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Holomorphic T -monsters and

strongly omnipresent operators

by

L. BERNAL–GONZÁLEZ and M.C. CALDERÓN–MORENO

April 22, 2019

Abstract

Assume that G is a nonempty open subset of the complex plane and

that T is an operator on the linear space of holomorphic functions in G,

endowed with the compact–open topology. In this paper we introduce the

notions of strongly omnipresent operator and of T–monster, which are

related to the wild behaviour of certain holomorphic functions near the

boundary of G. T–monsters extend a concept introduced by W. Luh and

K.–G. Grosse–Erdmann. After showing that T is strongly omnipresent if

and only if the set of T–monsters is residual, it is proved in this paper that

certain kinds of infinite order differential and antidifferential operators are

strongly omnipresent, which improves some earlier nice results due to the

mentioned authors.

Key words and phrases: holomorphic monster, T–monster, strongly om-

nipresent operator, infinite order differential operator, infinite order an-

tidifferential operator, entire function of subexponential type, affine linear

mappings, Laplace transform.

1 Introduction and notation

Throughout this paper G will stand for a nonempty open set

in the complex plane C. N is the set of positive integers, N0 =

N ∪ {0}, Z is the set of all integers, C∞ is the extended complex
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plane C ∪ {∞}, ∂G is the (finite) boundary of G, B(a, r) (B(a, r))

is the euclidean open (closed, respectively) disk with center a and

radius r (a ∈ C, r > 0) and D = B(0, 1). If A ⊂ C then A0 is the

interior of A and we denote LT (A) = {affine linear transformations

τ(z) = az + b such that τ(D) ⊂ A}.
H(G) denotes, as usual, the linear space of holomorphic functions

on G, endowed with the topology τuc of uniform convergence on each

compact subset in G. Let K(G) be the family of compact subsets of

G. It is known that the family

{D(f,K, ε) : f ∈ H(G), K ∈ K(G), ε > 0}

where

D(f,K, ε) = {g ∈ H(G) : |g(z)− f(z)| < ε for all z ∈ K}

is a basis for τuc.

If K is a compact set of C, then A(K) will stand for the linear

space C(K)∩H(K0), which becomes a Banach space if it is endowed

with the maximum norm.

A topological space X is a Baire space if and only if the inter-

section of a countable family of open dense subsets is also dense.

Baire’s theorem asserts that each completely metrizable topologi-

cal space is a Baire space. Consequently, H(G) is a Baire space.

In a Baire space X, a subset is residual when it contains a dense

Gδ–subset of X; such a subset is “very large” in X. These notions

and results can be found, for instance, in [13, pp. 213–214], and [21,

pp. 40–41].

If f ∈ H(G) and j ∈ N0 we denote, as usual, by f (j) the deriva-

tive of f of order j. The linear operator Dj : H(G)→ H(G) defined

by Djf = f (j) is continuous.
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An entire function Φ(z) =
∑
j≥0 ajz

j on C is said to be of expo-

nential type whenever there exist positive constants A and B such

that

|Φ(z)| ≤ AeB|z| for all z ∈ C.

This happens if and only if lim sup
j→∞

(j!|aj|)
1
j is finite (cf. [23, Chapter

VII]). Φ is said to be of subexponential type if and only if given

ε > 0, there is a positive constant A = A(ε) such that

|Φ(z)| ≤ Aeε|z| for all z ∈ C.

It happens that Φ is of subexponential type if and only if lim sup
j→∞

(j!|aj|)
1
j =

0 (cf., e.g., [5, 2.2.9–11]). Trivially, each entire function of subex-

ponential type is also of exponential type. To every entire function

Φ we can associate a “formal” infinite order differential operator

with constant coefficients L = Φ(D), that is, L =
∑∞
j=0 ajD

j with

D0 = I = the identity operator. The following statement is easy

to prove (see [3], [7, pp. 58–60], [11, Section 5] and [25, p. 35])

and furnishes a sufficient condition in order that Φ(D) can be an

operator.

