
Spiking Neural P Systems with Structural
Plasticity: Attacking the Subset Sum Problem

Francis George C. Cabarle1(B), Nestine Hope S. Hernandez1,
and Miguel Ángel Mart́ınez-del-Amor2

1 Algorithms and Complexity Lab, Department of Computer Science,
University of the Philippines Diliman, Diliman, 1101 Quezon City, Philippines

fccabarle@up.edu.ph, nshernandez@dcs.upd.edu.ph
2 Department of Computer Science and AI, University of Sevilla,

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
mdelamor@us.es

Abstract. Spiking neural P systems with structural plasticity (in short,
SNPSP systems) are models of computations inspired by the function and
structure of biological neurons. In SNPSP systems, neurons can create
or delete synapses using plasticity rules. We report two families of solu-
tions: a non-uniform and a uniform one, to the NP-complete problem
Subset Sum using SNPSP systems. Instead of the usual rule-level non-
determinism (choosing which rule to apply) we use synapse-level nonde-
terminism (choosing which synapses to create or delete). The nondeter-
minism due to plasticity rules have the following improvements from a
previous solution: in our non-uniform solution, plasticity rules allowed
for a normal form to be used (i.e. without forgetting rules or rules with
delays, system is simple, only synapse-level nondeterminism); in our uni-
form solution the number of neurons and the computation steps are
reduced.

Keywords: Membrane computing · Spiking neural P system · Struc-
tural plasticity · NP-complete · Subset Sum

1 Introduction

Membrane computing, [18] a branch of natural computing, aims to abstract and
obtain computing ideas, data structures and operations from the function and
structure of living cells. Several introductory and advanced books [8,19] (includ-
ing a handbook [21]) have been produced for this branch, as well as a recent
collection of applications to systems and synthetic biology [9]. As early as 2006,
membrane algorithms [16] have been introduced for approximation inspired by
P systems (the model of computations in membrane computing). The P systems
webpage [1] includes an updated list of workshops, conferences, and books on
or related to membrane computing (including a collection of PhD theses). The
Thomson Reuters Institute for Scientific Information (in short, ISI) has identified

membrane computing as a “fast emerging research front” as early as October
2003, see e.g. [2].

In this work, the specific P systems we consider are spiking neural P systems
(in short, SNP systems) first introduced in [12]. In particular, we focus on a
variant of SNP systems known as spiking neural P systems with structural plas-
ticity (in short, SNPSP systems), recently introduced in [4] and improved and
extended in [7]. We do not go into the details of SNP systems here, including
their neuroscience inspirations, computing power (i.e. what a model can or can-
not compute) and computational complexity (i.e. time and space efficiency in
solving problems). We refer the reader instead to good introductions in [12,20]
and the SNP systems chapter in the membrane computing handbook [21]. In
SNPSP systems, neurons are placed on the vertices of a directed graph, and the
edges between neurons are called synapses. Aside from spiking rules (more details
below) which are used to consume and produce spikes, SNPSP systems have plas-
ticity rules. Plasticity rules allow a neuron σi to create or delete synapses from
itself (i.e. outgoing edges of σi) but cannot create or delete synapses towards
itself (incoming edges of σi). The plasticity rules in SNPSP systems are inspired
by actual structural plasticity in biological neurons [3].

In this work we use SNPSP systems to provide families of solutions to the
NP-complete problem Subset Sum. The hardness of the Subset Sum problem is
applied to practical and important use in order to secure many systems requiring
encryption, e.g. in [11]. Of course, when we refer to solutions to a problem,
we mean to say that we provide an algorithm solving the problem, where the
algorithm in this case is the constructed SNPSP system.

This paper is organized as follows: some preliminaries for the rest of this
work are given in Sect. 2. Syntax and semantics of SNPSP systems in Sect. 3.
The Subset Sum problem as well as some existing solutions using SNP systems
are provided in Sect. 4. Complexity classes of SNPSP systems, with respect to the
type of solution, are also provided in Sect. 4. A non-uniform family of solutions
is given in Sect. 5. A uniform family of solution is provided in Sect. 6. Lastly,
Sect. 7 provides some final remarks and future research directions.

