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Abstract

In this paper, an eigenvalue criterion for hypercyclicity due to the first author is im-
proved. As a consequence, some new sufficient conditions for a sequence of infinite order
linear differential operators to be hypercyclic on the space of holomorphic functions on cer-

tain domains of C
N

are shown. Moreover, several necessary conditions are furnished. The
equicontinuity of a family of operators as before is also studied, and it is even characterized

if the domain isC
N

. The results obtained extend or improve earlier work of several authors.
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1 Introduction, notation and preliminary results.

Throughout this paper we denote by N the set of positive integers, by R the real

line, by C the field of complex numbers, and by N0 the set N0 = N∪{0}. Let X, Y

be two linear topological spaces, Ti : X → Y (i ∈ I := an arbitrary index set) a

family of continuous linear mappings, and x ∈ X. Then x is said to be hypercyclic

or universal for (Ti) whenever its orbit {Tix : i ∈ I} under (Ti) is dense in Y .

The family (Ti) is called hypercyclic whenever it has a hypercyclic vector. Note

that if (Ti) is hypercyclic then it is not equicontinuous, but the converse is false

in general. In the case I = N, it is clear that, in order that a sequence (Tn) can

be hypercyclic, Y must be separable. If T : X → X is an operator (= continuous

linear selfmapping) on X, then a vector x ∈ X is said to be hypercyclic for T if and

only if it is hypercyclic for the sequence (T n) of iterates of T , i.e., T n = T ◦T ◦· · ·◦T
(n–fold). The operator T is hypercyclic when there is a hypercyclic vector for T .

The symbols HC(T ) and HC((Ti)) will denote, respectively, the set of hypercyclic

vectors of an operator T and of a family Ti : X → Y (i ∈ I) of continuous
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linear mappings. In the last two decades an extensive literature about the topic of

hypercyclicity has been developed; a good survey for the whole history is [Gr1].

Let G be a nonempty open subset of CN (N ∈ N). We say that G is a domain

when, in addition, it is connected. A domain G ⊂ C
N is said to be a Runge

domain (see [Hor] or [Kra]) if and only if each holomorphic function on G can be

uniformly approximated by polynomials on compact subsets of G. Note that, if

N = 1, then G is a Runge domain if and only if it is simply connected. By H(G)

we denote, as usual, the Fréchet space of holomorphic functions on G, endowed

with the compact-open topology. Recall that the family {V (K, ε) : ε > 0, K is

a compact subset of G} is a neighbourhood basis for the origin in H(G). Here

V (K, ε) := {f ∈ H(G) : ||f ||K < ε}. For A ⊂ C
N we have denoted ||g||A :=

sup{|g(z)| : z ∈ A} whenever g is a complex function defined on the set A.

G. Godefroy and J.H. Shapiro [GoS, Section 5] proved in 1991 the following

generalization of the classical approximation theorems by translates and derivatives

of a single entire function due respectively to Birkhoff [Bir] and MacLane [Mac]:

If T is an operator on the space H(CN) of entire functions on CN that commutes

with each of the translation operators τa (a ∈ CN) given by τaf(z) = f(z + a)

(f ∈ H(CN), z ∈ CN), and is not a scalar multiple of the identity, then HC(T ) is

a dense Gδ-subset of H(CN); in addition, HC(T ) contains all nonzero functions of

a dense, T–invariant, linear submanifold of X := H(CN). P. Bourdon [Bou] and

D. Herrero [Her] proved independently that every hypercyclic operator T on any

Banach space X (in fact, on any real or complex locally convex space X; see [Ans]

and [Bes]) has the same property. The first author of the present paper [Be4] has

recently shown that if X and Y are two separable metrizable linear topological

spaces and if Tn : X → Y (n ∈ N) is a sequence of continuous linear mappings for

which there is an increasing sequence (nj) of positive integers with the property

that HC((Tmj
)) is dense for every subsequence (mj) of (nj), then HC((Tn))∪ {0}

contains a dense linear submanifold of X.

Given N ∈ N, denote by Dj (1 ≤ j ≤ N) complex partial differentiation with

respect to the j-th coordinate. A multi–index is an N–tuple p = (p1, ..., pN) of

nonnegative integers. Denote |p| = p1 + · · ·+ pN , p! = p1! · · · pN !, Dp = Dp1
1 ◦ · · · ◦

DpN
N (with D0

j = I = the identity operator for every j ∈ {1, ..., N}), and |z| =

(|z1|2 + · · ·+ |zN |2)1/2, zp = zp11 · · · z
pN
N , zw = z1w1 + · · ·+ zNwN if z = (z1, ..., zN),

w = (w1, ..., wN). An entire function Φ(z) =
∑
|p|≥0 apz

p is said to be of exponential

type whenever there exist positive constants A and B such that |Φ(z)| ≤ AeB|z|
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(z ∈ CN). For later references, we denote by E the class of all entire functions of

exponential type. An entire function Φ is said to be of subexponential type if and

only if, given ε > 0, there is a positive constant A = A(ε) such that |Φ(z)| ≤ Aeε|z|

(z ∈ CN). Every entire function of subexponential type is obviously in E . It is easy

to realize (see, for instance, [Val], [Dic] or [Be3]) that if G ⊂ CN is a nonempty

open subset and Φ is an entire function as above with subexponential type, then

the series Φ(D) =
∑
|p|≥0 apD

p defines an operator on H(G). If G = C
N , the same

result holds just by assuming that Φ is of exponential type. So Φ(D) defines, under

the latter conditions, an infinite order linear differential operator with constant

coefficients. It is shown in [GoS] that, given an operator L on H(CN), then L

commutes with every translation operator τa (a ∈ CN) if and only if L commutes

with each Dk (1 ≤ k ≤ N) if and only if L = Φ(D) for some entire function Φ in

E .