Theorem 1.1 Let Φ(z) =
∑∞
j=0 ajz

j an entire function of subexpo-

nential type. Then
∞∑
j=0

|aj| sup
z∈L
|f (j)(z)| < +∞ for every L ∈ K(G)

and every f ∈ H(G), and Φ(D) is a well–defined continuous line-

ar operator on H(G). If G = C, the same assertion holds just by

assuming that Φ is of exponential type.

Recall now the “infinite order antidifferential operators”. They

were studied by the first author (see [4]). Firstly, assume thatG ⊂ C

is a simply connected domain and that a is a fixed point in G. If
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j ∈ N and f ∈ H(G), denote by D−jf the unique antiderivative

g of order j of f (i.e., (D−jf)(j) = f) such that g(k)(a) = 0 (k =

0, 1, . . . , j − 1). In fact, we have

D−jf(z) =
∫ z

a
f(t)

(z − t)j−1

(j − 1)!
dt (z ∈ G)

where the integral is taken along any rectifiable curve γ ⊂ G joining

a to z. Each D−j is a continuous linear operator on H(G). If

δ ∈ [0,+∞), then we denote by S(δ) the set of formal complex

power series Ψ(z) =
∑∞
j=0 cjz

j such that lim sup
j→∞

(
|cj|
j!

) 1
j

≤ δ. For

fixed c ∈ G we use the notation ∆(c,G) = sup
z∈G

inf{r > 0 : c is in

the connected component of B(z, r) ∩ G containing z} (see [2, 6]).

The following result can be found in [4, Theorem 6].

Theorem 1.2 If Ψ(z) =
∞∑
j=0

cjz
j ∈ S

(
1

∆(a,G)

)
then the series

Ψ(D−1) =
∞∑
j=0

cjD
−j defines a continuous linear operator on H(G).

W. Luh has studied in a series of papers the problem of existence

of functions with wild behaviour at every boundary point of certain

open sets (see [14, 15, 16 and 17]). The following strong result can

be found in [17].

Theorem 1.3 Let G ⊂ C, G 6= C, be an open set with simply

connected components. Then there exists a function f ∈ H(G) with

the following properties:

(1) For every t ∈ ∂G, every compact subset K with connected com-

plement and every g ∈ A(K), there exist affine linear mappings

τn(z) = anz + bn with τn(K) ⊂ G (n ∈ N) and an → 0,
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bn → t (n → ∞) such that f(τn(z)) → g(z) (n → ∞) uni-

formly on K.

(2) In addition, each derivative f (j) (j ∈ N) of f and each an-

tiderivative of f of arbitrary order has the boundary behaviour

described in (1).

Functions satisfying (1) and (2) are called “holomorphic mons-

ters” by Luh. He shows in [17] that its set is dense in H(G). In

addition, he proves that every f in H(G) satisfying (1) also satisfies

the next two properties:

(a) For every bounded open set U ⊂ C with simply connected

components, every g ∈ H(U) and every t ∈ ∂G, there exist

affine linear mappings τn(z) = anz+bn with τn(U) ⊂ G (n ∈ N)

and an → 0, bn → t (n → ∞) such that f(τn(z)) → g(z) in

H(U).

(b) For every bounded Lebesgue–measurable set S ⊂ C, every

Lebesgue–measurable function g : S → C∞ and every t ∈
∂G, there exist affine linear mappings τn(z) = anz + bn with

τn(S) ⊂ G (n ∈ N) and an → 0, bn → t (n → ∞) such that

f(τn(z))→ g(z) almost everywhere in S.

The properties exhibited in Theorem 1.3 and in (a) and (b) can be

expressed in terms of the maximality of certain generalized cluster

sets introduced in [17].

