
Two hyperbolic Schwarz lemmas

by

L. BERNAL-GONZÁLEZ and M.C. CALDERÓN–MORENO∗

Abstract

In this paper, a sharp version of the Schwarz–Pick Lemma for
hyperbolic derivatives is provided for holomorphic selfmappings on
the unit disk with fixed multiplicity for the zero at the origin, hence
extending a recent result due to Beardon. A property of preser-
ving hyperbolic distances also studied by Beardon is here completely
characterized.1

1 Introduction and notation

The Schwarz Lemma and its hyperbolic version (= the Schwarz–Pick
Lemma) continues attracting the attention of many mathematicians. Our
aim in this paper is to prove two sharp versions of the former results as-
suming that the multiplicity for the zero at the origin of the holomorphic
function under consideration is fixed. Our results will extend a recent one
due to Beardon, see below.

First of all, we need to fix some notation. The symbols N, C, R, D,
D(c, r) will denote, as usual, the set of positive integers, the complex plane,
the real line, the open unit disk and the euclidean closed disk {z ∈ C :
|z− c| ≤ r} (c ∈ C, r > 0), respectively. As for function spaces, H(D) is the
class of all holomorphic functions on D and Aut(D) will stand for the group
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of conformal automorphisms of D. If f ∈ H(D) and a ∈ D then µ(f, a) will
represent the multiplicity for the zero at a of the function f(z)− f(a). For
m ∈ N we introduce the notations

Fm = {f ∈ H(D) : |f | < 1, f(0) = f ′(0) = . . . = f (m−1)(0) = 0}
= {f ∈ H(D) : |f | < 1, f(0) = 0, µ(f, 0) ≥ m}

and
zmAut(D) = {zmf(z) : f ∈ Aut(D)}.

For the sake of convenience, we agree that z0Aut(D) = Aut(D). We say that
a function f is an m-rotation whenever there exists a constant c with |c| = 1
such that f(z) = czm. The set of all m-rotations will be represented by Rm.
It is clear that zm−1Aut(D) ∩ Fm = Rm. For a ∈ D we denote by ϕa the
special automorphism ϕa(z) = a−z

1−az . In fact, Aut(D) = {kϕa : |a| < 1 =
|k|}. Note that ϕ−1

a = ϕa. We define an m-automorphism of D as a function
f of the form f = ψ ◦R ◦ϕ with ϕ, ψ ∈ Aut(D) and R ∈ Rm We denote by
Autm(D) the set of m-automorphisms of D. Obviously, Aut1(D) = Aut(D).
It is straightforward to see that

Autm(D) = {ϕb ◦R ◦ ϕa : a, b ∈ D, R ∈ Rm}

and
{f ∈ Autm(D) : f(a) = b} = {ϕb ◦R ◦ ϕa : R ∈ Rm}.

The symbol ρ will stand for the hyperbolic (or Poincare’s) distance on D,
that is,

ρ(z, w) = tanh−1 |ϕz(w)| = 1

2
log

1 + | z−w
1−zw |

1− | z−w
1−zw |

.

If f : D→ D is holomorphic then the hyperbolic derivative of order m of f
at z as introduced by Peschl is defined as

f [m](z) = (ϕf(z) ◦ f ◦ ϕz)
(m)(0).

By using the fact ϕ′a(t) =
|a|2 − 1

(1− at)2
together with Faa di Bruno’s formula

(see, for instance, [3]) for the mth derivative of a composite function it is
not difficult to check that

f [1](z) =
(1− |z|2)f ′(z)

1− |f(z)|2
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and that, for m ≥ 2,

f [m](z) = (−1)m+1 (1− |z|2)f (m)(z)

1− |f(z)|2
+ α(z),

where α(z) is a finite sum of terms each of them containing at least one
factor among f ′(z), . . . , f (m−1)(z). Hence if µ(f, z) ≥ m then α(z) = 0, so
we have

f [m](z) = (−1)m+1 (1− |z|2)f (m)(z)

1− |f(z)|2
.

Hyperbolic derivatives are invariant in the sense that |(S ◦ f ◦ T )[m]| =
|f [m]| ◦ T whenever S and T are conformal automorphisms of D.

The Schwarz-Pick Lemma is a non-Euclidean version of the classical
Schwarz Lemma. It asserts that

ρ(f(z), f(w)) ≤ ρ(z, w) and |f [1](z)| ≤ 1,

for all z, w ∈ D and every f ∈ H(D). Furthermore, the equality ρ(f(z), f(w)) =
ρ(z, w) holds for every pair z, w ∈ D if and only if this equality holds for
some pair z, w ∈ D (z 6= w) if and only if |f [1](z)| = 1 for every z ∈ D if and
only if |f [1](z)| = 1 for some z ∈ D if and only if f ∈ Aut(D).

Recently, Beardon [1] has given an interesting new version of the Schwarz
(or the Schwarz-Pick) Lemma. Specifically, he proved Theorem 1.1 be-
low (see [1, Theorem] and notes following [1, Lemma 1]), which is a non-
Euclidean version of a result due to Dieudonné [2] that establishes the fol-
lowing Schwarz Lemma for derivatives: If f ∈ F1 then

|f ′(z)| ≤

{
1 if |z| ≤

√
2− 1

(1+|z|2)2

4|z|(1−|z|2)
if |z| >

√
2− 1.

This inequality is the best possible in terms of |z|. We now transcribe the
statements of Beardon in our terminology (he denoted f [1] = f ∗). Recall
that f [1](z) ∈ D if f 6∈ Aut(D). Beardon realized that this allowed to
measure the hyperbolic distance between two hyperbolic derivatives.