As a consequence of an eigenvalue criterion for hypercyclicity [Be3, Theorem 7],

the first author obtained some extensions of Godefroy–Shapiro’s result [Be3, Theo-

rems 8–9], this time about the hypercyclicity of a sequence of operators (Φn(D)) de-

fined on the space of holomorphic functions on a Runge domain G of CN . Further-

more, conditions about the equicontinuity of a sequence (cnD
n), where (cn) ⊂ C

(note that this is the special case Φn(z) = cnz
n), are shown in [Be1] and [Be2] (see

also [Cal], when each cn is replaced to a holomorphic fuction cn(z)).

Our aim in this paper is to provide with a more general eigenvalue criterion and,

as a consequence, new sufficient conditions for the hypercyclicity of a sequence

of infinite order linear differential operators. In addition, necessary conditions

are established, and some special cases are analyzed. Necessary conditions and

sufficient conditions for its equicontinuity are also furnished, and in particular we

characterize completely the equicontinuity in H(CN).

2 Eigenvalues, exponentials, hypercyclicity and equiconti-

nuity.

Likewise in [GoS, Section 5] and [Be3, Theorems 8–9], the key of the proof of

hypercyclicity is to provide a good supply of eigenvectors of the corresponding

operators. Recall that, in a linear topological space, a subset is said to be total

whenever its linear span is dense. If T is an operator and e is an eigenvector, then
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we denote by λ(T, e) its corresponding eigenvalue. Next, we state as a lemma the

following rather general hypercyclicity criterion, which can be found in [Gr1].

Lemma 2.1 Assume that X is a Baire topological vector space, Y is a separable

metrizable topological vector space and Tn : X → Y (n ∈ N) are continuous linear

mappings. Suppose that there are dense subsets X0 of X and Y0 of Y and mappings

Sn : Y0 → X such that

(a) for every x ∈ X0, there exists an increasing sequence (nk) = {n1 < n2 < ...}
of positive integers with Tnk

x→ 0 (k →∞),

(b) for every y ∈ Y0, (Sny) converges, and

(c) for every y ∈ Y0, Tn(Sny)→ y (n→∞).

Then HC((Tn)) is residual.

As noted in [Gr1, Remark 2], if all the limits in (b) are zero then we may weaken

(a) to be for every x ∈ X0, there exists an increasing sequence (nk) = {n1 < n2 <

...} of positive integers such that (Tnk
x) converges. Furthermore, the quantifier

“∃(nk)” can be shifted from (a) to (b) or (c).

Under the same hypothesis for X and Y , it can be proved (see, for instance,

[Be2]) that the following condition is also sufficient in order that HC((Tn)) be

residual: there exist dense subsets X0 of X and Y0 of Y satisfying that for every

x ∈ X0 and every y ∈ Y0 there exists an increasing sequence (nk) of positive

integers and a sequence (xk) ⊂ X such that xk → 0, Tnk
x→ 0 and Tnk

xnk
→ y as

k →∞.

By using the latter result, the next eigenvalue criterion can be proved (see [Be3,

Theorem 7]): Let X be a separable F–space and (Tn) a sequence of operators on

X. Assume that there are two total subsets A, B of X satisfying that for every

pair of finite subsets F1 ⊂ A and F2 ⊂ B there is an increasing sequence (nk) in

N such that every element in F1 ∪F2 is an eigenvector for each Tnk
in such a way

that λ(Tnk
, a) → 0 (k → ∞) for all a ∈ F1 and λ(Tnk

, b) → ∞ (k → ∞) for all

b ∈ F2. Then HC((Tn)) is residual.

If we employ Lemma 2.1 (and the note after it) instead of the just mentioned

result then the following eigenvalue criterion can be obtained. The proof is left to

the interested reader.
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Theorem 2.2 Let X be a separable F–space and (Tn) be a sequence of operators

on X. Assume that there are two total subsets A, B of X satisfying at least one

of the following conditions:

(A) For every finite subset F ⊂ A there is an increasing sequence (nk) in N such

that every element in F is an eigenvector for each Tnk
in such a way that

λ(Tnk
, a) → 0 (k → ∞) for all a ∈ F . In addition, every element in B is

an eigenvector for each Tn in such a way that for every b ∈ B the sequence

(λ(Tn, b)) converges to a nonzero scalar.

(B) For every finite subset F ⊂ A there is an increasing sequence (nk) in N in such

a way that for every a ∈ F the sequence (λ(Tnk
, a)) converges. In addition,

every element in B is an eigenvector for each Tn in such a way that, for every

b ∈ B, (λ(Tn, b))→∞ (n→∞).

(C) Every element in A is an eigenvector for each Tn in such a way that λ(Tn, a)→
0 (n → ∞) for every a ∈ A. In addition, for every finite subset F ⊂ B
there is an increasing sequence (nk) in N such that every element in F is

an eigenvector for each Tnk
in such a way that for every b ∈ F the sequence

(λ(Tnk
, b)) converges to a nonzero scalar.

(D) Every element in A is an eigenvector for each Tn in such a way that for every

a ∈ A the sequence (λ(Tn, a)) converges. In addition, for every finite subset

F ⊂ B there is an increasing sequence (nk) in N such that every element in F
is an eigenvector for each Tnk

in such a way that (λ(Tnk
, b)) → ∞ (k → ∞)

for every b ∈ F .

Then HC((Tn)) is residual.

In other order of ideas, recall that E denotes the class of entire functions on CN

of exponential type. We say that a subset S ⊂ CN is an E–unicity set whenever

the following property holds: if f ∈ E and f(z) = 0 for all z ∈ S then f ≡ 0.

Note that, by the identity principle for holomorphic functions, if f is an arbitrary

entire function vanishing at S and S is a nonempty open set (or even just a set

with at least an accumulation point if N = 1) then f ≡ 0. This is not necessary

for the class E ; for instance, if N = 1 and χ := lim supr→∞
logn(r)
log r

> 1, where

n(r) is the number of points of S ∩ {|z| ≤ r}, then S is an E–unicity set (e.g.,

S = {n1/2 : n ∈ N}, which gives χ = 2). Indeed, if f 6≡ 0, the latter condition

5



would imply that the convergence exponent of the sequence of zeros of f is strictly

greater that the growth order of f , which is clearly impossible. The next lemma will

be useful later. Its proof is classical, but we include it for the sake of completeness.

