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Abstract. Necessary/sufficient conditions for a sequence of automorphisms
of the complex plane to generate a sequence of composition operators that
is universal on the punctured plane are provided. As a consequence, it is
derived that only for translations and rotation-dilations there can be entire
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also analyzed.
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1. Introduction, notation, known results and aim of this paper

In 1929 Birkhoff [9] published his celebrated universality theorem asserting the
existence of an entire function f on the complex plane C whose translates f( ·+n)
(n ∈ N := {1, 2, . . . }) approximate uniformly any prescribed entire function on
every compact subset of C. His result can be put into the more general setting of
universality, whose starting notions are collected in the next paragraph.

Assume that X and Y are topological spaces and that Tn : X → Y (n ≥ 1)
is a sequence of continuous mappings. Then (Tn) is said to be universal whenever
there exists a point x0 ∈ X, called universal for (Tn), whose orbit {Tnx0 : n ≥ 1}
under (Tn) is dense in Y . The set of universal points for (Tn) will be denoted by
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U((Tn)). It is easy to see that, if X is a Baire space and Y is second countable,
then U((Tn)) is dense if and only if it is residual, and if and only if (Tn) is transitive
(i.e. given nonempty open sets U ⊂ X, V ⊂ Y , there is n ∈ N such that Tn(U) ∩
V 6= ∅). If X = Y , then a single continuous selfmapping T : X → X is called
universal (transitive) if the sequence (Tn) of its iterates is universal (transitive,
resp.), and we denote U(T ) = {universal points for T} := U((Tn)). Note that
U(T ) 6= ∅ if and only if U(T ) is dense. If now X and Y are (Hausdorff) topological
vector spaces and {Tn : n ∈ N} ⊂ L(X,Y ) =: {continuous linear mappings
X → Y } then the words universal and hypercyclic are synonymous, although
“hypercyclic” is mainly used for single mappings T ∈ L(X) = {operators on
X} := L(X,X). The reader is referred to the surveys [4], [18] and [20] for history,
concepts, results and references about universality and hypercyclicity.

For a domain (nonempty connected open subset) G ⊂ C, we denote by H(G)
the vector space of all holomorphic functions G→ C. Then H(G) becomes an F-
space (that is, a complete metrizable topological vector space) when it is endowed
with the topology of convergence on compacta; in addition, H(G) is separable,
hence second countable. We will denote byM(G) the family of Mergelyan subsets
of G, that is, M(G) = {K ⊂ C : K is compact and C \K is connected}. Recall
that the sets U(f, ε,K) := {g ∈ H(G) : |g(z)−f(z)| < ε ∀z ∈ K} (f ∈ H(G), ε >
0, K ⊂ G a compact set) form a basis of open subsets in H(G). For the sake
of brevity, we introduce the following two concepts. A subset A ⊂ H(G) will
be called M-dense provided that for every ε > 0 and every K ∈ M(G), one
has A ∩ U(f, ε,K) 6= ∅. By using Runge’s approximation theorem (see [16]), we
have that the polynomials form anM-dense subset of H(G). Of course, denseness
matches M-denseness if G is simply connected. If G,Ω are domains in C and
ϕ ∈ H(G,Ω) (i.e. ϕ ∈ H(G) and ϕ(G) ⊂ Ω), then the composition operator
Cϕ : H(Ω) → H(G) is the continuous linear mapping defined as Cϕf = f ◦ ϕ. If
(ϕn) ⊂ H(G,Ω), then we say that the sequence of composition operators (Cϕn) is
M-universal provided that there is f ∈ H(G) –calledM-universal for (Cϕn)– such
that {f ◦ϕn}n≥1 isM-dense in H(G). A corresponding notion ofM-hypercyclicity

arises when G = Ω and each ϕn is the nth-iterate ϕ[n] = ϕ ◦ · · · ◦ ϕ (n-fold) of ϕ.

In the terminology of the preceding paragraphs, Birkhoff’s theorem tells us
that the translation operator f 7→ f(·+1) is hypercyclic on H(C). With essentially
the same proof as in [9] we have (see [22]) that if (an) ⊂ C is an unbounded
sequence then the sequence of translations τan : f ∈ H(C) 7→ f(· + an) ∈ H(C)
(n ∈ N) is universal (a function f ∈ H(C) (τan)-universal for some (an) ⊂ C
will be called Birkhoff-universal). In 1988, Zappa [28] replaced the additive group
(C,+) by the multiplicative group (C∗ := C \ {0}, ·) (see [1] and [2] for extensions
to complex special or general linear groups) and demonstrated the existence of a
“multiplicatively universal” function f ∈ H(C∗), that is, given g ∈ H(C∗), ε > 0
and K ∈ M(C∗), there exists a ∈ C∗ such that |f(az) − g(z)| < ε for all z ∈ K
(by Mergelyan’s approximation theorem [16, Chap. 3], one may in fact prescribe
g ∈ A(K), the space of continuous functions f : K → C that are holomorphic
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in the interior K0 of K). The same approach of [28] shows that if (an) ⊂ C∗ is
an unbounded sequence then (Cz 7→anz) is M-universal on H(C∗), that is, there is
an f ∈ H(C∗) whose sequence of dilation-rotations {f(an · )}n≥1 is M-dense in
H(C∗).