Theorem 1.1. Assume that f ∈ F1 \ Aut(D). We have:

(a) The inequality
ρ(f [1](0), f [1](z)) ≤ 2ρ(0, z) (1)

is satisfied for all z ∈ D.
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(b) If equality holds in (1) for some z ∈ D \ {0} then f ∈ zAut(D).

(c) If f(z) = z2 then equality holds in (1) for all z ∈ D.

2 A preliminary result

Before stating our theorems, we need an elementary lemma which is an
“m-order” generalization of the Schwarz-Pick Lemma.

Lemma 2.1. Assume that m ∈ N, a ∈ D, f ∈ H(D), |f | < 1 on D and
µ(f, a) ≥ m. Then we have∣∣∣∣∣ f(z)− f(a)

1− f(a)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − a1− az

∣∣∣∣m (z ∈ D) (2)

and |f [m](a)| ≤ m!.
Further, equality holds in (2) for all z ∈ D if and only if it holds for

some z 6= a if and only if |f [m](a)| = m! if and only if f ∈ Autm(D).

Proof. If a ∈ D satisfies µ(f, a) ≥ m then the function

F (t) =
(ϕb ◦ f ◦ ϕa)(t)

tm
(t ∈ D \ {0})

has a holomorphic extension to D because µ(ϕb ◦ f ◦ ϕa, 0) = µ(f, a) ≥ m,
where we have denoted b = f(a). Fix r ∈ (0, 1). Then |F (t)| ≤ 1

rm
on

|t| = r, hence an application of the Maximum Modulus Principle yields
sup{|F (t)| : |t| ≤ r} ≤ 1

rm
. Letting r → 1 we get sup{|F (t)| : |t| < 1} ≤ 1,

that is, |F (t)| ≤ 1 on D or, equivalently, |ϕb◦f ◦ϕa(t)| ≤ |t|m (t ∈ D), which
becomes (2) after the change of variable z = ϕa(t). Note that the value of
(the extension of) F at the origin is

F (0) = lim
t→0

1

tm
· b− f(ϕa(t))

1− bf(ϕa(t))
= lim

z→a

(1− az)m

1− f(a)f(z)
· f(z)− f(a)

(z − a)m
· (−1)m+1 =

(−1)m+1 · (1− |a|2)m

1− |f(a)|2
· lim
z→a

f(z)− f(a)

(z − a)m
=
f [m](a)

m!
,

after using the L’Hopital rule together with the definition of the hyperbolic
derivative of order m and the fact that f ′(a) = . . . = f (m−1)(a) = 0. Anew
by the Maximum Modulus Principle, |F (0)| ≤ 1, whence |f [m](a)| ≤ m!.
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Assume now that f is an m-automorphism. Since f(a) = b we have
f = ϕb ◦ R ◦ ϕa where R ∈ Rm, i.e., R(t) = ctm for some c with |c| = 1.
Therefore F (t) = c on D, so |F | = 1 on D and the equality holds in (2) for all
z ∈ D (hence for some z 6= a). Moreover, |f [m](a)| = m! · |F (0)| = m! · |c| =
m!. Conversely, suppose that |f [m](a)| = m!. Then |F (0)| = 1 and the
Maximum Modulus Principle tells us that F (t) = c for some unimodular
constant c, but this yields (ϕb ◦ f ◦ ϕa)(t) = ctm for all t ∈ D, which in
turn implies that f = ϕb ◦ R ◦ ϕa with R as before. Consequently, f is an
m-automorphism of D.

Finally, assume that equality holds in (2) for some z 6= a. Then the
change z = ϕa(t) shows that |ϕb ◦ f ◦ ϕa(t)| = |t|m for some t 6= 0, whence
|F (t)| = 1 for some t ∈ D. Another application of the Maximum Modulus
Principle drives us to F (t) = c on D for some unimodular constant c, and
this implies as above that f ∈ Autm(D). This concludes the proof.

3 Main results

We are now ready to state our theorems. Like in [1], we can estimate the
hyperbolic distance between two normalized hyperbolic derivatives of higher
order under obvious conditions.

Theorem 3.1. Assume that f ∈ Fm \ Autm(D). We have:

(a) If a ∈ D and µ(f, a) ≥ m then

ρ((−1)m+1f
[m](0)

m!
,
f [m](a)

m!
) ≤ 2ρ(0, a). (3)

(b) If there exists a ∈ D \ {0} for which µ(f, a) ≥ m such that equality
holds in (3) then f ∈ zmAut(D).

Proof. Observe that if µ(f, a) ≥ m and f ∈ Fm \ Autm(D) then the values

(−1)m+1f
[m](0)

m!
,
f [m](a)

m!
are in D by Lemma 2.1, so the hyperbolic distance

between them makes sense. As for (a), since µ(f, a) ≥ m ≤ µ(f, 0) the
functions

g(z) =
f(z)

zm
(z ∈ D \ {0})
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and

h(z) =

(
1− az
a− z

)m

· f(a)− f(z)

1− f(a)f(z)
(z ∈ D \ {a})

have holomorphic extensions on the whole D if we set

g(0) =
f (m)(0)

m!
= (−1)m+1f

[m](0)

m!

and

h(a) = lim
z→a

h(z) =
(1− |a|2)m

1− |f(a)|2
· (−1)m+1 · f

(m)(a)

m!
=
f [m](a)

m!
.

We may start with a 6= 0, since the case a = 0 is trivial.
Note that by Lemma 2.1 (as applied on points 0, a) we get |g| ≤ 1,

|h| ