
Solving Sudoku with Membrane Computing 

Daniel Diaz-Pernil1, Carlos M. Fernandez-Marquez 2, Manuel Garcfa-Quisrnondo 3, 

Miguel A. Gutierrez-Naranjo 4, Miguel A. Martinez-del-Arnor 5 

Research Group on Natural Computing 

Department of Computer Science and Artificial Intelligence 

Universidad de Sevilla. Avda. Reina Mercedes sin, 41012, Sevilla, Spain 
lsbdani@us.es 2carfermar@alum.us.es 3mangarfer2@alum.us.es 4magutier@us.es 5mdelamor@us.es 

Abstract-Sudoku is a very popular puzzle which consists on 
placing several numbers in a squared grid according to some 
simple rules. In this paper we present an efficient family of P 
systems which solve sudokus of any order verifying a specific 
property. The solution is searched by using a simple human-style 
method. If the sudoku cannot be solved by using this strategy, the 
P system detects this drawback and then the computations stops 
and returns No. Otherwise, the P system encodes the solution 
and returns Yes in the last computation step. 

I. INTRODUCTION

Sudoku is currently one of the most famous puzzles in the 
world. The most popular version consists on a 9 x 9 grid made 
up of 3 x 3 subgrids, but the general case, an n2 x n2 grid 
with n x n subgrids is considered. Some cells contain numbers, 
which can be considered as input data. The goal is to fill in 
the empty cells, one number in each, so that each column, 
row, and subgrid contains the numbers 1 through 9 exactly 
once (numbers 1 to n2 in the general case). If the input data 
are correct, the sudoku has one and only one solution. 

The creator is believed to be Howard Garns [6]. He is likely 
to be the inventor of a puzzle called "Number Place" that 
appeared in New York in 1979. The puzzle was introduced in 
Japan by the publishing company Nikoli in the paper Monthly 

Nikolist in April 1984 as Suji wa dokushin ni kagiru [7], which 
can be translated as the numbers must occur only once or 
the numbers must be single. Later, the name was abbreviated 
as sudoku, where su stands for number and doku stands for 
alone. Later Wayne Gould from New Zealand discovered the 
puzzle on a trip to Japan and wrote a program to generate 
new puzzles. He convinced The Times of London to publish 
Sudoku puzzles in 2004. 

In addition to its undoubted success in entertainment, su­
doku has important properties from a mathematical point of 
view. The first natural question is to wonder about is the 
number of all possible sudoku grids. The answer to this 
question is not an easy matter. A valid sudoku solution is also 
a Latin square. A Latin square is an n x n table filled by using 
numbers from 1 to n in such a way that each symbol occurs 
exactly once in each row and exactly once in each column. 
The number of 9 x 9 Latin squares is about 5.525 x 1027. 

Sudoku imposes the additional constraint on subgrids, so 
from the previous number we need to remove the Latin 
squares which do not satisfy the condition. The number 
of valid sudoku solution grids for the standard 9 x 9 grid 

is 6,670,903,752,021,072,936,960. This number is equal to 
9! x 722 x 27 x 27,704,267,971, the last factor of which 
is prime. The result was derived through logic and brute force 
computation. The details can be found at [1]. Other important 
property is that it has been proved that the general problem 
of solving sudoku puzzles on n2 x n2 grids of n x n boxes is 
known to be NP-complete [5]. 

Nonetheless, the number of possible solution grids is not the 
object of study of this paper nor the complexity of finding the 
solution. In this paper we study the problem of solving sudoku 
by using Membrane Computing techniques. In the first part of 
the paper, we develop a theoretical study about the use of brute 
force algorithms to solve it, based on a well-known solution 
for the SAT problem. As we will see below, the number of 
elementary membranes for a usual 9 x 9 sudoku exceeds the 
number of atoms of the observable universe, so we have a 
good reason for looking for a different strategy. 