A little later, in 1987, K.–G. Grosse–Erdmann showed [12, Kapi-

tel 3] that if f ∈ H(G) then it is a monster in the sense of Luh if

and only if every derivative and every antiderivative of f of arbi-

trary order, say F , satisfies that for each Jordan domain Ω ⊂ C,

each t ∈ ∂G and each g ∈ H(Ω), there exist two sequences {an}n∈N
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and {bn}n∈N in C such that an → 0, bn → t (n→∞), anz+ bn ∈ G
(z ∈ Ω, n ∈ N) and F (anz + bn) → g(z) (n → ∞) uniformly on

compact subsets in Ω. In fact [12, Satz 3.0.2], it suffices to take

Ω = D in the latter property. By using the fact that being a mon-

ster is equivalent to the universality with respect to a certain family

of composition–differentiation–antidifferentiation operators, he also

proves [12, Satz 3.1.8] that the set of monsters on G is not only

dense but residual in H(G).

Monsters with additional properties were constructed by Luh [18]

and I. Schneider [24], see also [19].

On the other hand, the first author [1] introduced in 1992 the

“omnipresent holomorphic operators”. Let us recall this notion.

Let T be a continuous mapping T : H(G)→ H(G). T need not be

linear. Denote O(∂G) = {V ⊂ C : V is open and V ∩ ∂G 6= ∅}.
Recall that T is said to be omnipresent if each subset R(T, V,W ) =

{f ∈ H(G) : there exists z ∈ G∩V such that Tf(z) ∈ W} is dense in

H(G) for all V ∈ O(∂G) and all nonempty open subsets W ⊂ C. In

[1] it is shown that each differential and each antidifferential operator

is omnipresent. These properties will be strengthened in Theorem

3.1 and, partially, in Theorem 4.2.

In this paper we introduce two original concepts which are con-

nected with each other: the T–monsters and the strongly omnipresent

operators. With these, we will be following the ways opened by Luh

and Grosse–Erdmann from the different point of view presented by

the first author in [1]. In particular, operators of type Φ(D) and

Ψ(D−1) are going to be studied.
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2 Definitions

From now on, we denote by G an arbitrary open subset of C,

G 6= C.

Let T : H(G)→ H(G) be a continuous operator, which need not

be linear, as it was supposed before. If g ∈ H(D), ε > 0, r ∈ (0, 1)

and V ∈ O(∂G), then U(T, g, ε, r, V ) will stand for the set

U(T, g, ε, r, V ) = {f ∈ H(G) : there exists τ ∈ LT (V ∩G) such that

|(Tf)(τ(z))− g(z)| < ε for all z ∈ rD}.

It is evident that each of these sets is open in H(G).

We will say that T is strongly omnipresent inG if and only if every

set U(T, g, ε, r, V ) (g ∈ H(D), ε > 0, r ∈ (0, 1), V ∈ O(∂G)) is dense

in H(G). It is evident that each strongly omnipresent operator on

H(G) is also omnipresent. By Theorem 1(c) of [1] –applied on T =

the identity operator and g(z) = exp z– we have that f 7→ exp f is

a (nonlinear) omnipresent operator on H(G) which is not strongly

omnipresent by Hurwitz’s theorem and Lemma 2.1 together with

Theorem 2.2 below. Up to date, we do not know whether a linear

omnipresent non-strongly omnipresent operator can exist or not.

Inspired by [12], we will say that a function f ∈ H(G) is a T–

monster in G if and only if for each Jordan domain Ω ⊂ C, each

g ∈ H(Ω) and each t ∈ ∂G, there exist two sequences {an}n∈N and

{bn}n∈N in C such that

an → 0, bn → t (n→∞);

anz + bn ∈ G for all n ∈ N for all z ∈ Ω

and

(Tf)(anz + bn)→ g(z) (n→∞)
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uniformly on compact subsets in Ω. Note that a function f ∈ H(G)

is a monster in the sense of Luh if and only if f is a Dj-monster for

every j ∈ Z (it is easy to see that if a j–antiderivative of f satisfies

condition (1) in Theorem 1.3 then every j–antiderivative of f also

satisfies (1)).

Denote by M(T,G) the set of T–monsters in G. Let us see now

(Theorem 2.2) that both concepts are closely connected. Before this,

we need the following auxiliary lemma. The proof of it is a simple

adaptation of the first part of the proof of [12, Satz 3.0.2], and so it

is left to the interested reader.