Denote by Aut(G) the group of holomorphic automorphisms of a domain G.
Recall that Aut(C) = {z 7→ az+ b : a ∈ C∗, b ∈ C} and Aut(C∗) = {z 7→ az : a ∈
C∗} ∪ {z 7→ a/z : a ∈ C∗}. Birkhoff’s and Zappa’s results have been extended or
improved in several directions. Restricting ourselves to C and C∗, we remark the
following:

(a) In 1995, Montes and the author [7] proved that, for a sequence

{z ϕn7→ anz + bn}n≥1 ⊂ Aut(C), the sequence of composition operators Cϕn :
f 7→ f(an ·+bn) (n ≥ 1) is universal on H(C) if and only if the sequence

{min{|bn|, |bn/an|}}n≥1 (1)

is unbounded. If this is the case, then there is a residual set of universal entire
functions. In particular, the composition operator f 7→ f(a · +b) associated
to the automorphism z 7→ az + b is hypercyclic if and only if a = 1 and
b 6= 0. Moreover, given (an) ⊂ C∗, the sequence of composition operators
f ∈ H(C∗) 7→ f(an ·) ∈ H(C∗) is M-universal if and only if the sequence

{max{|an|, |1/an|}n≥1

is unbounded, in which case there is a residual subset inH(C∗) ofM-universal
functions. In particular, the operator f 7→ f(a ·) is M-hypercyclic on H(C∗)
if and only if |a| 6= 1. By contrast, no sequence (ϕn) ⊂ Aut(C∗) generates a
universal sequence (Cϕn) on H(C∗), see [7] and [19].

(b) In 1996, Luh [23] improved Zappa’s theorem by constructing, for a given
unbounded sequence (an) ⊂ C∗, an entire function f such that {f(an ·)}n≥1

isM-dense in H(C∗). The set of such functions f is in fact residual in H(C)
[8]. Notice that the unboundedness of (an) is necessary for the existence
of these multiplicatively universal entire functions, for if |an| ≤ M < +∞
(n ≥ 1) then the sequence (f(an ·)) cannot approximate the constant function
1 + sup|z|≤M |f(z)| on the compact set {1}.
In view of (a)–(b), a natural question arises: which sequences {anz+bn}n≥1 ⊂

Aut(C) support entire functions f satisfying that {f(an ·+ bn)}n≥1 isM-dense in
H(C∗)? We provide necessary as well as sufficient conditions in Section 2.

In the last few years, a number of authors have invested much effort in making
universality compatible with some additional property, specially boundedness on
large sets. In this respect, Tenthoff [26] proved in 2000 that there are Birkhoff-
universal entire functions that are bounded on every (straight) line. M.C. Calderón
[13] (see also [17]) showed in 2002 the existence of a dense linear manifold of
Birkhoff-universal entire functions f (see [10] for similar results in the harmonic
setting) which are bounded on any sector {z : 0 ≤ arg z ≤ α} (0 < α < 2π) and
any strip (i.e. any domain lying between two parallel lines); even exp(|z|α)f(z)→ 0
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(z → ∞) on these subsets for fixed α ∈ (0, 1/2), and many more additional
properties hold. In 2003, Costakis and Sambarino [14] proved that there are τ1-
hypercyclic entire functions f tending to 0 as z → ∞ on each sector {z : ε ≤
arg z ≤ 2π − ε} (0 < ε < π). In 2006, Niess [25] gave the following necessary and
sufficient condition for the existence of (τan)-universal entire functions bounded
on every line: there exists a subsequence (ank) such that, for every R > 0 and
every line L, there is k0 ∈ N with L ∩ B(ank , R) = ∅ for all k ≥ k0 (as usual,
B(a,R) := {z ∈ C : |z − a| < r} and B(a,R) := {z ∈ C : |z − a| < r}).
Gharibyan, Luh and Niess [17, Theorem 1.2] established the existence of an entire
function ϕ and of sequences (an), (bn) ⊂ C with an → 0, bn → ∞ such that
ϕ is (Canz+bn)-universal and bounded on every line. Bonilla and the author [5]
proved that, for given F ⊂ C, there exist a Birkhoff-universal entire function that
is bounded on F if and only if there exists an Arakelian subset F0 of C (i.e. F0 is
closed and C∞ \F0 is connected and locally connected at∞, where C∞ is the one-
point compactification of C) such that ρi(C\F0) = +∞ (here ρi(A) = sup{r > 0 :
there exists a closed ball B of radius r with B ⊂ A}, the inscribed radius of a
subset A ⊂ C). In 2010, Calderón, Luh and the author [6] stated the following:
if A ⊂ C is an unbounded Arakelian set with ρi(C \ A) = +∞, there is a dense
linear manifold M of entire functions all of whose nonzero members are Birkhoff-
universal and exp(|z|α)f(z) → 0 (z → ∞, z ∈ A) for all α < 1/2 and f ∈ M .
Passing to C∗, A. Vogt [27] has recently constructed a multiplicative universal
entire function ϕ with respect to a given unbounded sequence (an) such that ϕ is
bounded on some curve Γ tending to ∞. On the contrary, he has proved that any
such ϕ is necessarily unbounded on every line.

In Section 3, we investigate boundedness and unboundedness on large subsets
of C for entire functions being compositionally universal (M-universal) on H(C)
(on H(C∗), resp.) with respect to sequences in Aut(C).

In 2006, Bayart and Grivaux [3] presented the more stringent notion of fre-
quent hypercyclicity, that is a kind of quantified hypercyclicity. If X is a topological
vector space, then an operator T ∈ L(X) is said to be frequent hypercyclic provided
that there is a vector x ∈ X, called frequent hypercyclic for T , such that, for every
nonempty open set U ⊂ X, the set {n ∈ N : Tnx ∈ U} has lower positive density,
that is,

lim inf
n→∞

card {k ∈ {1, . . . , n} : T kx ∈ U}
n

> 0. (2)

As in the mere hypercyclicity, the concept can be extended to a sequence of con-
tinuous mappings Tn : X → Y (n ∈ N) between two topological spaces X,Y
(simply replace T kx by Tkx in (2)), in which case (Tn) is called frequent universal,
and x a frequent universal element for (Tn), see [12]. Sufficient conditions for fre-
quent hypercyclicity/universality have been given in [3] and [12]. In [3] it is proved
the frequent universality of any translation operator τa (a 6= 0) on H(C). This is
also shown by Bonilla and Grosse-Erdmann in three different ways (see [11], [12,
Example 3.2] and [12, Theorem 4.2]) as a consequence of more general criteria.
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Our third and final goal, which will be performed in Section 4, is to extend
this result by analyzing the frequent universality of a sequence of composition
operators on H(C) generated by a sequence (ϕn) ⊂ Aut(C).