If c ∈ CN then we denote ec(z) = exp(cz).

Lemma 2.3 If S is an E–unicity set then M(S) := {ec : c ∈ S} is total in

H(CN).

Proof. Fix a functional L ∈ H(CN)∗ (= the topological dual space of H(CN))

such that L(ec) = 0 for all c ∈ S. Consider the Laplace transform L̃ of L (see

[Hor, p. 100]) given by L̃(z) = L(ez) (z ∈ CN). Then it is easy to show that L̃

is an entire function on CN of exponential type which vanishes at S. Since S is

an E–unicity set, we get L̃ ≡ 0. Then (DpL̃)(0) = 0 for all p ∈ NN0 . But it is

easy to show by induction that (DpL̃)(0) = L(αp), where αp(t) = tp (t ∈ CN). By

linearity, L vanishes at every polynomial, so L ≡ 0 because the set of polynomials

is dense in H(CN). Summarizingly, if L(f) = 0 for all f ∈M(S) then L(f) = 0 for

all f ∈ H(CN). By the Hahn–Banach theorem, the linear span of M(S) is dense

in H(CN) or, equivalently, M(S) is total.

Next, we state here eight conditions that may or may not be satisfied by a

sequence (Φn) ⊂ H(CN). Recall that if Φ(z) =
∑
|p|≥0 apz

p ∈ H(CN) and Φ is not

identically zero, its multiplicity for the zero at the origin is m(Φ) = min{|p| : ap 6=
0}. Note that Φ(D)ec = Φ(c)ec for all c ∈ CN , so ec is an eigenvector of Φ(D) with

eigenvalue Φ(c).

(P) There are two E–unicity sets A, B in CN such that for every pair of finite

subsets F1 ⊂ A and F2 ⊂ B there exists an increasing sequence (nk) ⊂ N

with Φnk
(a) → 0 (k → ∞) for all a ∈ F1 and Φnk

(b) → ∞ (k → ∞) for all

b ∈ F2.

(Q) There is an E–unicity set B in CN such that for every finite subset F ⊂ B

there exists an increasing sequence (nk) ⊂ N with m(Φnk
) → ∞ (k → ∞)

and Φnk
(b)→∞ (k →∞) for all b ∈ F .

(R) There are two E–unicity sets A, B in C
N such that for every finite subset

F ⊂ A there exists an increasing sequence (nk) ⊂ N with Φnk
(a)→ 0 (k →∞)

for all a ∈ F , and for each b ∈ B the sequence (Φn(b)) converges to a nonzero

complex number.
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(S) There is an E–unicity set B in CN such that for each b ∈ B the sequence

(Φn(b)) converges to a nonzero complex number, and there exists an increasing

sequence (nk) ⊂ N with m(Φnk
)→∞ (k →∞).

(T) There are two E–unicity sets A, B in C
N such that for every finite subset

F ⊂ A there exists an increasing sequence (nk) ⊂ N satisfying that for every

a ∈ F the sequence (Φnk
(a)) converges. In addition, Φn(b) → ∞ (n → ∞)

for every b ∈ B.

(U) There are two E–unicity sets A, B in CN such that Φn(a) → 0 (n → ∞) for

all a ∈ A, and for each finite subset F ⊂ B there exists an increasing sequence

(nk) ⊂ N satisfying that for every b ∈ F the sequence (Φnk
(b)) converges to a

nonzero complex number.

(V) There is an E–unicity set B in CN such that for each finite subset F ⊂ B

there exists an increasing sequence (nk) ⊂ N satisfying that for every b ∈ F
the sequence (Φnk

(b)) converges to a nonzero complex number. In addition,

m(Φn)→∞ (n→∞).

(W) There are two E–unicity sets A, B in C
N such that for every a ∈ A the

sequence (Φn(a)) converges, and for every finite subset F ⊂ B there is an

increasing sequence (nk) ⊂ N with Φnk
(b)→∞ (k →∞) for all b ∈ F .

We are now ready to state our next result. In the remaining of this paper, Φ and

Φi (i ∈ I := an arbitrary index set) will denote entire functions of subexponential

type if G 6= CN and of exponential type if G = C
N , G being a given domain in

C
N . Thus, the operators Φ(D), Φi(D) (i ∈ I) are well defined on H(G).

Theorem 2.4 Suppose that G is a Runge domain of CN and that (Φn) satisfies

at least one of the conditions (P)–(W). Then HC((Φn(D))) is residual in H(G).

Proof. Recall that, by Lemma 2.3, the set M(S) is total in H(CN) (hence

in H(G), because G is Runge) whenever S is an E–unicity set. Recall also that

the set {zp : p ∈ NNo } is total in H(G), because that set spans {polynomials}.
Take X = H(G) and Tn = Φn(D) (n ∈ N). Then: Apply the result mentioned

just before Theorem 2.2 on A = M(A), B = M(B) if (Φn) satisfies (P), and on

A = {zp : p ∈ NN0 }, B = M(B) if (Φn) satisfies (Q). Apply condition (A) of

Theorem 2.2 on A = M(A), B = M(B) if (Φn) satisfies (R), and on A = {zp :

p ∈ NN0 }, B = M(B) if (Φn) satisfies (S). Apply condition (B) of Theorem 2.2
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on A = M(A), B = M(B) if (Φn) satisfies (T). Apply condition (C) of Theorem

2.2 on A = M(A), B = M(B) if (Φn) satisfies (U), and on A = {zp : p ∈ NN0 },
B = M(B) if (Φn) satisfies (V). Finally, apply condition (D) of Theorem 2.2 on

A = M(A), B = M(B) if (Φn) satisfies (W).