Lemma 2.1 Let {gi}i∈N be a dense countable subset of H(D) and

{tk}k∈N a dense countable subset of ∂G. Then, f ∈ H(G) is a

T–monster in G if and only if for each i ∈ N and each k ∈ N

there exist two sequences {an}n∈N, {bn}n∈N in C such that an → 0,

bn → tk (n → ∞), anz + bn ∈ G for all n ∈ N and all z ∈ D and

(Tf)(anz + bn)→ gi(z) (n→∞) locally uniformly in Ω.

Theorem 2.2 Let T : H(G) → H(G) be a continuous mapping.

Then T is strongly omnipresent in G if and only if M(T,G) is

residual in H(G).

Proof. Fix a dense countable subset {gi}i∈N of H(D) and a

dense countable subset {tk}k∈N of ∂G. From the fact that H(G) is

a Baire space, the statement of the theorem will become obvious as

soon as we prove that

M(T,G) =
⋂

i,k,l∈N
U(T, gi,

1

l
, 1− 1

l
, B(tk,

1

l
))

For this, fix f ∈ M(T,G). For each i ∈ N and each k ∈ N there

are two sequences {an}n∈N and {bn}n∈N in C such that an → 0,
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bn → tk (n→∞); anz+ bn ∈ G for all n ∈ N and for all z ∈ D and

(Tf)(anz+ bn)→ gi (n→∞) uniformly on compacta in D. So, for

every l ∈ N there exists m ∈ N such that

|am| <
1

2l
, |bm − tk| <

1

2l
,

|(Tf)(amz + bm)− gi(z)| < 1

l
for all z ∈ B(0, 1− 1

l
).

Then, τ(z) := amz + bm ∈ LT (B(tk,
1
l
) ∩G) and

f ∈ U(T, gi,
1

l
, 1− 1

l
, B(tk,

1

l
)).

Now, let f ∈
⋂

i,k,l∈N
U(T, gi,

1

l
, 1− 1

l
, B(tk,

1

l
)). Then, for each i ∈ I

and each k ∈ N there is a sequence {τl(z) = alz + bl}l∈N of affine

linear mappings such that

τl(D) ⊂ G ∩B(tk,
1

l
), (1)

|(Tf)(τl(z))− gi(z)| < 1

l
for all z ∈ B(0, 1− 1

l
). (2)

By (1), alz+bl ∈ G for all l ∈ N and all z ∈ D, and |alz+bl−tk| < 1
l

for every z ∈ D. So, by taking z = 0 and z = 1/2, we get bl → tk

and al → 0 (l → ∞). Finally, (2) gives that (Tf)(alz + bl) → gi

(l →∞) uniformly on compact subsets in D. Apply Lemma 2.1 to

obtain that f ∈M(T,G), as required. The proof is finished.

The following problem remains open: Is T strongly omnipresent

just by assuming that M (T,G) is nonempty?

3 Infinite order differential operators

Let Φ(z) =
∑
n≥0

anz
n be a nonidentically zero entire function of

subexponential type and G ⊂ C an open subset with G 6= C. Con-

sider the continuous linear operator T = Φ(D). Since T can be

11



defined on the space H(C) of all entire functions and commutes

with the translations, it is surjective from H(C) onto H(C) (see [9],

[11, Section 5] and [20]). In particular, for every polynomial P , there

exists an entire function f such that Tf = P . We are now ready to

state our next result, which improves strongly Theorem 2(a) of [1].

Theorem 3.1 The operator T = Φ(D) is strongly omnipresent in

G.

Proof. Fix g ∈ H(D), ε > 0, r ∈ (0, 1) and V ∈ O(∂G). We have

to prove that U(T, g, ε, r, V ) is dense in H(G).

Let K be a compact subset of G, δ > 0 and f ∈ H(G). It is

evident that we can find a point a, a positive real number s and a

set L satisfying:

1. L is compact, K ⊂ L ⊂ G and each connected component of

C∞ \ L contains some connected component of C∞ \G.