2. M-universal entire functions

Our first theorem extends and unifies the assertions given by Luh, Prado and
Bernal about existence of entire functions that are M-universal on H(C∗) with
respect to sequences of composition operators generated by automorphisms of C,
see Section 1. As usual, we adopt the convention α/0 = +∞ whenever α ∈ (0,+∞).

Theorem 2.1. Assume that {ϕn}n≥1 ⊂ Aut(C) and ϕn(z) = anz + bn (n ≥ 1).

(a) If the sequence

{max{min{|an|, |an/bn|},min{|bn|, |bn/an|}}}n≥1 (3)

is unbounded then the sequence Cϕn : H(C) → H(C∗) (n ∈ N) is M-
universal. In fact, the set UM((Cϕn)) := {f ∈ H(C) : (f ◦ ϕn) is M-dense
in H(C∗)} is a residual subset of H(C).

(b) If the sequence Cϕn : H(C)→ H(C∗) (n ∈ N) isM-universal then
(i) at least one of the sequences (an), (bn) is unbounded, and
(ii) there exists a sequence {n1 < n2 < · · · } ⊂ N such that the sequence of

zeros {ϕ−1
nk

(0)}k≥1 is not contained in any set K ∈M(C∗).

Proof. (a) Assume that (3) is unbounded. Then at least one of the sequences
{min{|an|, |an/bn|}}n≥1, {min{|bn|, |bn/an|}}n≥1 is unbounded. If the latter one is
unbounded, then by [7, Proposition 2.3 and Theorem 3.1] the set U((Cϕn)) = {f ∈
H(C) : the set {f ◦ϕn}n≥1 is dense in H(C)} is a residual subset of H(C). But by
Runge’s theorem H(C) is M-dense in H(C∗). Therefore UM((Cϕn)) ⊃ U((Cϕn)),
so UM((Cϕn)) is residual in H(C). Suppose now that {min{|an|, |an/bn|}}n≥1 is
unbounded. Fix a compact set K ⊂ C, a number ε > 0, a set L ∈ M(C∗) and
functions f ∈ H(C), g ∈ H(C∗). Consider the sets U(f, ε,K) := {h ∈ H(C) :
|h(z)− f(z)| < ε for all z ∈ K} and V (g, ε, L) := {h ∈ H(C∗) : |h(z)− g(z)| < ε
for all z ∈ L}, which are respectively basic open sets in H(C) and H(C∗). Choose
r, s > 0 with K ⊂ B(0, r) and L ∩ B(0, 2s) = ∅, then select n ∈ N such that
|an| > r/s and |an/bn| > 1/s. Then we obtain, for all z ∈ L,

|ϕn(z)| = |anz + bn| = |an|
∣∣∣∣z +

bn
an

∣∣∣∣ > r

s
(2s− s) = r.

Hence B(0, r) ∩ ϕn(L) = ∅. Define the function F : B(0, r) ∪ ϕn(L)→ C by

F (z) =

{
f(z) if z ∈ B(0, r)

g( z−bnan
) if z ∈ ϕn(L).

Note that S := B(0, r)∪ϕn(L) ∈M(C) because ϕn ∈ Aut(C). Moreover, F is holo-
morphic on a neighborhood of S. By Runge’s theorem, there exists a polynomial h
(so h ∈ H(C)) with |h(z)−F (z)| < ε for all z ∈ S. In particular, |h(z)− f(z)| < ε
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for all z ∈ K and |h(ϕn(z))−g(z)| < ε for all z ∈ L. In other words, h ∈ U(f, ε,K)
and Cϕnh ∈ V (g, ε, L). Therefore Cϕn(U(f, ε,K))∩V (g, ε, L) 6= ∅, whence each set⋃
n∈N C

−1
ϕn (V (g, ε, L)) is (open and) dense in H(C). Now, for every domain G there

exists a sequence {Kj}j≥1 ⊂ M(G) that is exhaustive, that is, given L ∈ M(G)
there is j0 ∈ N with L ⊂ Kj0 [7, Lemma 2.9]. For the special case G = C∗, it
follows that

UM((Cϕn)) =
⋂

g∈H(C∗)
L∈M,ε>0

⋃
n∈N

C−1
ϕn (V (g, ε, L)) =

⋂
k,l,j∈N

⋃
n∈N

C−1
ϕn (V (gk, 1/l,Kj)),

where (gk) is any fixed dense sequence in H(C∗). Since H(C) is a Baire space, we
obtain that UM((Cϕn)) is a dense Gδ (so residual) subset of H(C).

(b) Suppose that there exists f ∈ H(C) that is M-universal for the sequence
Cϕn : H(C) → H(C∗) (n ∈ N). By way of contradiction, assume also that (an)
and (bn) are bounded. Then |an| + |bn| ≤ M < +∞ (n ∈ N), say. Therefore
no sequence (f(ankz + bnk)) would be able to approximate the constant func-
tion 1 + max|w|≤M |f(w)| on the compact set {1} ∈ M(C∗), so contradicting the
hypothesis. Thus, (i) is satisfied. Suppose now, again by way of contradiction,
that (ii) does not hold. By hypothesis, there is f ∈ H(C) as well as a sequence
{n1 < n2 < · · · } ⊂ N such that f(ankz + bnk)→ g(z) (k →∞) uniformly on each
member of M(C∗), where g(z) := 1 + |f(0)|. But one can find a set K ∈ M(C∗)
with {ϕ−1

nk
(0) = −bnk/ank}n≥1 ⊂ K. Then

sup
z∈K
|f(ankz + bnk)− g(z)| ≥ |f(ϕnk(ϕ−1

nk
(0)))− g(z)| = |f(0)− (1 + |f(0)|)| ≥ 1

for all k ∈ N, which is absurd. This proves the theorem. �

Corollary 2.2. Let ϕ ∈ Aut(C), with ϕ(z) = az + b. Then the following properties
are equivalent:

(a) There is an entire function f whose orbit {f ◦ϕ[n]}n≥1 isM-dense in H(C∗).
(b) The set UM((Cϕ[n])) is residual in H(C).
(c) Either |a| > 1 and b = 0 or a = 1 and b 6= 0.

