of McAloon (see Theorem 5.1
of [12]) that every countable model of PA has an end extension which is Σ1–closed
w.r.t. Π2(PA). Since the standard system is preserved by end extensions, it then
follows that every countable Scott set is the standard system of a Σ1–closed model
ofΠ2(PA). A natural question arises: Is every countable Scott set the standard system
of a Σ1–closed model of IΔ0 + exp?
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