Let us furnish several examples that illustrate Theorem 2.4. The reader will

realize that none of the examples below can be derived from Theorems 8, 9 of

[Be3]. But before this we should fix some subsets. Consider S = {n1/2 : n ∈ N}
and let (rj) be any sequence of positive real numbers such that the plane disks

{|z − j1/2| < rj} (j ∈ N) be pairwise disjoint, for instance, rj = 1/6j. Define the

compacts sets Kn := (Ln ∪ S) ∩ In (n ∈ N), where

In := [−n, n]× [−n, n]

and

Ln := C \ [((0,+∞)× (−1/n, 0)) ∪
∞⋃
j=1

{|z − j1/2| < rj/n}].

It is easy to see that each Kn has connected complement. Define the functions

fn, gn : Kn → C (n ∈ N) as

fn(z) =

 1 (z ∈ Ln ∩ In)

n (z ∈ S ∩ In)

and

gn(z) =

 1 (z ∈ Ln ∩ In)

0 (z ∈ S ∩ In).

It is clear that every fn and every gn is holomorphic on some open subset contain-

ing Kn and depending on n. Then Runge’s theorem guarantees the existence of

polynomials Pn, Qn satisfying

||Pn − fn||Kn < 1/n and ||Qn − gn||Kn < 1/n (n ∈ N).

Since Ln∩In (S∩In) grows up to C\S (up to S, respectively) as n tends to infinity,

the latter two inequalities lead us to the following facts of point convergence:

Pn → 1 on C \ S, Pn →∞ on S, Qn → 1 on C \ S and Qn → 0 on S as n→∞.

EXAMPLE 1. There is a residual set of entire functions f on C such that each

entire function can be locally uniformly approximated by entire functions of the

form
n∑
j=0

Ajnf
(j) (n ∈ N),
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where Ann = 1 and

Ajn = (−1)n−j
∑

1≤i1<i2<···<in−j≤n
(i1 · · · in−j)1/2 (0 ≤ j ≤ n− 1).

Indeed, it suffices to apply the latter theorem with condition (P) or (T) on A = S,

B = C \ S, Φn(z) =
n∏
j=1

(z − j1/2) (n ∈ N) (use Cardano–Vieta’s relations).

EXAMPLE 2. The set HC((Pn(D))) is residual in H(C) because Theorem 2.4 can

be applied with condition (T) or (W) on A = C \ S, B = S.

EXAMPLE 3. The set HC((Qn(D))) is residual in H(C) because Theorem 2.4

can be applied with condition (R) or (U) on A = S, B = C \ S.

Analogous properties to (P)–(W) regarding the densely hereditary hypercyclic-

ity of (Φn(D)) can be formulated as in [Be4, Section 3]. This would yield sufficient

conditions for the existence of dense (Φn(D))–hypercyclic linear submanifolds in

H(G).

In his paper, Birkhoff [Bir] essentially proved that given an unbounded sequence

(an) ⊂ C there exists an entire function in C such that the set of translates

{f(z + an) : n ∈ N} is dense in H(C), i.e., the sequence (τan) is hypercyclic (as a

matter of fact, the sequence (an) depended on the particular entire function to be

approximated; in [Luh] this dependence is dropped). His constructive proof can be

adapted to CN : see, for instance, [Abe] and [AbZ]; see also [ArG] for corresponding

results for harmonic functions on RN . As a quick application of the latter theorem,

we will obtain this Birkhoff theorem in several variables.

Theorem 2.5 Assume that S ⊂ CN . Then the following conditions are equivalent:

(a) S is unbounded.

(b) The family of operators (τa)a∈S is hypercyclic on H(CN).

(c) HC((τa)a∈S) is residual in H(CN).

(d) (τa)a∈S is not equicontinuous on H(CN).

Proof. The implications (c) ⇒ (b) ⇒ (d) are trivial. If S is bounded, take

M ∈ (0,+∞) with |a| ≤ M for all a ∈ S. Given a basic neighbourhood V (K, ε)

for the origin in H(CN), it is clear that⋃
a∈S

τa(V (L, δ)) ⊂ V (K, ε),
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where δ = ε and L = {z + w : z ∈ K, |w| ≤M}. Hence (τa)a∈S is equicontinuous,

so (d) implies (a).

As for (a) ⇒ (c), we will try to apply Theorem 2.4 under the condition (P) (it

is also possible to use Theorem 8 of [Be3]). By hypothesis, there is a sequence

(an) ⊂ S with an → ∞ (n → ∞). Assume that an = (an1, ..., anN) and bnj =

Re anj, cnj = Im anj (j = 1, ..., N ; n ∈ N). By taking a subsequence if necessary,

and possibly by using a permutation of the variables z1, ..., zN together with a

rotation on the variable z1 (the latter two operations generate fixed automorphisms

of H(CN) which preserve hypercyclicity), we can suppose without loss of generality

that bn1 →∞ (n→∞) and that there is a 2N–tuple (ε1, δ1, ..., εN , δN) ∈ {0, 1}2N

such that (an) ⊂ Π(ε1, δ1, ..., εN , δN) := {z = (b1 + ic1, ..., bN + icN) ∈ C
N :

(−1)ε1b1 ≥ 0, (−1)δ1c1 ≥ 0, ..., (−1)εN bN ≥ 0, (−1)δN cN ≥ 0}. Take

A = int Π(1− ε1, δ1, 1− ε2, δ2, ..., 1− εN , δN)

and

B = int Π(ε1, 1− δ1, ε2, 1− δ2, ..., εN , 1− δN),

where “int” denotes the interior of the corresponding set. Trivially, A and B are

nonempty open subsets of CN . Now, note that τan = Φn(D), where Φn(z) = eanz

(n ∈ N). For any z = (z1 = x1 + iy1, ..., zN = xN + iyN) ∈ CN we have that

|Φn(z)| = exp (
N∑
j=1

(bnjxj − cnjyj))

= exp (bn1x1) · exp (
N∑
j=2

bnjxj −
N∑
j=1

cnjyj).