In the second part of the paper, we present a family of P 
systems {II(n)}nEN such that II(n) is a P system with input. 
Such an input is, of course, the input for one sudoku puzzle 
encoded as a multiset. The solution is searched by using a 
human-style method based on looking for squares where only 
one candidate can be placed. This method is good enough to 
find the solution for a large amount of sudokus, but not all 
the sudokus can be solved by using this method. An original 
control method in the design of the algorithm is that the 
P system stops if the sudoku cannot be solved, i.e., instead 
of going into a non-ending search, the P system detects the 
drawback and halts. If the solution can be reached, the P 
systems stops, sends out an object Yes to the environment 
and provides the solution encoded on the skin. Otherwise, if 
the P system detects that the solution cannot be reached then 
it halts and sends No to the environment in the last step of 
computation. 

The paper is organized as follows: first we explore a theo­
retical brute force algorithm based on a Membrane Computing 
solution for the SAT problem. After showing the practical 
drawback of such a solution, we present our efficient family 
of P systems for solving a large amount of sudokus. We 
illustrate the behavior of this family with an overview of the 
computation and, finally, some final remarks are presented. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/222572777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. A BRUTE FORCE ALGORITHM

A sudoku square of order n consists of n4 constants (usually 
n2 copies of the numbers 1,2, . . . , n2), arranged into an 
n2 x n2 grid which comprises n2 subgrids of size n x n (also 
called boxes). Such a grid verifies that the entries in each 
row, each column and each box are all different. A sudoku 

problem consists on a partial assignment of the variables in 
a Sudoku square. The target is to find a completion of the 
assignment which extends the partial assignment and satisfies 
the constraints. 

The first idea for solving a sudoku problem is to consider 
it as a constraint problem. In fact, we are looking for one 
assignment of numbers to squares which satisfies a finite 
amount of restrictions. The set of constraints of a sudoku 
problem can be expressed as a logic formula in conjunctive 
normal form. Following [3], a sudoku square of order n can 
be represented as an instance of the SAT problem with n6 
propositional variables. For each entry in the n2 x n2 grid, 
we will consider n2 variables. Let us use the notation Sxyz to 
refer to variables. Variable Sxyz is assigned true if and only if 
the entry in the row x and column y is number z. This way, 
if the variable S753 takes the value true, then it means that the 
number 3 is placed at position (7,5) of the grid. According to 
this notation, the different constraints for the sudoku problem 
can be represented as the following formulae: 

• There is at least one number in each entry: 
n2 n2 n2 

'l/J1 = /\ /\ V Sxyz
x=ly=lz=l • Each number appears at most once in each row: 
n2 n2 n2_1 n2 

'l/J2 = /\ /\ /\ /\ (---'Sxyz V ---'SiYZ)
y=l z=l x=l i=x+1 • Each number appears at most once in each column: 
n2 n2 n2-1 n2 

'l/J3 = /\ /\ /\ /\ (---'Sxyz V ---'Sxiz)
x=l z=l y=l i=y+1 • Each number appears at most one in each box: 

n2 n-1 n-1 n n n 
'l/J4 /\ /\ /\ /\ /\ /\ (---'S(nHx)(nHy)z V 

z=l i=O j=O x=l y=l k=y+1 
---'S(nHx)(nHk)z) 

n2 n-1 n-1 n n n n 
'l/J5 = /\ /\ /\ /\ /\ /\ /\ (---'S(nHx)(nHy)z V 

z=l i=O j=O x=l y=l k=x+1 1=1 
---'S(nHk)(nHI)z) 

The conjunction of these five formulae IP 

'l/J1 /\ 'l/J2 /\ 'l/J3 /\ 'l/J4 /\ 'l/J5 is a formula in conjunctive 
normal form and each truth assignment which makes it true 
represents a right arrangement of n2 copies of 1,2, ... , n2 

according to the sudoku constraints. 
Once expressed the sudoku as such a formula, finding a 

solution to the puzzle can be considered as the problem of 
finding a truth assignment which satisfies the formula. This is 
exactly the satisfiability (SAT) problem. 