2. B(a, s) ⊂ V ∩ (G \ L).

Consider the affine linear mapping τ(z) = sz + a. Then

τ(D) = B(a, s) ⊂ V ∩G and τ(rD) = B(a, rs). (1)

On the other hand, by taking r′ ∈ (r, 1), a positive constant A can

be found in such a way that

|an| ≤ A
(1
2
(r′ − r)s)n

n!
for all n ≥ 0, (2)

because Φ is of subexponential type.

Since g◦τ−1 ∈ H(B(a, s)), we can obtain a polynomial P (z) with

|P (z)− g ◦ τ−1(z)| < ε

2
for all z ∈ B(a, r′s) (3)
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and, as noted just above this theorem, there exists an entire function

Q such that

Φ(D)Q = P. (4)

Choose an open subset W of G satisfying L ⊂ W and W ∩B(a, s) =

∅. If S = L ∪ B(a, r′s) and U = W ∪ B(a, s), then S is compact,

U is open, S ⊂ U ⊂ G and each “hole” of S contains at least one

“hole” of G. Define ϕ on U by

ϕ(z) =

 f(z) if z ∈ W
Q(z) if z ∈ B(a, s).

Trivially ϕ ∈ H(U). By Runge’s Theorem, there exists a rational

function h, with poles outside G (hence h ∈ H(G)), such that

|ϕ(z)− h(z)| < min

(
δ,
r′ − r
4Ar′

ε

)
for all z ∈ S.

Then

|f(z)− h(z)| < δ on K. (5)

Furthermore, if γ = {t : |t− a| = r′s}, Cauchy’s formula gives

|h(n)(z)−Q(n)(z)| =
∣∣∣∣∣ n!

2πi

∮
γ

h(t)−Q(t)

(t− z)n+1
dt

∣∣∣∣∣ ≤
n!

2π

length(γ)

((r′ − r)s)n+1
sup

B(a,r′s)

|h(t)−Q(t)| ≤

n!ε

4A((r′ − r)s)n
for all n ≥ 0 and all z ∈ B(a, rs). (6)

Therefore, by (2), (4) and (6),

|Φ(D)h(z)− P (z)| = |Φ(D)h(z)− Φ(D)Q(z)| =∣∣∣∣∣∣
∑
n≥0

an(h(n)(z)−Q(n)(z))

∣∣∣∣∣∣ ≤
∑
n≥0
|an||h(n)(z)−Q(n)(z)| ≤
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ε

4

∑
n≥0

(
1

2

)n
=
ε

2
for all z ∈ B(a, rs). (7)

So, by (1), (3) and (7), there exists τ ∈ LT (G ∩ V ) such that

|Φ(D)h(z)− g ◦ τ−1(z)| ≤

|Φ(D)h(z)− P (z)|+ |P (z)− g ◦ τ−1(z)| < ε

2
+
ε

2
= ε

in B(a, rs). Thus,

|(Th)(τ(z))− g(z)| < ε for all z ∈ rD. (8)

Consequently, by (5) and (8),

h ∈ U(T, g, ε, r, V ) ∩D(f,K, δ)

i.e., U(T, g, ε, r, V ) is dense in H(G) and T is strongly omnipresent.

Remark 3.2 Although we have proved that T is strongly om-

nipresent, we could give a similar proof to see, directly, thatM(T,G)

is residual in H(G). In fact, the proof would only be changed in its

first part.

4 Infinite order antidifferential operators

In [1, Theorem 3], the first author showed that the operator S :

H(G)→ H(G) defined by

Sf(z) =
∫ z

a
ϕ(z, t)f(t) dt (z ∈ G)

is omnipresent, where G ⊂ C is a simply connected domain, a ∈ G
is fixed, ϕ : G × G → C is a function which is not identically zero

and holomorphic with respect to both variables. The integral is

taken along any rectifiable curve in G joining a to z.
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We can improve the latter result, at least when the kernel ϕ(z, t)

is an entire function depending only on the difference z− t and does

not grow too much. Note that, in our main result (Theorem 4.2),

T is something like a Volterra operator of the second kind in the

complex plane (S would be of the first kind). In the proof of the

theorem the following elementary lemma will be needed.