Proof. It is evident that (b) implies (a). Suppose that (c) holds. If a = 1 and b 6= 0
(i.e. ϕ is a translation) then we have in fact that Cϕ is hypercyclic on H(C), so
the sequence (Cnϕ) = (Cϕ[n]) is transitive from H(C) into itself. Therefore the set
U((Cnϕ)) of its hypercyclic functions is residual in H(C). But, again by Runge’s
theorem, U((Cnϕ)) ⊂ UM((Cϕ[n])), from which the residuality of UM((Cϕ[n])) fol-

lows. If a 6= 1 then ϕ[n](z) = anz + an−1b + an−2b + · · · + ab = anz + bn, where

an = an and bn = b · a
n−1
a−1 . Therefore, if |a| > 1 and b = 0, the sequence

{min{|an|, |an/bn|}n≥1 = {|a|n}n≥1 is unbounded. By Theorem 2.1, (b) is sa-
tisfied. Finally, if (a) is true and a 6= 1 then by Theorem 2.1 at least one of the

sequences (an), (ba
n−1
a−1 ) is unbounded, hence |a| > 1. If a 6= 1 and b 6= 0 then

(ϕ[n])−1(0) = b(1−a−n)
1−a −→

n

b
1−a ∈ C∗, so the full sequence {(ϕ[n])−1(0)}n≥1 is con-

tained in the set K := { b
1−a} ∪ {(ϕ

[n])−1(0) : n ∈ N} ∈ M(C∗). According to
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Theorem 2.1, there is no entire function f such that {f ◦ ϕ[n]}n≥1 is M-dense.
If a = 1 and b = 0 then ϕ is the identity, whose iterates clearly do not generate
compositional universality. Hence (a) implies (c). �

Remark 2.3. 1. As an example, there is no entire function f such that the set
A(f) := {z 7→ f(n2z + n) : n ∈ N} is dense in H(C), because the sequence
(1) (see Section 1) for an = n2, bn = n is {1/n}n∈N, which is bounded. Never-
theless, entire functions f such that A(f) is M-dense in H(C∗) do exist: indeed,
min{|an|, |an/bn|} = n (n ∈ N) and Theorem 2.1 applies.

2. Let (qn) be an enumeration of the set {eit : t ∈ Q} (Q = the set of ratio-
nal numbers), which is dense in the unit circle T. Then ϕn(z) = anz + bn :=
nz + nqn ∈ Aut(C) (n ≥ 1) satisfies that the sequences (1) and (3) are bounded,
(an) and (bn) are unbounded and the full sequence (ϕ−1

n (0)) = (−qn) is not con-
tained in any member of M(C∗). Hence (Cϕn) is not H(C)-universal but we can
extract from Theorem 2.1 neither theM-universality nor the non-M-universality
of (Cϕn) on H(C∗). This raises the question of finding an intermediate property
between the unboundedness of (3) and (i)+(ii) of Theorem 2.1 characterizing the

M-universality of {H(C)
Cϕn−→H(C∗)}n≥1.

3. Bounded universal entire functions

In this section we show that, under appropriate conditions, noM-universal entire
function on H(C∗) is bounded on every member of a large family of unbounded
sets (including lines), see Theorem 3.1. In the positive direction, it will be proved
(Theorem 3.3) the existence of anM-universal entire function f for which there is
an unbounded set Γ such that f tends to 0 as z →∞ (in particular, f is bounded)
on it. We may even prescribe the set Γ within a large family, including again
all lines, in the case of H(C)-universality, see Theorem 3.5. This improves recent
results by A. Vogt [27] and completes a number of findings by several authors, see
Section 1.

We introduce the following notion. By S0 we denote the collection of all closed
sectors S with vertex at the origin and amplitude ampl(S) ∈ (0, 2π). We say that
a set Γ is totally non-spiral-like provided that there are two unbounded connected
sets Γ0, L and a sector S ∈ S0 such that Γ0 ⊂ Γ, L ⊂ S and Γ0 ∩ L = ∅. For
instance, every set Γ with non-total oscillation near ∞ (i.e. such that there are
R > 0, S ∈ S0 and an unbounded connected set Γ0 ⊂ Γ with Γ0∩S∩{|z| > R} = ∅)
is totally non-spiral-like. In particular, every line, every parabola, and in general
every unbounded algebraic curve P (x, y) = 0 (P = a nonconstant polynomial of
two real variables with real coefficients) are totally non-spiral-like sets.

Theorem 3.1. Assume that {ϕn(z) = anz + bn}n≥1 ⊂ Aut(C) is a sequence such
that an →∞ and bn/an → 0 as n→∞. Let Γ be a totally non-spiral-like subset of
C. Then everyM-universal entire function for the sequence Cϕn : H(C)→ H(C∗)
(n ≥ 1) is unbounded on Γ.
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Proof. Consider the compact set given by the “snail” curve

K := {z(θ) =

(
1 +

θ

2π

)
eiθ ∈ C : θ ∈ [0, 6π]}.

Observe that K ∈ M(C∗) and note that any ray σ starting from any point in D
intersects K at least at two different points z(θ1,σ), z(θ2,σ) with θ2,σ − θ1,σ > π
and |z(θ1,σ)| > 1, |z(θ2,σ)| > 2. It follows that if M is an unbounded, connected
set lying in a non-degenerated closed sector Σ whose vertex is at D with M ∩D 6=
∅, then M must intersect both curvilinear arcs of the closed annular “sector”
determined by K and the segments joining the pair of points (z(θ1,σ), z(θ2,σ))
and (z(θ1,λ), z(θ2,λ)), where σ and λ are the rays forming the boundary of Σ
(there may be more than one of such annular sectors; then simply select one of
them). As a consequence, if A is an unbounded connected subset of C such that
A∩D 6= ∅ = A∩M , then A should intersect the snail, i.e. A∩K 6= ∅. This property
will be used later.