2 Preliminaries

Before proceeding to the syntax (i.e. elements that constitute a model) and
semantics (i.e. the meaning and use of elements of a model) of SNPSP systems,
we briefly recall regular expressions. Regular expressions will be used by neurons
to check which spiking or plasticity rules to apply. We denote the set of natural
(counting) numbers as N = {0, 1, 2, . . .}, where N

+ = N − {0}. Let V be an
alphabet, V ∗ is the set of all finite strings over V with respect to concatenation
and the identity element λ (the empty string). The set of all non-empty strings
over V is denoted as V +, so V + = V ∗ − {λ}.

A language L ⊆ V ∗ is regular if there is a regular expression E over V such
that L(E) = L. A regular expression over an alphabet V is constructed starting
from λ and the symbols of V using the operations union, concatenation, and +.

Specifically, (i) λ and each a ∈ V are regular expressions, (ii) if E1 and E2 are
regular expressions over V then (E1∪E2), E1E2, and E+

1 are regular expressions
over V , and (iii) nothing else is a regular expression over V . With each expression
E we associate a language L(E) defined in the following way: (i) L(λ) = {λ}
and L(a) = {a} for all a ∈ V , (ii) L(E1 ∪ E2) = L(E1) ∪ L(E2), L(E1E2) =
L(E1)L(E2), and L(E+

1) = L(E1)+, for all regular expressions E1, E2 over
V . Unnecessary parentheses are omitted when writing regular expressions. If
V = {a}, we simply write a∗ and a+ instead of {a}∗ and {a}+. If a ∈ V , we
write a0 = λ.

3 Spiking Neural P Systems with Structural Plasticity

In this section we define SNP systems with structural plasticity. Motivations and
recent results in SNPSP systems are included in a series of papers in [5–7]. A
spiking neural P system with structural plasticity (SNPSP systems) of degree
m ≥ 1 is a construct of the form Π = (O, σ1, . . . , σm, syn, out), where:

– O = {a} is the singleton alphabet (a is called spike);
– σ1, . . . , σm are neurons of the form (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 indicates the

initial number of spikes in σi; Ri is a finite rule set of σi with two forms:
1. Spiking rule: E/ac → a, where E is a regular expression over O, c ≥ 1;
2. Plasticity rule: E/ac → αk(i,N), where E is a regular expression over O,

c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1, and N ⊆ {1, . . . , m} − {i};
– syn ⊆ {1, . . . , m} × {1, . . . , m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
– in, out ∈ {1, . . . , m} indicate the input and output neuron labels.

Given neuron σi (we also say neuron i or simply σi) we denote the set of
neuron labels with σi as their presynaptic (postsynaptic, respectively) neuron as
pres(i), i.e. pres(i) = {j|(i, j) ∈ syn} (as pos(i) = {j|(j, i) ∈ syn}, respectively).
Essentially, |pres(i)| and |pos(i)| is the out- and in-degree of the neuron (i.e.
vertex) σi, respectively. Spiking rules are applied as follows: If neuron σi contains
b spikes and ab ∈ L(E), with b ≥ c, then a rule E/ac → a ∈ Ri can be applied.
Applying such a rule means consuming c spikes from σi, thus only b − c spikes
remain in σi. Neuron i sends one spike to every neuron with a label in pres(i) at
the same step as rule application. A writing convention we adopt is as follows:
if a rule E/ac → a has L(E) = {ac}, we simply write this as ac → a.

Plasticity rules are applied as follows. If at step t we have that σi has b ≥ c
spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri can be applied. The set N is
a collection of neurons to which σi can create a synapse to, or remove a synapse
from, using the applied plasticity rule. The rule consumes c spikes and performs
one of the following, depending on α:

– If α := + and N − pres(i) = ∅, or if α := − and pres(i) = ∅, then there is
nothing more to do, i.e. c spikes are consumed but no synapses are created or
removed. The former case corresponds to the case when σi has a synapse to
all neurons with labels in N , while the latter corresponds to the case when σi

has no more outgoing synapses to delete.