Any truth assignment which makes it true represents a right 
arrangement of n2 copies of 1,2, ... , n2 according to the 

sudoku constraints over an empty sudoku grid of order n, 
but we are not interested in finding such solutions. In fact, a 
sudoku puzzle should have a certain amount of numbers placed 
in the right position as input in such way that there exists a 
unique possible assignment which represents the solution to 
the problem. Given a sudoku puzzle, we will call Input to the 
set 

Input = 
{ (x, y, z) : z is placed on the square } 

(x, y) of the grid 

In order to deal with the input, it is enough to add the 
corresponding values to the formula IP as follows: 

lPin = IP /\ /\ Sxyz
(x,y,z) )Elnput 

Given a sudoku problem and its associated formula lPin, 
finding the solution to the problem is equivalent to finding a 
truth assignment which satisfies the formula. 

In [2], a family of P systems with active membranes to solve 
the SAT problem was presented. It was based on the solution 
presented in [4]. The main difference was that the solution 
from [4] only provides Yes or No as answers to the problem. 
The solution in [2] found and stored all the truth assignments 
which satisfy the formula, if there exists. 

By considering the encoding of a sudoku problem as a 
CNF formula on one side and the family of P systems which 
provides solutions for SAT on the other side, we have a 
Membrane Computing solution for all sudoku problems. 

This nice theoretical solution has an insurmountable obsta­
cle from a practical point of view: the number of elementary 
membranes in one configuration of one P system from the 
family reaches 2N, where N is the number of variables of the 
CNF formula. For a sudoku of order n, the number of variables 
is n6, and so the number of elementary membranes is 2n6. For 
a usual sudoku of order 3, 2729 elementary membranes are 
simultaneously handled. Estimates of the matter content of 
the observable universe indicate that it contains on the order 
of 1080 atoms 1, so the brute force algorithm is only a fine 
calculus for Membrane Computing theory. 

III. A NEW SOLUTION

In this section we present a family of P systems P = 

{II(n) : n E N} such that II(n) solves sudokus of order n. 
The P system II (n) receives as input the initial data placed in a 
sudoku puzzle. It is designed to solve sudokus which satisfy a 
property which will be described below. If the sudoku satisfies 
the property, the P system computes the solution, it sends an 
object Yes to the environment in the last step of computation 
and encodes the solution to the sudoku as a multiset in the skin 
of the halting configuration. Otherwise, the P system detects 
that the property is not satisfied and halts by sending an object 
No to the environment in the last step of computation. 

1 http://en.wikipedia.orglwikilObservable_universe 



The property is the following: In all partial solutions of the 

sudoku, there exists at least one square (i, j) with a unique 

candidate. 

We will call partial solution of a sudoku to a sudoku grid 
where some new numbers have been placed and all of them 
are in the right position. A number p is a unique candidate for 
the square (i,j) if for all q E {1, ... ,n2}, p =f. q, q has been 
previously placed in the same row, the same column or the 
same box of (i, j). For example, if we consider the sudoku 
of order 2 of Figure 1, number 4 is a unique candidate for 
the square (1,2), since 1 is in the same row, 2 is in the same 
column and 3 is in the same box. 

4[ 42 43 44 
1 2 3[ 32 33 34 
3 2[ 22 23 24 

1 [[ [2 13 [4 
Fig. 1. A sudoku problem of order 2 

Many sudokus satisfy this property. It is in the base of many 
human strategies for solving sudokus. Nonetheless, sometimes 
it is not enough to solve the sudoku and more sophisticated 
methods are necessary. 