Notice that by Theorem 2.1, there are in fact M-universal entire functions
for (Cϕn). Let f be one of them and assume, by way of contradiction, that f
is bounded on Γ, say |f(z)| ≤ α (z ∈ Γ). By universality, there is a sequence
{n1 < n2 < · · · } ⊂ N such that Cϕnk f tends to the constant function 1 + α

uniformly on K as k → ∞. Without loss of generality, we may assume that (nk)
is the full sequence N. In particular, there is n0 ∈ N such that

sup
z∈K
|f(anz + bn)− (1 + α)| < 1 for all n ≥ n0. (4)

Let Γ0, L, S the sets supplied by the definition of non-total spiral-likeness for our
set Γ. Fix any z0 ∈ Γ0 and any w0 ∈ L. Since an → ∞ and bn/an → 0, there is
m ∈ N with m ≥ n0 such that |z0/am| < 1/2, |w0/am| < 1/2 and |bm/am| < 1/2.
Then z0−bm

am
, w0−bm

am
∈ D. We have:

• The sets A := { z−bmam
: z ∈ Γ0} and M := { z−bmam

: z ∈ L} are unbounded

connected sets, and Σ := { z−bmam
: z ∈ S} is a closed sector with ampl(Σ)

∈ (0, 2π) and vertex at the point −bm/am ∈ D.
• A ∩ D 6= ∅ 6= M ∩ D, A ∩M = ∅ and M ⊂ Σ.

From the first paragraph, A∩K 6= ∅. Therefore there exist z1 ∈ K and z2 ∈ Γ0

(so z2 ∈ Γ) such that z1 = z2−bm
am

. It follows from (4) that |f(amz1+bm)−(1+α)| <
1. Hence |f(z2)− (1+α)| < 1, so |f(z2)| > α due to the triangular inequality. This
contradicts the fact that |f | ≤ α on Γ. �

Remark 3.2. If the snail K of the last proof had only two turns (i.e. θ ∈ [0, 4π])
then not every ray σ with vertex at a point of D would intersect at least twice the
set K: take for instance σ = {z = t+ i(−1 + (t/2)) : t ≥ 0}.

In the next result, notice that similarly to Theorem 3.1 the condition imposed
on (an), (bn) guaranteesM-universality onH(C∗), but discardsH(C)-universality.
By contrast, the restriction imposed in Theorem 3.4 entails H(C)-universality for
the sequence (Cϕn), with ϕn(z) = anz + bn.
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Theorem 3.3. Let {ϕn(z) = anz + bn}n≥1 ⊂ Aut(C). Suppose that the sequence
{min{|an|, |an/bn|}}n≥1 is unbounded. Let ω : C→ (0,+∞) be a continuous func-
tion. Then there exists an M-universal entire function f with respect to {Cϕn :
H(C) → H(C∗)}n≥1 that admits an unbounded connected set Γ ⊂ C such that
lim
z→∞
z∈Γ

ω(z)f(z) = 0.

Proof. We will follow the approach of [27] in the first steps. Choose an exhaustive
sequence {Kn}n≥1 in M(C∗) as in the proof of Theorem 2.1 (see [7, Lemma 2.9]
or [23, Lemma 3]). Let {Qn}n≥1 be an enumeration of all polynomials whose
coefficients are in Q + iQ. In addition, let {(Q∗n,K∗n)}n≥1 be a sequence with the
property that every pair (Qi,Kj) (i, j ∈ N) occurs infinitely many often.

By hypothesis, and without loss of generality, one can assume that min{|an|,
|an/bn|} → +∞ as n → ∞. Then an → ∞ and bn/an → 0. Therefore, given
r, s ∈ (0,+∞), one has

|an|(r − |bn/an|) > s for n large enough. (5)

Set n1 = 1. Proceeding by induction, and assuming that n1 < n2 < · · · < nk have
been already determined, we can choose due to (5) an integer nk+1 > nk such that

|ank+1
|(inf{|z| : z ∈ K∗k} − |bnk+1

/ank+1
|) > 1 + sup{|z| : z ∈ ankK∗k + bnk}. (6)

With the help of the triangular inequality, (6) shows that the sets Ak := ankK
∗
k +

bnk (k ∈ N) are mutually disjoint. Of course, each Ak is compact and has connected
complement. In addition, due to (6), one gets dist(Aj , Ak) ≥ 1 (j, k ∈ N; j 6= k).
Then

⋃
k∈NAk is closed and G := C \

⋃
k∈NAk is an unbounded connected open

subset of C. Hence we can find an unbounded regular curve Γ in G, that is, Γ is
the image of some differentiable function γ : [0,+∞)→ G with limt→∞ γ(t) =∞.
In particular, Γ is an unbounded connected closed subset of C with empty interior
Γ0.

Consider the set A := G ∪
⋃
k∈NAk. Then A is a Carleman set, that is, it

satisfies the following properties:
• A is closed.
• C∞ \A is connected and locally connected at ∞.
• For every compact set K ⊂ C there is a neighborhood V of ∞ in C∞ such

that no component of A0 intersects both K and V .

Define the function g : A→ C by

g(z) =

{
0 if z ∈ Γ

Q∗k
( z−bnk
ank

)
if z ∈ Ak (k ∈ N).

This function is evidently holomorphic in A0 and continuous on A. Moreover, the

function ε(z) =

{ 1
(1+|z|)ω(z) if z ∈ Γ

1
k if z ∈ Ak (k ∈ N)

is continuous on A and positive.
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According to the Nersesjan tangential approximation theorem (see [16, pp. 155–
159] or [24]), there exists an entire function f satisfying

|f(z)− g(z)| < ε(z) (z ∈ A). (7)

In particular, |f(z)ω(z)| < 1
1+|z| for all z ∈ Γ. Hence f(z)ω(z) → 0 (z → ∞; z ∈

Γ).