– for α := +, if |N − pres(i)| ≤ k, deterministically create a synapse to every
σl, l ∈ Nj − pres(i). If however |N − pres(i)| > k, nondeterministically select
k neurons in N − pres(i), and create one synapse to each selected neuron.

– for α := −, if |pres(i)| ≤ k, deterministically delete all synapses in pres(i). If
however |pres(i)| > k, nondeterministically select k neurons in pres(i), and
delete each synapse to the selected neurons.

If α := ± (α := ∓, respectively), create (delete, respectively) synapses at step t
and then delete (create, respectively) synapses at step t+1. Only the application
priority of synapse creation or deletion is changed, but the semantics of synapse
creation and deletion remain the same as when α ∈ {+,−}. Neuron i can receive
spikes from t until t + 1, but σi can only apply another rule at time t + 2.

An important note is that for σi applying a rule with α ∈ {+,±,∓}, creating
a synapse always involves a sending of one spike when σi connects to a neuron.
This single spike is sent at the time the synapse creation is applied, i.e. whenever
synapse (i, j) is created between σi and σj during synapse creation, we have σi

immediately transferring one spike to σj .
SNPSP systems are locally sequential (at each step, at most one rule is applied

per neuron) but globally parallel (neurons operate in parallel). Note that the
application of rules in neurons are synchronized, i.e. a global clock is assumed
and if a neuron can apply a rule then it must do so. A configuration of an
SNPSP system is based on (a) distribution of spikes in neurons, and (b) neuron
connections based on syn. For some step t, we can represent: (a) as 〈s1, . . . , sm〉
where si, 1 ≤ i ≤ m, is the number of spikes contained in σi; for (b) we can derive
pres(i) and pos(i) from syn, for a given σi. The initial configuration therefore
is represented as 〈n1, . . . , nm〉, with the possibility of a disconnected graph.

Rule application (as defined above) allows for transitions from one configu-
ration to another. A computation is defined as a sequence of transitions, from an
initial configuration, and following rule application semantics. A computation
halts if the system reaches a halting configuration, i.e. a configuration where no
rules can be applied. The output neuron applying a rule (we also say firing) trig-
gers an output of the system, which will be defined below. The output neuron
sends spikes to the environment, and pres(out) = ∅. The input neuron receives
spikes from the environment and pos(in) = ∅.

An example of an SNPSP system is Π = ({a}, σl, σm, σn, syn, n) where
σl = (1, {a → ±1(l, {m,n}}), σm = σn = (0, {a → a}), syn = {(m,n)}, and
the output neuron is σn. However and in what follows, for the sake of brevity
we omit formally defining the SNPSP system construct. We instead provide a
graphical representation as in Fig. 1. A computation of Π is as follows: the initial

Fig. 1. An SNPSP system Π.

configuration is 〈1, 0, 0〉 representing the corresponding spike distribution in the
neuron order σl, σm, σn.

Since a ∈ L(a), the plasticity rule of σl can be applied (we denote this as
step t). Since α := ± and k = 1 < |{m,n}|, σl must nondeterministically choose
to create either synapse (l,m) or (l, n) at t. At t therefore we have either the
synapse set syn′ = syn ∪ {(l,m)} or syn′′ = syn ∪ {(l, n)}. Also at t we have σl

immediately sending a spike to σm if (l,m) is created, and the spike distribution
is now 〈0, 1, 0〉. If (l, n) is created, the spike distribution is 〈0, 0, 1〉, since σn

immediately receives a spike from σi during synapse creation. At step t + 1 the
created synapse at t is deleted, since α := ±, so we have syn = {(m,n)} again.
Notice that if (l,m) was created, the single spike is sent out to the environment
(i.e. σn spikes) at step t + 2. Otherwise the spike is sent to the environment at
t + 1 (if (l, n) was created).