A. A Family of P Systems 

Next, we present a family II = {II(n)}nEN for solving any 
sudoku of order n verifying the property stated above. Each 
P system II(n) only depends on the order n of the sudoku 
and it does not increase the number of membranes along the 
computation. The used rules are of the following types: 

• Enzymatic rules: [,in u ----+ vl e• The multiset u evolves cat 
to the multiset v in the membrane with label e. The rule is 
applied if in the same membrane the objects from the set 
cat are present (catalysts) and none of the objects from 
the set in are present (inhibitors). The catalysts and the 
inhibitor are not modified by the application of the rules 
and cat, in and v can be empty. • Dissolution rules: [u l e ----+ o. The multiset u causes 
membrane e to dissolve and produces the object o.• Send-out rules: [a l e ----+ [l e a. The object a is sent out of 
the membrane with label e.

As usual, all the rules are applied in parallel and in a 
maximal manner. In one step, one object of a membrane can be 
used by only one rule (chosen in a non deterministic way), but 
any object which can evolve by one rule of any form, should 
evolve. If a membrane is dissolved, its content is left free in 
the surrounding region. If there are objects in this membrane 
which evolve by means of enzymatic rules and a membrane 
h is dissolved at the same time, then we suppose that first the 
enzymatic rules are used and then the dissolution is produced. 

Of course, this process takes only one step. We will also use 
priorities among sets of rules. 

The input will be provided as a set of objects Zijn by 
denoting that the number n is placed at the square with row 
i and column j. The initial configuration will also contain 
information about the box corresponding to each square. In 
such a way, objects bOXijk with i,j E {I, ... , n2} are place 
in the initial configuration and k is the box corresponding 
to the square (i, j), i.e., if i = em + /3 and j = "(n + 5 
with a,"( E {O, ... ,n - I} and /3,5 E {l, ... ,n} then 
k=an+"(+1. 

The initial configuration also contains the objects fix, Cjx, 
bkx, Sqij with i,j, k, x E {I, ... , n2}. The occurrence of fix
in the configuration denotes that the number x is not placed 
in any square of the row i yet and then, the number x can be 
eventually placed in such a row in the future. Analogously, Cjx 
denotes that x is not placed in the column j and bkx that the 
object is not placed in any square of the box k. The objects 
sqij are witnesses of the existence of the corresponding square. 
Finally, n2 copies of each object rij with i, j E {l, ... , n2} 
are also placed in the initial configuration. 

The idea of the design is to develop a sequence of two 
stages: The checking stage and the reset stage. In the checking 
stage, the P system looks for squares with a unique candidate. 
If such squares are found, the candidates are placed in them. 
After the stage all the auxiliary objects are recalculated in the 
reset stage and then we start again the checking stage. This 
checking-reset cycle ends when all the squares are filled and 
the sudoku is solved or if in a checking stage no new squares 
with unique candidates are found. 

Formally, the P system of order n with input that solves the 
sudokus with the property claimed above is a construct 

II(n) = (r, H, /1, We, ws, io, R1, R2, R�, Hr, R�, 
R4, ... ,R11,R}2,RI2) 

with the priorities Rl > R2 > Rj > R4 > . . .  Rll > Ri'2
with q E {a, r, m} and x E {I, 2} where • The alphabet r = {Sijx, Zijx, bOXijk, sqij, fix, Cjx, bkx,

aij,rij : i,j,k,XE{1, ... ,n2}}U {ko,k1,w}• The set of labels H = {e, s}• The membrane structure /1 = [[ 1 e 1 s• The initial multisets We = {k1}U{boXijk,sqij,Jix,Cjx,
bkX,ri'/ : i,j,k,x E {l, ... ,n2}} and Ws = 0. The 
initial configuration of a P system which solves a concrete 
sudoku problem also includes the input (encoded with 
Zijn objects) in the membrane e. • io = e, i.e., the input membrane is e.

We also consider the following sets of rules2 

Each input object Zijx produces an object Sijx and one 
object p. In any configuration we will have as many objects 
p as numbers are correctly placed on the sudoku. After 

2We write -, before the object a if a acts as an inhibitor. 



applying these rules, we have as many objects p as numbers 
are placed as input. 

{ 
[fix ---+ Al e 

}
Sijx 

R2 [Cjx ---+ Ale  for i,j,k,x E Sijx 
[bkx 

Sijx bOXijk 
) Al e

{I, . . .  ,n2}. 

The object Sijx represents that the number x is placed 
in the square (i,j). When such an object is generated the 
objects fix, Cjx and bkx must disappear. 

Before starting with the checking stage, we ensure that the 
markers (mijx) and counters (aij and rij) are reset. First, 
we remove all the copies of aij, mij and rij' In the next step 
we add n2 copies of each object rij to membrane e. 

The reset stage ends when object kl (used as catalyst in 
the previous sets of rules) evolves to ko. 

i,j,X E {1, . . .  ,n2}. 

The checking stage starts with the set R6• We know that 
if objects fix Cjx bkx are present in membrane e in one 
configuration, then the number x is a candidate to be placed 
in the square (i, j), since x has not been placed yet in the 
row i, the column j or the box k. The question is to know 
if x is the unique candidate. This is checked by rules from 
set R6• Before applying these rules, we have checked that 
for all square (i, j) we have n 2 copies of r ij in membrane e and zero copies of aij' If fix Cjx bkx are present in the 
membrane (they act as catalyst), then the corresponding rule 
is applied. The application of the rule removes one copy of 
rij and produces one copy of aij' The occurrence of mijx 
ensures that the rule is applied once. 

If there exists only one aij and n2 - 1 copies of rij 
(and the square (i,j) is empty) then the square (i,j) has a 
unique candidate. These rules delete the objects fix Cjx bkx 
and introduce the objects Sijx, P and w. The object Sijx 
corresponds to a number and a square in the solution of the 
sudoku, p denotes that a new number has been placed in the 

solution (when preaches n2 copies, the cycle reset-checking 

stops) and w is a witness to the application of the rule. 

Rs [w ko -+ k2l e 

{ [w -+ Al e 
[kol e -+ No 

If an object w has been produced, it means that at least 
one of the rules from the set R7 has been applied. In other 
words, a new number has been placed on the solution of the 
sudoku and the reset-checking cycle must go on. In this case, 
objects w and ko are consumed by the rule from Rs and a 
new object ko is produced. If ko has not been consumed by 
the rule from Rs, then no new number has been placed on 
the sudoku. This means that it does not make sense going on 
with the reset-checking cycle, since the next checking stage 
will have the same configuration that this one. In order to 
prevent an infinite sequence of cycles, object ko dissolves 
membrane e and the remaining objects w (if any) are removed. 

The copies of p denote the number of squares correctly 
filled. When it reach n6 copies, the membrane e is dissolved. 

_ { [d -+ Al e Rll = 

[k2 -+ kll e 

This set of rules marks the end of the checking stage. The 
inhibitor d is removed and the catalyst kl is produced so 
rules from R3 can be triggered and the reset stage starts again. 

Notice that membrane e is dissolved anyway. If the sudoku 
is not completed, but no more numbers can be placed, then 
the rule [kol e  -+ No is applied and the object No appears 
in membrane s. Otherwise, if the sudoku is completed, 

[pn6l e -+ Yes is applied and Yes appears in membrane s. In
the last step of computation, the corresponding object Yes 
or No is sent out to the environment. 

Rl = { [Yesl s  -+ [ls Yes 
12 - [Nol s  -+ [ls No 

Also in the last step, the auxiliary objects are removed 
from membrane S 

= {
[p -+ Als [mijx -+ Al s [aij -+ Al s 

Rr2
[fix -+ Als [d -+ Al s hj -+ Als 
[Cjx -+ Als [bOXijk -+ Als [k2 -+ Al s 
[bkx -+ Al s [sqij -+ Als 

IV. AN OVERVIEW OF THE COMPUTATION 

We will give some hints on the computation by following 
the computation of the example of order two showed in 
Figure 1. We start with a sudoku problem with 4 numbers 
placed. Such an input is encoded in the multi set Input = 

Z311 Z322 Z213 Z141. The initial configuration Co has two mem­
branes [[l e Js. Membrane S is empty and membrane e contains 



the input plus the objects kl and fix Cjx bkx 8qij bOXijk, T'0 for 
i,j,k,XE{1, ... ,4}. 

From this configuration Co, rules from sets R1, R!3 ' R5 
and R6 can be applied. Due to priority, rules from Rl are 
applied and we obtain configuration C1. The objects Zijx are 
removed and replaced by the corresponding 8ijx. Four copies 
of object p also appear. This means that four numbers are 
correctly placed in the sudoku. 

Rules from Rl will not be applied any more, since no rule 
produces objects Zijx' From C1 rules of set R2 are applied 

and IDe objects 131 C11 b31 132 C22 b32 iz3 C13 b13 i11 C41 b21 are 

removed from membrane e and we obtain configuration C2• 
Next, rules from R!3 are applied (obtaining C3) and then we 

apply rules from R4 (obtaining C4). This is the first time that 
we reset the system, so C4 is identical to C2, but with new 
objects d. 

Since membrane e contains objects d, none of the rules 
from sets R'3 nor from R4 are applicable. The next application 
of the rule corresponds to R5• The object kl evolves to ko 
and the checking stage begins. The new configuration C5 
contains ko. Since no object mijx has been created yet, for 
each triplet (i, j, x) such that the number x can be placed 
in the square (i,j), one of the rules from R6 is triggered, 
reaching configuration C6• The application of one of these 
rules removes one copy of the corresponding Tij and produces 
one copy of aij' Each rule only can be triggered once due to 
object mijx' After the application of these rules, the number 
of objects aij denotes the number of possible candidates to be 
placed in the square (i,j). In the next step, two rules from R7 
are triggered and the objects 8124 and 8414 are produced and
configuration C7 is reached. After the application of rules from 
R6, IDe number of objects aij for squares (1,2) and (4,1) is 
exactly one. This means that for these squares, the candidate 
is unique. The current partial solution for the sudoku is shown 
in Figure 2. 

4 4[ 42 43 44 
1 2 3[ 32 33 34 
3 2[ 22 23 24 

4 1 [[ [2 13 [4 
Fig. 2. Partial solution at configuration C7 

The application of rules from R7 has produced two copies 
of the object w in the configuration C8. One of these copies, 
along with ko produces kl (Configuration Cg). In the next step 
IDe remaining w is deleted (Configuration CIO). The checking 
stage finishes with the application of the rule from RIO. Object 

d is removed and the configuration C11 is reached. 
The object d is a strong inhibitor. Since it has disappeared, 

rules from R3 can be applied and the reset stage starts again. 
We go on with this new reset stage and the application of three 

rules from R7 produces the objects 8221. 8423 and 8112. This 
means that three new numbers can be placed on the sudoku 
(see Figure 3). 

4 3 4[ 42 43 44 
1 2 3[ 32 33 34 
3 1 2[ 22 23 24 
2 4 1 [[ [2 13 [4 

Fig. 3. Partial solution at configuration C16 

The checking-reset cycle goes on and in C24, the objects 
8133 and 8442 are added. In C32, 8431, 8334 and 8244 are added, 
and finally in C40, IDe objects 8232 and 8343 are generated. 
Figure 4 shows the solution of IDe sudoku according to the 
objects 8ijx in membrane e. 

4 3 1 2 4[ 42 43 44 
1 2 4 3 3[ 32 33 34 
3 1 2 4 2[ 22 23 24 
2 4 3 1 [[ [2 13 [4 

Fig. 4. Solution at configuration C40 

The P system follows with the computation and in C42 there 
are 16 copies of objects p in membrane e. The rule from RIO 
is triggered, the membrane e is dissolved and all the objects 
go to membrane 8. In the next step, one objects Yes is sent 
out and the remaining objects (but 8ijx) are deleted, so the 
final configuration has an object Yes in IDe environment and 
one membrane where the solution is encoded. 