Finally, we show theM-universality of f for (Cϕn). From (7) we get |f(z)−
Q∗k(

z−bnk
ank

)| < 1
k for all z ∈ Ak or, that is the same, |f(ankz+bnk)−Q∗k(z)| < 1

k for

all z ∈ K∗k . Fix h ∈ H(C∗), ε > 0 and K ∈ M(C∗). Select n0 ∈ N with K ⊂ Kn0
.

By Runge’s approximation theorem there exists m0 ∈ N with |Qm0(z) − h(z)| <
ε/2 for all z ∈ K. Now choose a sequence {k(1) < k(2) < · · · } ⊂ N such that
(Q∗k(j),K

∗
k(j)) = (Qm0

,Kn0
) for all j ≥ 1. Pick j ∈ N such that k(j) > 2/ε and let

ν := nk(j). Since K ⊂ Kn0
= K∗k(j) we obtain for all z ∈ K that

|(Cϕνf)(z)− h(z)| ≤ |f(aνz + bν)−Q∗k(j)(z)|+ |Qm0
(z)− h(z)| < 1

k(j)
+
ε

2
< ε.

To summarize, {Cϕnf}n≥1 is M-dense in H(C∗), as required. �

Remark 3.4. It is also possible to obtain an M-universal entire function f as
in the last theorem and an unbounded connected open set Γ ⊂ C such that
lim z→∞

z∈Γ
ω(z)f(z) = 0 for prescribed functions ω(z), but within a more restric-

tive class of weight functions, see the approach of Theorem 3.5.

The following theorem extends the results on bounded universal functions by
Niess [25], Bernal and Bonilla [5] and Gharibyan, Luh and Niess [17, Theorem 1.2]
given in Section 1.

Theorem 3.5. Let Γ ⊂ C be an unbounded subset. Assume that {ϕn(z) = anz +
bn}n≥1 ⊂ Aut(C) and that bn →∞ and bn/an →∞ (n→∞). Then the following
conditions are equivalent:

(a) There is a universal entire function for the sequence Cϕn : H(C) → H(C)
(n ≥ 1) that is bounded on Γ.

(b) For each continuous function ϕ : [0,+∞) → (0,+∞) that is integrable on
[1,+∞), there is a (Cϕn)-universal entire function f such that

lim
z→∞
z∈Γ

exp(ϕ(|z|)|z|3/2)f(z) = 0.

(c) There is an Arakelian subset Γ0 ⊂ C with Γ0 ⊃ Γ satisfying the following
property: for every R > 0 there exists n ∈ N such that Γ0 ∩B(bn, R|an|) = ∅.

Proof. To prove that (b) implies (a), take ϕ(t) := 1
1+t4/3 . Then there is a Cϕn -

universal entire function f with lim z→∞
z∈Γ

exp( |z|
3/2

1+|z|4/3 )f(z) = 0. Hence lim z→∞
z∈Γ

f(z) =

0, showing the boundedness of f on Γ.

Assume that (a) holds for some f . Since f is bounded on Γ, a theorem by
Danielyan and Schmieder [15] tells us that the set Γ0 := {z ∈ C : |f(z)| ≤
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supΓ |f |} is an Arakelian set. Obviously, Γ0 ⊃ Γ. Suppose that there is R > 0
such that Γ0 ∩ B(bn, R|an|) 6= ∅ for all n ∈ N. Then there exists a sequence
{zn}n≥1 ⊂ B(0, R) such that {ϕn(zn)}n≥1 ⊂ Γ0. Let g(z) := 1+M ∈ H(C), where
M := supΓ |f | = supΓ0

|f |. Then no subsequence of (Cϕnf) can approximate g on

the compact set K = B(0, R), because supK |Cϕnf −g| ≥ |f(ϕn(zn))− (1+M)| ≥
1 +M − |f(ϕn(zn))| ≥ 1 (n ∈ N). This contradiction shows that (c) is true.

Finally, we start from (c). To prove (b), we can assume without loss of
generality that Γ = Γ0, so Γ is itself an Arakelian set. Fix a continuous func-

tion ϕ : [0,+∞) → (0,+∞) such that
∫ +∞

1
ϕ(t) dt < +∞. Then the function

ε(t) := exp(−ϕ(t)t3/2 − t1/3) (t ≥ 0) is continuous, positive and satisfies∫ +∞

1

t−3/2 log
1

ε(t)
dt < +∞. (8)

Let {Pn : n ∈ N} be a dense countable subset of H(C), for instance, the set of
all polynomial whose coefficients have rational real and imaginary parts. We can
construct a sequence (Qn) whose members are in {Pn : n ∈ N} such that eve-
ry function Pm occurs infinitely many times in (Qn). We denote Bn := B(0, n)
(n ≥ 1).

By hypothesis, given R > 0 there is n ∈ N with Γ ∩ B(bn, R|an|) = ∅. Let
us show that, in fact, there are infinitely many of such n’s. Indeed, if it were not
true, there would be some R > 0 and some n0 ∈ N with Γ ∩ B(bn, R|an|) 6= ∅
for all n > n0. Set R̃ := R + max{dist(bk,Γ)

|ak| : 1 ≤ k ≤ k0}. Then it is plain that

Γ ∩B(bn, R̃|an|) 6= ∅ for all n ≥ 1, which is absurd.

Now, select n1 ∈ N with Γ∩B(bn1 , |an1 |) = ∅. Since bn and bn/an tend to∞,
one derives |bn|− 2|an| = |bn|(1− 2|an/bn|)→∞, so |bn|− 2|an| > |bn1 |+ |an1 | for
n ≥ m, say. Take n2 > max{n1,m} such that Γ∩B(bn2

, 2|an2
|) = ∅. Observe that

we also obtain |z−bn1
| ≥ |z|−|bn1

| ≥ |bn2
|−|bn2

−z|−|bn1
| ≥ |bn2

|−2|an2
|−|bn1

| >
|an1
| for all z ∈ B(bn2

, 2|an2
|). Hence B(bn1

, |an1
|) ∩B(bn2

, 2|an2
|) = ∅. With this

procedure, we may determine by induction a sequence {n1 < n2 < · · · } ⊂ N
satisfying Γ ∩ Jk = ∅ = Jj ∩ Jk = ∅ (k, j ≥ 1, k 6= j), where Jk := B(bnk , k|ank |).
Note also that the balls Jk tend to ∞ as k → ∞ in the sense that min{|z| : z ∈
Jk} → +∞ (indeed, these minima are |bnk | − k|ank | and the nk’s were chosen
by using |bn| − R|an| → +∞ for all R > 0). Hence the closed sets Γ, J1, J2, . . .
are mutually disjoint, the Jk’s are compact with connected complement, Γ is an
Arakelian set and the Jk’s do not accumulate at any finite point. From this it is
easy to see that A := Γ ∪

⋃∞
n=1 Jn is also an Arakelian set.