Lemma 4.1 If G ⊂ C is a simply connected domain with G 6= C,

b ∈ C \ G and N ∈ N, then the set P(b,N) of polynomials P such

that b is a zero of P with multiplicity not less than N is dense in

H(G).

The proof of the latter lemma is an easy application of Runge’s

theorem, so it is left to the reader.

Theorem 4.2 Assume that G ⊂ C is a simply connected domain,

G 6= C, a ∈ G and h is an entire function of exponential type, h

not identically zero. Let λ ∈ C and consider the linear operator T

on H(G) defined by

Tf(z) = λf(z) +
∫ z

a
h(z − t)f(t) dt (z ∈ G)

where the integral is taken along any rectifiable curve in G joining

a to z. Then T is strongly omnipresent.

Proof. In order to cause no confusion, we will keep the letter

z to denote the points of D. Let us set h(w − t) = ϕ(w, t). Then

ϕ : G × G → C is a function not identically zero and holomorphic

with respect to both variables. We may do this because the first part

of the proof is not based on the fact that the kernel only depends

upon w − t.
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In order to show that T is strongly omnipresent, fix f ∈ H(G),

ε > 0, a compact subset K ⊂ G, V ∈ O(∂G), δ > 0, r ∈ (0, 1) and

g ∈ H(D). It is clear that we can find b, B, γ, τ and L satisfying:

1. L is compact, {a} ∪ K ⊂ L ⊂ G and the complement of L is

connected,

2. B is a closed ball with B = τ(D) ⊂ V ∩ G \ L, τ being a

nonconstant affine linear mapping,

3. γ is a rectifiable Jordan arc in G joining a to b and γ = γ1 +γ2,

where γk (k = 1, 2) are rectifiable Jordan arcs too, γ1 = γ ∩ L,

b is the end point of γ2 and γ ∩B = {b}.

Assume that we have proved the following property:

The linear operator S : Hb(C)→ H(B0) given by

(Sψ)(w) = λψ(w) +
∫ w
b ψ(t)ϕ(w, t)dt (w ∈ B0)

has dense range,


(P )

where Hb(C) := {ψ ∈ H(C) : ψ(b) = 0}, which is a closed subspace

of H(C). Each integration curve may unambiguously be chosen as

a rectifiable Jordan arc joining b to w contained in B, for instance,

the segment [b, w].

Denote γ(w) = γ+[b, w]. Observe that length(γ(w)) ≤ length(γ)+

2s for all w ∈ B, where s is the radius of B. Define the constant α

by

α = sup{|ϕ(w, t)| : w ∈ B, t ∈ γ ∪B}.

We can suppose that γ2 has a parametrization u ∈ [0, 1] 7→ β(u),
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where β is injective. If f̃ : γ → C is defined as

f̃(w) =

 f(w) if w ∈ γ1
f(β(0))(1− u) if w = β(u) ∈ γ2,

then f̃ is continuous on γ.

Note that g ◦ τ−1 is defined and holomorphic on B0 because g

is holomorphic on D = τ−1(B0). The same is true for the function

w 7→
∫
γ
ϕ(w, t)f̃(t) dt. From property (P ), there exists an entire

function Ψ such that Ψ(b) = 0 and∣∣∣∣(SΨ)(w)−
(
g(τ−1(w))−

∫
γ
ϕ(w, t)f̃(t)dt

)∣∣∣∣ < δ

3
for all w ∈ B1

(1)

where B1 := τ(rD). Let K0 = L ∪ γ ∪ B. Define the function

f1 : K0 → C as

f1(w) =


f(w) if w ∈ L
f(β(0))(1− u) if w = β(u) ∈ γ2
Ψ(w) if w ∈ B.