4 Solving Subset Sum with SNPSP systems

SNP systems have been used to solve many NP-complete problems, see e.g.
[13–15,17,22]. These solutions are usually categorized as either non-uniform or
uniform solutions. A problem Q is solved in a non-uniform way if for each spec-
ified instance I of Q we build an SNPSP system ΠQ,I , whose structure and
initial configuration depend on I. Furthermore, ΠQ,I halts and the output neu-
ron spikes at a specified time interval if and only if I is a positive instance of
Q. A uniform solution to Q consists of a family {ΠQ(n)}n∈N of SNPSP systems
such that, given an instance I ∈ Q of size n, we introduced a polynomial (in n)
number of spikes in specified (set of) input neuron(s) of ΠQ(n). Again, ΠQ(n)
halts and the output neuron spikes at a specified time, if and only if I is a
positive instance.

More formally, let X = (IX , ΘX) be a decision problem, and g : N → N

a computable function, where IX is a set of instances and ΘX is a predicate
over IX . We say X is solvable by a family Π = {Π(n)|n ∈ N} of SNPSP
systems, in time bounded by g, in a nondeterministic and uniform way (denoted
as X ∈ NSNP(g)) if the following hold:

– The family Π is polynomially uniform by Turing machines, i.e. there exists
a deterministic Turing machine working in polynomial time which constructs
Π(n), n ∈ N.

– There exist polynomial time computable functions, cod and s, over IX , such
that

• For each instance w ∈ IX , s(w) is a natural number, and cod(w) is a valid
input (using some encoding) of the SNPSP system Π(s(w)).

• The family Π is g-bounded with respect to (X, cod, s), i.e. for each instance
w ∈ IX , the minimum length of an accepting computation of Π(s(w)) with
input cod(w) is bounded by g(|w|).

• The family Π is sound with respect to (X, cod, s), i.e. for each w ∈ IX ,
if there exists an accepting computation of Π(s(w)) with input cod(w),
then ΘX(w) = 1.

• The family Π is complete with respect to (X, cod, s), i.e. for every w ∈ IX ,
if ΘX(w) = 1 then there exists a computation of Π(w) with input cod(w)
which is an accepting computation.

We say X = (IX , ΘX) is solvable in polynomial time by a family Π =
{Π(n)|n ∈ N} of SNPSP systems, in a nondeterministic and uniform way
(denoted as X ∈ NPSNP) if there exists a k ∈ N such that X is solvable
by the family Π in time bounded by a polynomial, in a nondeterministic and
uniform way.

The preference of uniform solutions over non-uniform solutions is given by the
fact that the former are more strictly related to the structure of the problem,
instead of specific instances of the problem. For non-uniform solutions, input
neurons are not needed since the problem instance is embedded in the system
structure (e.g. number of spikes, neurons, or rules) while in uniform solutions,
at least one input neuron is needed to introduce the instance into the system.

Deterministic and nondeterministic solutions (both for non-uniform and uni-
form solutions) can be found in [13–15,17,22]. Note that nondeterministic solu-
tions allow for more “compact” solutions, in terms of the number of neurons
in the system. Unless P = NP, we need exponential space (i.e. neurons) to
deterministically solve hard problems in polynomial time.

The NP-complete problem considered here, Subset sum, can be defined as
follows:
Problem: Subset Sum [10]

– Instance: S, and a (multi)set V = {v1, v2, . . . , vn}, with S, vi ∈ N and
1 ≤ i ≤ n;

– Question: Is there a sub(multi)set B ⊆ V such that
∑

b∈B

b = S?

In [15], the Subset sum problem was also solved in a nondeterministic and
non-uniform way using SNP systems with extended rules: extended rules, as
compared to spiking rules, are of the form E/ac → ap with the meaning that
each step a neuron can produce p ≥ 1 spikes instead of only one spike. Addition-
ally, [15] used some neurons that applied rules sequentially, while some neurons
applied their rules in an exhaustive manner (i.e. it is possible to apply a rule
more than once in one step). A follow-up and improved (uniform) solution was
then given in [14]. There are several ways of encoding an instance of Subset Sum
as the input to the system. Two common ways (used in this work, and as [15]
and [14]) involve either (i) starting with an initial configuration where each σi

stores vi number of spikes, 1 ≤ i ≤ n (for the non-uniform solution), or (ii)
each σini

receives a number of spikes from the environment equal to non-zero
multiples of vi, 1 ≤ i ≤ n (for the uniform solution).