Consider the function g : A→ C given by

g(z) =

{
0 if z ∈ Γ

Qk
( z−bnk
ank

)
if z ∈ Jk (k ∈ N),

which is clearly continuous on A and holomorphic in A0. By (8) and a tangential
approximation theorem due to Arakelian [16, pp. 160–162], there exists an entire
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function f such that

|f(z)− g(z)| < ε(|z|) (z ∈ A). (9)

From (9) one obtains

| exp(ϕ(|z|)|z|3/2)f(z)| < exp(−|z|1/3) −→ 0 (z →∞; z ∈ Γ).

It remains to prove that f ∈ U((Cϕn)). Fix a compact set K ⊂ C, an ε ∈ (0, 1)
and a polynomial Pm. Since the sets Jk escape towards ∞, we can find k0 ∈ N
such that, for all k ≥ k0, K ⊂ Bk and |z| > (log(1/ε))1/3 for all z ∈ Jk. Select

k ≥ k0 with Qk = Pm. From (9), we get |f(z) − Qk(
z−bnk
ank

)| < ε (z ∈ Jk), or

equivalently, |(Cϕnk f)(z) − Pm(z)| < ε (z ∈ Bk). Since K ⊂ Bk, the function

Cϕnk f is in the basic neighborhood U(Pm, ε,K). Thus, each Pm belongs to the

closure of {Cϕnf}n≥1. Finally, the density of (Pm) in H(C) shows the universality
of f . �

Remark 3.6. 1. By using the approach of [6] it can be demonstrated the equivalence
of (a), (b), (c) of Theorem 3.5 to the following property:

Given a continuous function ϕ : [0,+∞) → (0,+∞) that is integrable
on [1,+∞), there is a dense linear subspace M ⊂ H(C) such that any
function f ∈M \ {0} is (Cϕn)-universal and satisfies

lim z→∞
z∈Γ

exp(ϕ(|z|)|z|3/2)f(z) = 0.

2. If Γ is a Carleman set (see definition in the proof of Theorem 3.3), (ϕn) is as in
Theorem 3.5 and, for every R > 0, there is n ∈ N such that Γ ∩B(bn, R|an|) = ∅,
then with essentially the same proof of Theorem 3.5 we obtain the following:
given any continuous function ω : C → (0,+∞), there is f ∈ U((Cϕn)) such that
lim z→∞

z∈Γ
ω(z)f(z) = 0. Just use Nersesjan’s instead of Arakelian’s theorem and

observe that the set A = Γ ∪
⋃∞
k=1 Jk constructed in the last proof is a Carleman

set.

4. Frequent universality

As said in Section 1, Bayart and Grivaux [3] established the frequent hypercyclicity
of every translation operator τa (a ∈ C∗). By refining the approach of [3] we are
going to prove that, under certain conditions, a more general sequence (Cϕn) with
(ϕn) ⊂ Aut(C) can be frequent universal.

Theorem 4.1. Let {ϕn(z) = anz + bn}n≥1 ⊂ Aut(C). Assume that there exists an
unbounded nondecreasing sequence {ωn}n≥1 ⊂ (0,+∞) satisfying

(a) |bn| − ωn|an| → +∞ as n→∞, and
(b) |bm − bn| ≥ ωm−n(|am|+ |an|) for all m,n ∈ N with m > n.

Then (Cϕn) is frequently universal on H(C).
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Proof. According to [3, Lemma 2.2], there exist pairwise disjoint subsets A(l, ν)
(l, ν ≥ 1) of N0 := N ∪ {0} of positive lower density such that, for any n ∈ A(l, ν)
and m ∈ A(k, µ), we have

n ≥ ν and (10)

|n−m| ≥ ν + µ if n 6= m. (11)

Let {Pl}l≥1 be a dense sequence in H(C), and let {nk}k≥1 be the increasing
sequence of elements of

⋃
l,ν≥1A(l, ν). If nk ∈ A(l, ν) then we define Bk as

Bk = ϕnk(B(0, ων/2)) = B(bnk , ων |ank |/2).

Observe that the balls Bk are pairwise disjoint. Indeed, if n = nk ∈ A(l, ν) and
m = nk′ ∈ A(j, µ) with k′ > k, then m > n and the distance between the
centers of Bk, Bk′ is |bm− bn| ≥ (|am|+ |an|)ωm−n ≥ (|am|+ |an|)ωµ+ν ≥ (|am|+
|an|)(1/2)(ωµ+ων) > (1/2)ωµ|am|+(1/2)ων |an| = radius(Bk)+radius(Bk′), where
(b), (11) and the fact that (ωn) is nondecreasing have been used. Now, from (a),
(10) and the fact that (ωn) is nondecreasing we obtain

min
z∈Bk

|z| = |bnk | −
1

2
ων |ank | > |bnk | − ων |ank | ≥ |bnk | − ωnk |ank | → +∞ (k →∞).