Then K0 is a compact set whose complement is connected, f1 is

continuous on K0 and holomorphic in its interior K0
0 = L0∪B0. By

Mergelyan’s Theorem ([10, pp. 97–109] or [22, Chap. 20]), there is

a polynomial P such that

|P (z)− f1(z)| < min(ε, δ, 1)

1 + 3|λ|+ 3α(length(γ) + 2s)
for all z ∈ K0. (2)

We have, for every w ∈ B1,

(TP )(w)− g(τ−1(w)) = λP (w) +
∫
γ(w)

ϕ(w, t)P (t)dt− g(τ−1(w)) =

λ(P (w)−Ψ(w)) +
∫
γ(w)

ϕ(w, t)(P (t)− f1(t))dt+
∫
γ
ϕ(w, t)f̃(t)dt+
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λΨ(w) +
∫ w

b
ϕ(w, t)Ψ(t)dt− g(τ−1(w)) =

I + J +M,

where

I =
∫
γ(w)

ϕ(w, t)(P (t)− f1(t)) dt,

J = (SΨ)(w)−
(
g(τ−1(w))−

∫
γ
ϕ(w, t)f̃(t) dt

)
,

M = λ(P (w)−Ψ(w)).

Inequality (2) yields

|I| < δ

3

and

|M | < δ

3
.

From (1) we obtain |J | < δ
3
, so |(TP )(w)− g(τ−1(w))| < δ because

of the triangle inequality. A change of variables shows that

|(TP )(τ(z))− g(z)| < δ for all z ∈ rD. (3)

But (2) also gives that

|P (w)− f(w)| < ε on K (4)

because K ⊂ L ⊂ K0. Then (3) and (4) tell us that

P ∈ D(f,K, ε) ∩ U(T, g, δ, r, V ).

Hence U(T, g, δ, r, V ) is dense inH(G) and T is strongly omnipresent,

as required.

Thus, we should prove property (P ). At this point the shape

ϕ(w, t) = h(w − t) of ϕ is crucial. A “Laplace transform” method

will be used in this part of the proof. From now on, the letter z may

be any complex number, not necessarily in D.
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By applying Lemma 4.1 on G = B0 and taking into account that

every polynomial can be written as a finite linear combination of

powers (z − b)m, it suffices to show that there is m0 ∈ N such that

for each m ≥ m0 a corresponding function Ψ ∈ H(C) can be found

in such a way that Ψ(b) = 0 and

λΨ(z) +
∫ z

b
Ψ(t)h(z − t) dt = (z − b)m for all z ∈ C.

By the analytic continuation principle and a simple change of va-

riables, we should be done whenever we are able to prove the exis-

tence of m0 ∈ N such that for every m ≥ m0 there is an entire

solution Ψ(z) with Ψ(0) = 0 of the functional equation

λΨ(x) + (Ψ ? h)(x)− xm = 0 (x ∈ (0,+∞)), (5)

where Ψ ? h is the convolution product

(Ψ ? h)(x) =
∫ x

0
Ψ(t)h(x− t) dt.

Let us choose m0 = 2 + [the multiplicity of h for the zero at the

origin] (the multiplicity may be, of course, zero) and fix m ≥ m0.

Since h is of exponential type, its Laplace transform

(Lh)(z) =
∫ +∞

0
h(t)e−ztdt

is defined and holomorphic on a certain half plane {Re z > x0}. In

fact, if
∞∑
j=0

hjz
j is the Taylor series of h, then ρ := lim sup

j→∞
(j!|hj|)

1
j <

+∞ and the series
∞∑
j=0

j!hj
zj+1

converges on {|z| > ρ}. We have that

(Lh)(z) =
∞∑
j=0

j!hj
zj+1

on Re z > ρ. We have used that the Laplace

transform of each function xm is
m!

zm+1
. Consider the expression

F ?(z) =
m!zm+1

λ+
∑∞
j=1(j − 1)!hj−1zj

.
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Note that the series in the denominator defines a holomorphic func-

tion on B(0, 1
ρ
) whose zero at the origin has multiplicity not greater

than m0 − 1, so F ?(0) = 0 (with multiplicity at least 2) and there

is µ ∈ (0, 1
ρ
) such that F ? ∈ H(B(0, µ)). Then the function F (z) :=

F ?(1
z
) is holomorphic in the neighbourhood |z| > 1

µ
of ∞ and has a

zero at this point. Consequently, it has an expansion

F (z) =
∞∑
j=0

cj
zj

(|z| > 1

µ
),

with c0 = c1 = 0.