5 A Non-uniform Solution to Subset Sum

We begin by providing a family Π of nondeterministic and non-uniform SNPSP
systems solving Subset Sum in constant time, as given in [7]. Actually, the

non-uniform solution provided in this section fixes a “bug” in the non-uniform
solution given in [7]. The non-uniform solution provided in [7] indeed solves the
Subset Sum problem, but it is possible for the solution to produce false posi-
tive results. The size of each Π ∈ Π is dependent on the value of n and each
vi, 1 ≤ i ≤ n. The number of neurons is a function of the magnitude of each vi.

The construct of each SNPSP system Πss,I ,Πss ∈ Π, that solves instance I
of the Subset Sum problem is as follows:

Πss,I =
({a},

{
σi, σi(Y) , σi(N) , σi(j) , σout

∣
∣1 ≤ i ≤ n, 1 ≤ j ≤ vi

}
, syn, out

)

where V = {v1, v2, . . . , vn} and we need to check for the value S. We refer
to Fig. 2 for a graphical representation of Πss. Compared to the non-uniform
solution in [15], each Πss has the following normal form (i.e. a simplifying set of
restrictions): (i) simple, i.e. each neuron has exactly one rule; (ii) only synapse-
level nondeterminism, i.e. nondeterministic choice exists only in choosing which
synapse to create and not which rule to apply (known as rule-level nondetermin-
ism; (iii) no forgetting rule or rule with a delay is used.

The initial configuration is where every σi has one spike, and every other
neuron has none. In step 1, each neuron σi nondeterministically chooses to create
either synapse

(
i, i(Y)

)
or

(
i, i(N)

)
. If

(
i, i(N)

)
is created, neuron σi(N) consumes

a spike but has pres
(
i(N)

)
= ∅, hence no more computations can proceed. If(

i, i(Y)

)
is created, then at step 2, σi(Y) then it sends one spike each to σi(1) to

σi(vi)
, i.e. vi number of spikes are produced since

∣
∣pres

(
i(Y)

)∣
∣ = vi.

Once neurons σi(1) to σi(vi)
receive one spike each, they send one spike each

to σout at step 3. If exactly S number of spikes are received by σout then σout

will send a spike to the environment. Therefore if an affirmative answer to the
problem instance exists, a spike would be sent to the environment in four steps
since the initial configuration. Otherwise, no spike sent to the environment in
four steps indicates a negative answer to the instance. Whether σout sends a
spike or not, the system still halts in four steps. This ends the description of the
non-uniform solution.

Fig. 2. The non-uniform SNPSP system Πss solving Subset Sum.

In Πss the computation time is constant (four steps) but the number of
neurons is dependent on the individual values of the input numbers vi, 1 ≤
i ≤ n. In this case, our non-uniform solution using exactly one (plasticity) rule
in some neurons is enough to replace the functions of rules with delays and
forgetting rules in the non-uniform solution in [15]. At the price of extending the
computation time, we obtain a uniform solution in the following section.

6 A Uniform Solution to Subset Sum

Next, we provide a family Π solving Subset Sum in a nondeterministic and
uniform way in constant time. In this case, the system only “knows” the value of
n, while S and each vi, 1 ≤ i ≤ n must be introduced into the system using n+1
input neurons. This uniform family of solutions improves the solution provided
in the previous section and the uniform solution in [15].

Each SNPSP system Πus(n),Πus ∈ Π, that solves instance I of size n of
the problem is illustrated in Fig. 3. We introduce 2vi, 1 ≤ i ≤ n spikes into the
corresponding input neuron ini, while we introduce 2S spikes into inn+1. Figure 3
shows these spikes already present in the n+1 input neurons. These even number
of spikes cannot be used by σini

until a spike is received from σci . Neurons
σci , 1 ≤ i ≤ n are the only neurons with nondeterminism (synapse-level). These
neurons nondeterministically allow their corresponding σini

neurons to spike (if
σci creates synapse (ci, ini)) or not (if σci creates synapse (ci, x)). Note that
there is no σx so that (ci, x) is never actually created.