From the closedness and disjointness of the Bk’s and the fact that they escape
to∞, it is easy to realize that the set F :=

⋃∞
k=1Bk is a Carleman set (see the proof

of Theorem 3.3). Define the functions α : F → C and g : F → C as α(z) = 1
1+|z|

(z ∈ F ) and g(z) = Pl(
z−ank
bnk

) (z ∈ Bk, nk ∈ A(l, ν), k ∈ N). Then α and g are

continuous on F , α is positive and α ∈ H(F 0). According to Nersesjan’s tangential
approximation theorem, there is f ∈ H(C) such that

|f(z)− g(z)| < α(z) (z ∈ F ). (12)

We claim that f is frequently universal for (Cϕn). To see this, fix l, ν ∈ N and
ε > 0. By (a), we can choose n0 ∈ N such that |bn| − ωn|an| < 1/ε for every
n ≥ n0. From (10) and since (ωn) is nondecreasing we get for all z ∈ B(0, ων/2)
that

|ϕn(z)| = |bn + anz| ≥ |bn| − |z||an| ≥ |bn| −
ων
2
|an| ≥ |bn| − ωn|an| >

1

ε
. (13)

Pick k0 ∈ N with nk0
> n0. Then for all z ∈ B(0, ων/2) and all k > k0 with

n = nk ∈ A(l, ν) we obtain from (12) and (13) that

|(Cϕnf)(z)− Pl(z)| = |f(ϕn(z))− g(ϕn(z))| < 1

1 + |ϕn(z)|
< ε.

Since the lower density of A(l, ν)\{n1, . . . , nk0} is positive and the sets {g ∈ H(C) :
sup|z|≤ων/2 |g(z) − Pl(z)| < ε} (ε > 0; l, ν ∈ N) form a basis of the topology of

H(C) (notice that the property ων → ∞ is crucial here) it follows the frequent
universality of our f . �
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Corollary 4.2. If (bn) ⊂ C is a sequence such that
limk→∞ infn∈N |bn+k − bn| = +∞

then the sequence of translations (τbn) is frequently universal on H(C).

Proof. Given M > 0 there is k0 ∈ N such that |bn+k − bn| > M + |b1| for all
n ∈ N and all k ≥ k0. Letting n = 1 and using the triangle inequality we get
|bk| > M for all k ≥ k0 + 1. Setting b0 := 0 one obtains |bn+k − bn| > M for all
n ∈ N0 and all k ≥ k0 + 1, hence δk := inf n∈N0

j≥k
|bn+j − bn| → +∞ as k → ∞.

In particular δk > 0 for k ≥ N , say. Consider the sequence cn := bNn. Then the
sequence ωk = (1/2) inf n∈N0

j≥k
|cn+j − cn| is positive, nondecreasing and unbounded,

and fulfills (a) and (b) of Theorem 4.1 (with cn instead of bn and an = 1). Therefore
(τbNn) is frequently universal, so (τbn) also is because (Nn) has positive density
1/N in the sequence N. �

Remark 4.3. 1. By selecting an = 1, bn = an and ωn = |a|n/2, we get the already
known frequent hypercyclicity of τa (a 6= 0). As a different instance of Theorem
4.1, the sequence (Cϕn) is frequently universal if ϕn(z) = anz + bn := nαz + nβ ,
where β > 0 and β ≥ 1 + α. Indeed, let γ := β − α and consider the continuous

function ϕ : (1,+∞)→ (0,+∞) defined by ϕ(t) := tβ−1
tα(t−1)γ . Then limt→+∞ ϕ(t) =

1 > 0 and limt→1+ ϕ(t) =

{
β if γ = 1

+∞ if γ > 1,
so d := inft>1 ϕ(t) > 0. Set δ :=

min{1/2, d/2} and take ωn := δ · nγ . Then (ωn) is positive, nondecreasing and
unbounded. Moreover, |bn|−ωn|an| ≥ nβ−(1/2)nαnγ = (1/2)nβ → +∞ (n→∞),
which yields the condition (a) of Theorem 4.1. Finally, if m > n, one has

|bm−bn|
ωm−n(|am|+|an|) = mβ−nβ

δ(mα+nα)(m−n)γ ≥
mβ−nβ

2δmα(m−n)γ = 1
2δϕ(mn ) ≥ d

2δ ≥ 1,

that gives (b).

2. It would be interesting to characterize the sequences of automorphisms of C
generating frequent universality, as well as to characterize the (or, at least, to
give some criterion yielding) sequences (ϕn) ⊂ Aut(C) generating frequent M-
universality, that is, such that there exists f ∈ H(C) with the following property:
for every g ∈ H(C∗), every ε > 0 and every K ∈ M(C∗), the set {n ∈ N :
|f(ϕn(z))−g(z)| < ε ∀z ∈ K} has positive lower density. In particular, we ask the
questions:
(i) If 0 < α < 1, is (Cz 7→z+nα) frequently universal?
(ii) If |a| > 1, is (Cz 7→anz) frequently M-universal?
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[8] L. Bernal-González and J.A. Prado-Tendero, U-operators. J. Austral. Math. Soc.
(Series A) 78 (2005), 59–89.

[9] G.D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières.
C. R. Acad. Sci. Paris 189 (1929), 473–475.

[10] A. Bonilla, “Counterexamples” to harmonic Liouville’s theorem and harmonic func-
tions with zero nontangential limits. Colloq. Math. 83 (2000), 155–160.

[11] A. Bonilla and K.G. Grosse-Erdmann, On a theorem of Godefroy and Shapiro. In-
tegr. Equ. Oper. Theory 56 (2006), 151–162.

[12] A. Bonilla and K.G. Grosse-Erdmann, Frequently hypercyclic operators and vectors.
Ergod. Th. Dynam. Sys. 27 (2007), 383–404.

[13] M.C. Calderón-Moreno, Universal functions with small derivatives and extremely
fast growth. Analysis 22 (2002), 57–66.

[14] G. Costakis and M. Sambarino, Genericity of wild holomorphic functions and com-
mon hypercyclic vectors. Adv. Math. 182 (2004), 278–306.

[15] A.A. Danielyan and G. Schmieder, Topological properties of level sets of entire func-
tions. Results Math. 33 (1998), 266–273.

[16] D. Gaier, Lectures on Complex Approximation. Birkhäuser, Boston, 1985.
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