Thus, F is representable by means of an absolutely convergent

Laplace integral. In fact (see [8, p. 66]), the function

Ψ(z) =
∞∑
j=1

cj+1

j!
zj (z ∈ C)

is entire and of exponential type, and satisfies Ψ(0) = 0 and

F (z) =
∫ ∞
0

Ψ(t)e−ztdt (Re z > R)

for certain R ∈ (0,+∞). Henceλ+
∞∑
j=0

j!hj
zj+1

∫ ∞
0

Ψ(t)e−ztdt =
m!

zm+1
(Re z > R),

that is,

λ(LΨ)(z) + (Lh)(z) · (LΨ)(z) = (Lσ)(z) (Re z > R),

where σ(x) := xm. But, by Borel’s theorem, L(Ψ?h)(z) = L(Ψ)(z) ·
(Lh)(z), so, by linearity,

L(λΨ + Ψ ? h− σ)(z) = 0 (Re z > R).

Since λΨ+Ψ?h−σ is continuous on the interval (0,+∞), we obtain

λΨ + Ψ ? h− σ = 0 on that interval (see [8, pp. 53–54]). But this is

(5). This completes the proof.
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We obtain immediately the following corollary, which of course

can be applied on a nonzero entire function Ψ.

Corollary 4.3 Let G ⊂ C be a simply connected domain with G 6=

C. Fix a point a ∈ G and let Ψ(z) :=
∞∑
j=0

cjz
j ∈ H(B(0, R)) for

some R > 0, Ψ being not identically zero. Consider the operator

T = Ψ(D−1) on H(G). Then T is strongly omnipresent.

Proof. Recall that, in the definition of Ψ(D−1), a point a ∈ G

has been fixed. We will see that the hypotheses of Theorem 3.1 or

Theorem 4.2 are satisfied. We have that

lim sup
j→∞

(|cj|
1
j ) < +∞ (6)

and, trivially,

lim sup
j→∞

(
|cj|
j!

) 1
j

= 0. (7)

By (7) and Theorem 1.2, T is a linear continuous operator on H(G)

and for any f ∈ H(G)

Tf(z) = λf(z) +
∫ z

a
h(z − t)f(t)dt (for all z ∈ G)

where λ ≡ c0 ∈ C and h(w) =
∞∑
j=1

cj
(j − 1)!

wj−1. Observe that h is

an entire function of exponential type, because of (6).

Consequently, either h is identically zero (so λ 6= 0, because Ψ

is not identically zero) and we get all hypotheses of Theorem 3.1

just by taking Φ(z) ≡ λ, or h is not identically zero and we apply

Theorem 4.2. In any case T is strongly omnipresent and the proof

is finished.

The following final result is a straightforward consequence of The-

orems 2.2, 3.1 and Corollary 4.3, and of the fact that, in a Baire
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space, the intersection of a countable family of residual subsets is

also residual. In fact, the Baire category approach is now a classical

tool in the study of universality. Note that, for simply connected do-

mains, Luh’s and Grosse–Erdmann’s results follow from the special

case Φj(z) = z|j| (j ∈ Z).

Theorem 4.4 Assume that G is a simply connected domain of C,

G 6= C. Fix a point a ∈ G and let D−1 be the corresponding antid-

ifferential operator. Suppose that {Φj}j∈Z is a family of nonidenti-

cally zero entire functions such that Φj is of subexponential type for

j ∈ N0. Denote Tj = Φj(D) whenever j ∈ N0 and Tj = Φj(D
−1)

whenever −j ∈ N. Then there is a residual subset in H(G) consis-

ting of functions f satisfying the following property: For each j ∈ Z,

each t ∈ ∂G, each compact subset K ⊂ C with connected comple-

ment and each g ∈ A(K), there exist affine linear transformations

τn with τn (K) ⊂ G (n ∈ N) and an → 0, bn → t (n → ∞) such

that (Tjf) ◦ τn → g (n→∞) uniformly on K.
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