Observe that bn1x1 → +∞ (n→∞) and
∑N
j=2 bnjxj−

∑N
j=1 cnjyj ≥ 0 for all z ∈ B,

and that bn1x1 → −∞ (n → ∞) and
∑N
j=2 bnjxj −

∑N
j=1 cnjyj ≤ 0 for all z ∈ A.

Thus, Φn → 0 (n → ∞) pointwise on A and Φn → ∞ (n → ∞) pointwise on B.

This finishes the proof because if HC((τan)) is residual then, trivially, HC((τa)a∈S)

is residual.

Note that for the case S = {na : n ∈ N} (a ∈ CN \ {0} fixed), the property (c)

is derived from [GoS, Section 5]. This property is also obtained for an unbounded

sequence S = {an : n ∈ N} in the case N = 1 by a different universality proof in

[GeS].

A slight improvement of Godefroy–Shapiro’s theorem is possible as application

of Theorem 2.4 by introducing a multiplicative complex sequence. Note that the
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condition on (cn) in the next result implies that ((n!|cn|)1/n) is unbounded (compare

to Theorem 2.12), and that Godefroy–Shapiro’s result is the special case G = C
N ,

cn ≡ 1 under condition (b).

Theorem 2.6 Let (cn) be a complex sequence. Assume that G is a Runge do-

main in CN and that Φ is nonconstant. Suppose that at least one of the following

properties is satisfied:

(a) (|cn|1/n) does not converge to zero and Φ(0) = 0.

(b) 0 < lim infn→∞ |cn|1/n ≤ lim supn→∞ |cn|1/n < +∞.

Then the set HC((cnΦn(D))) is residual in H(G).

Proof. Consider the sequence of entire functions Φn(z) = cnΦ(z)n (n ∈ N; z ∈
C). Under the hypotheses of (a), there are M ∈ (0,+∞) and an increasing se-

quence (nk) of positive integers with |cnk
| ≥Mnk (k ∈ N). Since Φ is nonconstant,

there is a nonempty open subset B ⊂ CN on which |Φ(z)| > 2/M , hence

|Φnk
(z)| > 2nk →∞ (k →∞)

for all z ∈ B. Moreover m(Φnk
) = nk ·m(Φ) → ∞ (k → ∞) because m(Φ) > 0.

Consequently, Theorem 2.4 can be applied because condition (Q) is satisfied, and

we are done. Under the hypothesis of (b), we have that

Mnk ≤ |cnk
| ≤Mnk

1 (k ∈ N)

for some positive finite constants M,M1 and some increasing sequence (nk) ⊂ N.

Choose the set B as in the first case. Choose also a nonempty open subset A ⊂ CN

on which |Φ(z)| < 1/2M1. Therefore

|Φnk
(z)| ≤ 1/2nk → 0 (k →∞)

for all z ∈ A. Condition (P) in Theorem 2.4 is satisfied this time, and the proof is

finished.

Additional sufficient conditions for hypercyclicity will be furnished later (see

Theorems 2.12, 2.13, 2.15). Next, we state a necessary condition for the hyper-

cyclicity of (Φn(D)). We need some notation first. If a = (a1, ..., aN) ∈ CN and

r > 0, we denote by D(a, r) the closed polydisk with center a and radius r, i.e.,

D(a, r) = {z ∈ C
N : |zj − aj| ≤ r, 1 ≤ j ≤ N}. We consider the distance

11



d(z, a) = max{|z1 − a1|, ..., |zN − aN |} (z, a ∈ CN). The inscribed radius of G is

ρ(G) = supb∈G infa/∈G d(a, b) = sup{r > 0 : there is a polydisk D of radius r with

D ⊂ G}. For future references we point out here that the circumscribed radius of

G is defined as R(G) = inf
a∈C

N supb∈G d(a, b) = inf{r > 0 : there is a polydisc D

of radius r with G ⊂ D}. For each sequence (Φn(z) =
∑
|p|≥0

cpnz
p) ⊂ H(CN), where

each Φn is of exponential type, we associate the number in [0,+∞] given by

α = α((Φn)) := lim sup
n→∞

(sup
|p|>0

(p! · |cpn|)1/|p|).

Note that for each n ∈ N the number sup|p|>0(p! · |cpn|)1/|p| is finite.

Theorem 2.7 Suppose that G ⊂ CN is a domain. Assume that Φn(z) =
∑
|p|≥0 cpnz

p

(n ∈ N) are entire functions such that the sequence (Φn(0)) is bounded. If the se-

quence (Φn(D)) is hypercyclic on H(G) then ρ(G) ≤ α.

Proof. For each n ∈ N denote Kn = sup|p|>0(p! · |cpn|)1/|p|, in such a way that

α = lim supn→∞Kn. Let β ∈ (0,+∞) with |c0n| = |Φn(0)| ≤ β (n ∈ N). Assume,

by the way of contradiction, that lim supn→∞Kn < ρ(G) and that f ∈ H(G) is

hypercyclic for (Φn(D)). Fix positive real numbers r, R with lim supn→∞Kn < r <

R < ρ(G). Then there exists a polydisk D(a,R) ⊂ G. By Cauchy’s inequalities

(see [Hor, Theorem 2.2.7]) we get

|(Dpf)(a)| ≤ p! ·
||f ||D(a,R)

R|p|
(|p| ≥ 0).

In addition, there is m ∈ N with Kn ≤ r for all n ≥ m. Therefore

|cpn| ≤
r|p|

p!
(|p| > 0; n ≥ m),

hence

|(Φn(D)f)(a)| = |
∑
|p|≥0

cpnD
pf(a)|

= |c0nf(a) +
∑
|p|>0

cpnD
pf(a)| ≤ β|f(a)|+

∑
|p|>0

r|p|

p!
· p! ·

||f ||D(a,R)

R|p|

≤ ||f ||D(a,R) · (β +
∑
|p|≥0

(r/R)|p|) = ||f ||D(a,R) · (β + (
R

R− r
)N),

for every n ≥ m. Consequently, the sequence {(Φn(D)f)(a) : n ∈ N} is bounded,

which is absurd. The proof is finished.