Neurons σci apply their rules at step 1, and at step 3 neurons ei,1 spike if
they become activated from their corresponding ini neuron. It also takes 3 steps
before σh3 and σh4 begin to spike, starting with the spiking of σh1 at step 1.
Neurons σh3 and σh4 “feed” a spike to each other starting at step 3. A spike is
also sent from σh4 to σt1 (the “comparison trigger” neuron). At step 4 the odd
number of spikes in σt1 , sent by the activated ei,1 neurons and σh4), allows the
use of its forgetting rule to remove all of its spikes.

At step 5 only σh4 sends a spike to σt1 . At step 6, σt1 sends one spike each
to σh4 and σt2 , while σt1 receives one more spike from σh4 . At step 7, σh4 stores
two spikes so it can never spike again, while σt1 sends one more spike to σt2 . At
step 8, σt2 sends a spike to σacc and σnn+1 which become activated with an odd
number of spikes now. Both σacc and σnn+1 empty their spikes (removing two
spikes each step) while sending one spike each to σout.

If the number of spikes accumulated in σacc equals the 2S number of spikes in
σnn+1 , then the system will halt without producing a spike to the environment.
Otherwise, σout will receive one spike from either σacc or σnn+1 and send one
spike to the environment. Halting without σout producing a spike, and halting
with σout producing a spike, corresponds to a positive and negative answer to the
problem instance, respectively. This ends the description of the uniform solution.

The number of neurons is constant, with 4n + 9 neurons. The system halts
in at most 2

∑n
i=1 vi + 6 steps: we have one initial step; at most max{vi|1 ≤ i ≤

n} + 1 to move the spikes from σini
to σt1 ; one step for σt1 to send its first (out

of two) spike; σacc and σinn+1 become activated after two steps, once σt1 has
sent two spikes; at most

∑n
i=1 vi steps for comparison between the spikes of σacc

and σinn+1 ; the last step is for σout to send one spike to the environment. Since
max{vi|1 ≤ i ≤ n} ≤ ∑n

i=1 vi, we obtain the upper bound for the halting time.

Fig. 3. The uniform SNPSP system Πus solving Subset Sum.

Actually, the forgetting rules in Πus can be removed by using a plasticity rule
that functions like a forgetting rule, which is done by the σci neurons (synapse
(ci, x) is never created). The number of neurons and the halting time will still
remain the same. In comparison, the non-uniform system in [15] solving Subset
Sum (using forgetting rules, rules with delays, and standard rules) computes in
four steps, while their uniform solution halts in at most 3

∑n
i=1 vi+6 steps using

5n + 13 neurons (also using delays, forgetting rules, and standard rules). Thus,
one benefit of using synapse-level nondeterminism in this case is decreasing the
needed neurons by a linear amount. Also in this case, fewer number of neurons
helped improve the computation time: spikes have fewer neurons to pass through,
so the spike of σout is sent to the environment sooner rather than later.

7 Final Remarks

In this work, we fixed the non-uniform solution to Subset Sum in [7] using
SNPSP systems. We also provided a uniform family of solutions to Subset Sum

using SNPSP systems. The use of plasticity rules in this case allowed for a sim-
plifying set of requirements (i.e. normal form) to be applied to our non-uniform
solution, compared to the non-uniform solution in [15]. In particular, in our
non-uniform solution the plasticity rules could replace forgetting rules and rules
with delays. Our uniform solution decreased the number of neurons compared
to a uniform solution to Subset Sum using SNP systems in [15]. A clear research
direction of interest is to show how to solve other hard problems using plasticity
rules. Also, how do we make better use of the nondeterminism at the synapse
level due to plasticity rules, to perhaps encode problem instances?