As pointed above, it is possible that for some sudokus there 
no exist squares with unique candidates. In such cases, when 
the checking stage is reached, no rule from R7 is applied and 
no object w is produced. Since we do not have objects w, 
the rule from R8 is not applied, and according to priority, the 
dissolution rule from Rg is applied. When an object No is 
sent to membrane 8, IDe reset-checking cycle is stopped. In 
the next step an object No is sent out and the computation 
ends. 

Notice that we have chosen an example of order 2 for 
illustrating the process, but the computation is similar for a 
sudoku problem of any order. 

V. F INAL REMARKS

P systems have showed many times to be versatile enough 
to represent many different situations, from real life or from 
more abstract scenarios. In parallel with a very expressive 
representation system, Membrane Computing also provides a 



friendly set of tools for dealing with the information. Besides 
the computational power of the expressiveness, the research in 
a new computational model also needs to face a problem of 
efficiency. In this paper we provide a first theoretical solution 
for the problem of finding a solution to a sudoku problem. It 
is based on an appropriate representation of the problem as a 
formula and a well-established solution of the SAT problem. 
The solution works from a theoretical point of view, but it 
does not make sense form a practical one. 

In the second part of the paper, we have designed a solution 
for solving sudoku problems in an effective way. It solves 
all the sudokus which verify a very common property, by 
following a strategy close to human-style solutions. One of 
the main original contributions of the design is the checking 
to avoid infinite loops. The implemented strategy is enough 
to find the solution to many sudoku problems, but it is not 
enough to solve all of them. The next step is to go on with 
the research and tackle these hard sudoku problems. Beyond 
these efforts it is the horizon of a better understanding of the 
cellular processes and making more and more efficient cellular 
designs. 

Acknowledgements 

The authors acknowledge the support of the projects 

TIN2008-04487-E and TIN-2009-13192 of the Ministerio 
de Ciencia e Innovaci6n of Spain and the support of the Project 
of Excellence with Investigador de Reconocida Valfa of the 
Junta de Andalucfa, grant P08- TIC-04200. 

REFERENCES 

[I] B. Felhenhauer, F. Jarvis, Enumerating possible su-
doku grids. Univ. Sheffield and Univ. Dresden, 2005. 
http://www.shef.ac.uk/ pmlafj/sudoku/sudoku.pdf 

[2] M.A. Gutierrez-Naranjo, M.A. Martinez-del-Amor, I. Perez-Hurtado, 
MJ. Perez-Jimenez. Solving the N - Queens Puzzle with P systems. 
In Seventh Brainstorming Week on Membrane Computing, Vol. I, R. 
Gutierrez-Escudero, M.A. Gutierrez-Naranjo, Gh. Pliun, Ignacio Perez­
Hurtado, A. Riscos Nunez, (eds.) Fenix Editora (2009) 199-210. 

[3] I. Lynce, J.Ouaknine. Sudoku as a SAT Problem. Proceedings of the 9 
th International Symposium on Artificial Intelligence and Mathematics, 
AIMATH 2006, Fort Lauderdale (2006). 
http://anytime.cs.umass.edu/aimath06/proceedings/ 
P34.pdf 

[4] M.J. Perez-Jimenez, A. Romero-Jimenez, F. Sancho-Caparrinini. A 
polynomial complexity class in P systems using membrane division. In 
E. Csuhaj-Vruju, C. Kintala, D. Wotschke, G. Vaszil (Eds.). Proceedings 
of the 5th Workshop on Descriptional Complexity of Formal Systems, 
DCFS 2003, Computer and Automaton Research Institute of the Hun­
garian Academy of Sciences (2003) 284-294. 

[5] T. Yato and T. Seta. Complexity and Completeness of Finding Another 
Solution and Its Application to Puzzles. IEICE Trans. Fundamentals, 
E86-A (5) (2003) 1052-1060. 

[6] http://www.dellmagazines.com 
[7] http://www.nikoli.co.jp/puzzles/ 