12



Observe that the latter theorem extends Theorem 2 in [Be2], which asserted that

ifG is domain in C and (cnD
n) is hypercyclic inH(G) then lim supn→∞(n!|cn|)1/n ≥

ρ(G); note that this is just the case N = 1, Φn(z) = cnz
n. Observe also that The-

orem 2.7 implies in particular that if (Φn(D)) is hypercyclic in H(CN) then either

{Φn(0) : n ∈ N} is unbounded or {sup|p|>0 (p!|cpn|)1/|p| : n ∈ N} is unbounded.

A corresponding sufficient condition for equicontinuity can be formulated, but

the sequence (Φn(D)) may be replaced to a general family {Φi(D) : i ∈ I} of

differential operators. This will be achieved in Theorem 2.9. Before this, we

need a definition and an auxiliary statement. A polydomain in CN is a product

G = G1 × · · · × GN of domains in C. The following lemma is a generalization of

Theorem 13.5 in [Rud]. Its proof can be made by induction and it is left to the

reader.

Lemma 2.8 If G is a polydomain in CN and K ⊂ G is a compact subset, then

there are cycles γ1, ..., γN with γ1×· · ·×γN ⊂ G\K such that for every f ∈ H(G),

every p = (p1, ..., pN) ∈ NN0 and every z = (z1, ..., zN) ∈ K, the following Cauchy

formula holds:

Dpf(z) =
p!

(2πi)N

∮
γ1

∮
γ2
· · ·

∮
γN

f(t1, ..., tN)∏N
j=1(tj − zj)1+pj

dt1 . . . dtN .

Recall the following well-known characterizations (see, for instance, [Boa]): an

entire function Φ(z) =
∑
|p|≥0

Cpz
p is of exponential type if and only if sup|p|>0 (p!|Cp|)1/|p|

is finite, and it is of subexponential type if and only if lim|p|→∞ (p!|Cp|)1/|p| = 0.

Theorem 2.9 Suppose that G is a domain in CN and that {Φi(z) =
∑
|p|≥0

cpiz
p :

i ∈ I} is a family of entire functions. Then the following statements hold:

(a) If G is a polydomain and there is a majorant entire function Φ(z) =
∑
|p|≥0

Cpz
p

for the family (Φi) (i.e., Cp ≥ 0 and |cpi| ≤ Cp for all p ∈ NN0 and all i ∈ I)

with subexponential type then the family of operators (Φi(D)) is equicontinuous

on H(G).

(b) If (Φi(D)) is equicontinuous on H(G) then the sequence (Φi) admits a majo-

rant entire function with exponential type.

Proof. By the remark just above this theorem, we have that (Φi) admits a

majorant entire function of subexponential (exponential) type if and only if {cpi :

13



i ∈ I} is bounded for each p and lim|p|→∞(p! supi |cpi|)1/|p| = 0 (if and only if

{c0i : i ∈ I} is bounded and sup|p|>0,i∈I(p!|cpi|)1/|p| is finite, respectively). In this

proof we denote Ti = Φi(D) (i ∈ I).

Let us prove (a). By hypothesis, G = G1×· · ·×GN , where each Gj is a domain

in C. Fix ε > 0 and a compact subset K ⊂ G. For the corresponding basic

neighbourhood V (ε,K) of the origin in H(G) we must find δ > 0 and a compact

subset L ⊂ G satisfying ⋃
i∈I
Ti(V (δ, L)) ⊂ V (ε,K). (1)

Lemma 2.8 allows us to choose a “polycycle” γ = γ1×· · ·×γN ⊂ G\K such that the

Cauchy formula of its statement holds for p ∈ NN0 , z ∈ K and f ∈ H(G). Since G

is a polydomain we may suppose without loss of generality that K = K1×· · ·×KN ,

where each Kj is a compact subset of Gj. Let us set

µ := inf{|tj − zj| : tj ∈ γj; zj ∈ Kj; j = 1, ..., N} > 0.

By hypothesis, lim|p|→∞(p! supi∈I |cpi|)1/|p| = 0, so there ism ∈ N with (p!|cpi|)1/|p| ≤
µ/2 for all i ∈ I and all p with |p| > m. But each family {cpi : i ∈ I} (|p| ≤ m) is

bounded, so there is a positive finite constant M such that

p!|cpi|2|p|

µ|p|
≤M (i ∈ I, |p| ≥ 0).

Choose L = γ and

δ =
(πµ)N · ε

M ·∏N
j=1 length (γj)

.

If i ∈ I, f ∈ V (δ, L) and z ∈ K then we have

|(Tif)(z)| = |
∑
|p|≥0

cpiD
pf(z)|

= |
∑
|p|≥0

p!cpi
(2πi)N

∮
γ1
· · ·

∮
γN

f(t1, ..., tN)∏N
j=1(tj − zj)1+pj

dt1 . . . dtN |

≤
∑
|p|≥0

p!|cpi|
(2π)N

· δ

µN+|p| ·
N∏
j=1

lenght (γj)

≤ ε

2N
·
∑
|p|≥0

(1/2)|p| =
ε

2N
· (
∞∑
k=0

1/2k)N = ε.

This proves (1), as required.

14



Now, we prove (b). Since (Ti) is equicontinuous we can find δ > 0 and a compact

subset L ⊂ G such that ⋃
i∈I
Ti(V (L, δ)) ⊂ V ({a}, 1), (2)

where a is any fixed point of G. Consider the family of monomials fp (p ∈ NN0 )

given by

fp(z) = δ · (z − a
R

)p,

where R = sup{|t− a| : t ∈ L}. Since L can be chosen distinct from {a}, we have

that 0 < R < +∞. Then fp ∈ V (δ, L) for all p, whence Tifp ∈ V (1, {a}) by (2),

that is,

|(Φi(D)fp)(a)| ≤ 1 (i ∈ I, p ∈ NN0 ).