Synapse-level nondeterminism in this work provided a reduction in the num-
ber of neurons, but perhaps we can also use plasticity rules to further reduce sys-
tem parameters, e.g. number of neurons, number of rules in neurons, or synapses
in the system. As an extension and future work, we also plan to use SNPSP sys-
tems to solve other hard problems, in particular, combinatorial problems come
to mind: since plasticity rules can (non)deterministically try to create connec-
tions (i.e. synapses), one natural use of such rules is to try different combinations
of connections in order to solve problems. These work extensions will provide
further complexity classes (e.g. semi- or non-uniform) and members of these
classes.

Acknowledgements. F.G.C. Cabarle is grateful for the support of the HRIDD HRDP
grant I-15-0626-06 of the DOST PCIEERD, Philippines. N. H. S. Hernandez is sup-
ported by the UPAA San Francisco & Mely & Rick Ray foundation professorial chair,
and the HRIDD HRDP grant I-15-1006-19 of the DOST PCIEERD, Philippines. M.A.
Mart́ınez-del-Amor acknowledges the support of the Alain Bensoussan Fellowship pro-
gramme of ERCIM, and of the project TIN2012-37434 of the “Ministerio de Economı́a
y Competitividad” of Spain, co-financed by FEDER funds.

References

1. P systems web page. http://ppage.psystems.eu/
2. ISI emerging research front, October 2003. http://esi-topics.com/erf/october2003.

html
3. Butz, M., Wörgötter, F., van Ooyen, A.: Activity-dependent structural plasticity.

Brain Res. Rev. 60(2), 287–305 (2009)
4. Cabarle, F.G.C., Adorna, H.N., Ibo, N.: Spiking neural P systems with structural

plasticity. In: Proceedings of Asian Conference on Membrane Computing (ACMC),
Chengdu, China, 4–7 November 2013 (2013)

5. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J.: Asynchronous spiking neural
P systems with structural plasticity. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC
2015. LNCS, vol. 9252, pp. 132–143. Springer, Heidelberg (2015)

6. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J.: Sequential spiking neural P
systems with structural plasticity based on max/min spike number. Neural Com-
put. Appl., 1–11 (2015)

7. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P
systems with structural plasticity. Neural Comput. Appl. 26(8), 1905–1917 (2015)

http://ppage.psystems.eu/
http://esi-topics.com/erf/october2003.html
http://esi-topics.com/erf/october2003.html

8. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing. Springer, Heidelberg (2006)

9. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing in Systems and Synthetic Biology. Springer, Heidelberg (2014)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

11. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptology 9(4), 199–216 (1996)

12. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Infor-
maticae 71(2–3), 279–308 (2006)

13. Leporati, A., Gutiérrez-Naranjo, M.A.: Solving subset sum by spiking neural P
systems with pre-computed resources. Fundamenta Informaticae 87, 61–77 (2008)

14. Leporati, A., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.J.: Uniform
solutions to sat and subset sum by spiking neural P systems. Nat. Comput. 8(4),
681–702 (2009)

15. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving numerical NP-complete
problems with spiking neural P systems. In: Eleftherakis, G., Kefalas, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 336–352.
Springer, Heidelberg (2007)

16. Nishida, T.Y.: Membrane algorithms. In: Freund, R., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 55–66. Springer, Heidelberg
(2006)

17. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron
division and budding. Sci. China Inf. Sci. 54(8), 1596–1607 (2011)

18. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
19. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
20. Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems recent results, research

topics. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algo-
rithmic Bioprocesses, pp. 273–291. Springer, Heidelberg (2009)

21. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, New York (2010)

22. Wang, J., Hoogeboom, H.J., Pan, L.: Spiking neural P systems with neuron divi-
sion. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
CMC 2010. LNCS, vol. 6501, pp. 361–376. Springer, Heidelberg (2010)

	Spiking Neural P Systems with Structural Plasticity: Attacking the Subset Sum Problem
	1 Introduction
	2 Preliminaries
	3 Spiking Neural P Systems with Structural Plasticity
	4 Solving Subset Sum with SNPSP systems
	5 A Non-uniform Solution to Subset Sum
	6 A Uniform Solution to Subset Sum
	7 Final Remarks
	References