But (Φi(D)fp)(a) =
∑
|q|≥0 cqiD

qfp(a) = cpiδ · p! · 1
R|p|

, because Dqfp(z) ≡ 0 if

|q| ≥ |p| with q 6= p and Dqfp(a) = 0 if |q| < |p|. Hence |cpiδ ·p! ·R−|p|| ≤ 1, whence

|c0i| ≤ 1/δ (i ∈ I)

and

sup
|p|>0, i∈I

(p!|cpi|)1/|p| ≤ R · sup
|p|>0

(1/δ)1/|p| < +∞.

The latter two inequalities show that (Φi) admits a majorant entire function of

exponential type, as required. The proof is finished.

In the special case of a sequence (Φn) we get a generalization of the part “if”

of [Be2, Theorem 3], because we consider the number α = α((Φn)) defined before

Theorem 2.7. Theorem 3 of [Be2] asserted that if G is a domain in C and if

lim supn→∞(n!|cn|)1/n = 0 then the family (cnD
n) is equicontinuous on H(G), and

the converse is true under the assumption that G 6= C. Observe that its part “if”

is again the particular case Φn(z) = cnz
n of the next result.

Corollary 2.10 Assume that G ⊂ CN is a polydomain, that the sequence (Φn(0))

is bounded and that α = 0. Then (Φn(D)) is equicontinuous on H(G).

Proof. Let us suppose that Φn(z) =
∑
|p|≥0 cpnz

p (n ∈ N). Then {c0n :

n ∈ N} is bounded and limn→∞ sup|p|>0(p! |cpn|)1/|p| = 0, from which it is eas-

ily derived that {cpn : n ∈ N} is bounded for each multi–index p and that

lim|p|→∞(p! supn |cpn|)1/|p| = 0 (for this, use the fact that for each fixed n one

has (p! |cpn|)1/|p| → 0 as |p| → ∞). But this is to say that (Φn) has a majorant

15



entire function with subexponential type, so part (a) of Theorem 2.9 yields the

desired result.

For G = C
N we are able to characterize the equicontinuous families of differen-

tial operators.

Theorem 2.11 The family of operators {Φi(D) : i ∈ I} is equicontinuous on

H(CN) if and only if (Φi) admits a majorant entire function of exponential type.

Proof. The part “only if” is due to Theorem 2.9(b). As for the converse, we can

follow step by step the proof of part (a) of Theorem 2.9 with the sole exception

that we may choose the polycycle γ far enough from the compact set K (so µ can

be choosen as large as desired) in such a way that

sup
|p|>0, i∈I

(p! |cpi|)1/|p| ≤ µ/2.

The constant M may be choosen as M = max {1, supi∈I |c0i|}. The proof is fin-

ished.

In [Be2, Theorem 1] it has been established that if G ⊂ C is a simply con-

nected domain and (cn) is a complex sequence with R(G) ≤ lim sup
n→∞

(n! |cn|)1/n

then HC((cnD
n)) is residual in H(G). A slight generalization can be obtained in

the N–dimensional case. The proof is very similar to the 1–dimensional one, so we

omit it.

Theorem 2.12 Assume that G ⊂ C
N is a Runge domain and that (p(n)) is a

sequence of multi–indexes with |p(n)| → ∞ (n→∞). If (cn) is a complex sequence

with

R(G) ≤ lim sup
n→∞

(p(n)! |cn|)1/|p(n)|

then the set HC((cnD
p(n))) is residual in H(G).

As a consequence of Theorems 2.11, 2.12 we can get a characterization of

equicontinuity and hypercyclicity of the same sequence in H(CN). This is achieved

in the next result, which in turn is an N–dimensional extension of [Be2, Theorem

4] (see also [Be1]).

Theorem 2.13 Assume that (cn) is a complex sequence and that (p(n)) is a

sequence of nonzero multi–indexes such that |p(n)| → ∞ (n → ∞). Then the

following properties are equivalent:
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(a) The sequence ((p(n)! |cn|)1/|p(n)|) is bounded.

(b) There is no hypercyclic entire function for (cnD
p(n)).

(c) The set HC((cnD
p(n))) is not residual in H(CN).

(d) The sequence (cnD
p(n)) is equicontinuous on H(CN).

Proof. It is evident that (b) implies (c) and that (d) implies (b). Since R(CN) =

+∞, we obtain from Theorem 2.12 that (c) implies (a). Assume that (a) holds.

Then we can apply Theorem 2.11 with I = N and Φn(z) = cnz
p(n). Indeed, there

is a constant M with p(n)!|cn| ≤M |p(n)| for all n ∈ N, hence the function

Φ(z) =
∞∑
n=1

M |p(n)|

p(n)!
zp(n) (z ∈ CN)

is a majorant entire function for (Φn) with exponential type. Then (d) is true and

the proof is finished.

We point out that in [Gr2, Corollary to Theorem 4] the part about hypercyclicity

of [Be2, Theorem 4] is extended for the case N = 1 to sequences of weighted

pseudo-shifts in the space H(C).

The part “only if” of [Be2, Theorem 3] is able to be extended in the same way

to the N–dimensional case, as the following theorem shows.

Theorem 2.14 Let G = G1 × · · · × GN ⊂ C
N be a polydomain with Gj 6=

C (j = 1, ..., N). Assume that (cn) is a complex sequence and that (p(n)) is a

sequence of nonzero multi–indexes such that the sequence of operators (cnD
p(n)) is

equicontinuous on H(G). Then

lim
n→∞

(p(n)! |cn|)1/|p(n)| = 0.

Proof. Consider the number α := lim supn→∞(p(n)!|cn|)1/|p(n)|. By the way of

contradiction, assume that α > 0. Fix a point a = (a1, ..., aN) ∈ G. Then aj ∈ Gj

and there exist points bj ∈ C \Gj (j = 1, ..., N) such that |aj − bj| = inf {|aj − t| :
t ∈ C \ Gj}. Denote R = min {|aj − bj| : j = 1, ..., n} > 0. Fix r ∈ (0, R) with

R − r < α. Put K = D(a, r). Then K is a compact subset of G. Let L be any

compact subset of G and δ a positive number. Let m > 0 be so small that

m

(inf {|zj − bj| : j ∈ {1, ..., N}, z = (z1, ..., zn) ∈ L ∪K})N
< δ.
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Consider the function

f(z) =
m∏N

j=1(zj − bj)
.

Then f ∈ H(G) and, in addition, f belongs to V (δ, L). Furthermore, for z =

(z1, ..., zN) ∈ G,

|(Tnf)(z)| = p(n)!m|cn|∏N
j=1 |zj − bj|1+pj(n)

,

where p(n) = (p1(n), ..., pN(n)) and Tn = cnD
p(n). Since inf {|t − bj| : |t − aj| <

r} ≥ R− r for every j ∈ {1, ..., N}, we get

sup {|(Tnf)(z)| : z ∈ K} ≤ p(n)!|cn|m
(R− r)N+|p(n)| =

m

(R− r)N
· p(n)!|cn|

(R− r)|p(n)|
.

But
p(nk)!|cnk

|
(R− r)|p(nk)|

→∞ (k →∞) for some increasing sequence (nk) ⊂ N, because

α > R− r. Hence sup{|Tnf(z)| : z ∈ K} =∞. Therefore⋃
n∈N

Tn(V (δ, L)) 6⊂ V (1, K),

which implies that (Tn) is not equicontinuous. The proof is finished.

Our final result comes back to hypercyclicity and looks slightly different from

the others. It puts the emphasis on the first nonzero Taylor coefficient of each Φn.

This time the setting is the complex plane C. Observe that MacLane’s theorem is

again recovered if we choose Φn(z) = zn for each n ∈ N.

Theorem 2.15 Assume that (Φn(z) =
∞∑
j=0

cjnz
j) is a sequence of nonzero entire

functions and denote p(n) := m(Φn) (n ∈ N). Assume that the following three

conditions are fulfilled:

(a) p(n)→∞ as n→∞.

(b) p(n)|cp(n),n|k/p(n) →∞ as n→∞ for every k ∈ N.

(c) Each sequence {cj+p(n),n : n ∈ N} (j ∈ N) is bounded.

Then the set HC((Φn(D))) is residual in H(G) for any simply connected domain

G ⊂ C.

Proof. We are trying to apply Lemma 2.1 with X = H(G) = Y , X0 =

{polynomials} = Y0 and Tn = Φn(D) (n ∈ N). If P is a polynomial then by
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(a) there exists n0 ∈ N with p(n) > degree (P ) for all n ≥ n0, hence DjP = 0 for

all j ≥ p(n) (n ≥ n0). Therefore TnP = 0 eventually and condition (a) of Lemma

2.1 is satisfied. Now fix m and n in N and try to solve the equation Tnf = zm.

Observe that Tn = Ψn(D) ◦Dp(n), where Ψn(z) =
∑∞
j=0 ajnz

j and ajn = cj+p(n),n,

so a0n 6= 0 for all n ∈ N. Consider the equation

Ψn(D)g = zm, (1)

where g is a polynomial of degree not greater than m, say, g(z) =
∑m
k=0 bknz

k. It

is easy to see that such a polynomial solution exists. Indeed, (1) is equivalent to

m∑
j=0

ajn(
m∑
k=0

bknz
k)(j) = zm,

which in turn is the same as the system
∑m
j=k aj−k,nbjn · j!k! = 0 (k = 0, 1, ...,m− 1)

a0nbmn = 1.

This is a recurrent square system with determinant am+1
0n 6= 0, so it has a unique

solution (b0n, ..., bmn) and Cramer’s rule yields

bkn =
1

am+1
0n

·
m∑
j=1

Pjkm(a1n, ..., amn) aj0n (2)

for k ∈ {0, 1, ...,m}, where Pjkm (j = 1, ...,m) are polynomials of m complex

variables not depending on n. From (c), there is a finite positive constant M ,

which does not depend on n, such that

|Pjkm(a1n, ..., amn)| ≤M (3)

for all k ∈ {0, 1, ...,m} and all j ∈ {1, ...,m}. Hence a solution of Tnf = zm is

f(z) = fn(z) =
m∑
k=0

bkn
zk+p(n)

(k + p(n))!
(n ∈ N),

where bkn is given by (2). Let us fix R > 1. Then from (3) we obtain for |z| ≤ R

that

|fn(z)| ≤ (m+ 1)
m∑
j=1

MRm

|a0n|m+1−j ·
Rp(n)

p(n)!
→ 0 (n→∞)

since (b) and Stirling’s formula leads us to

(p(n)! |a0n|m+1−j)1/p(n) →∞ (n→∞),
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so the terms ot the latter sequence are eventually greater than, for instance, 1/2R.

Therefore (fn) tends to zero in H(G). The proof for the case m = 0 is easier and

left to the reader. Define

Sn(zm) := fn(z) (m ∈ N0; n ∈ N)

and extend Sn to Y0 by linearity. Then it is clear that SnP → 0 (n → ∞) and

Tn(SnP ) = P → P as n → ∞. Consequently, conditions (b) and (c) in Lemma

2.1 are also fulfilled, as required.

For instance, there is an entire function f in C with the property that any entire

function can be locally uniformly approximated by functions of the form

cn(f (n) + f (n+1)) (n ∈ N),

where cn = n−n/(logn)
1/2

. Indeed, the sequence {Φn(z) = cnz
n(1 + z)} satisfies

all hypotheses of the latter theorem, because (cn) is bounded, p(n) → ∞ and

p(n) · n−kn/(p(n) (logn)1/2) → ∞ (n → ∞) for all k ∈ N, where p(n) ≡ n here. Note

that this example shows that Theorem 2.15 is not included in Theorem 2.4: in

fact, Φn(z)→ 0 as n→∞ for all z ∈ C, hence the E–unicity set B is not available

in order to apply the mentioned theorem.
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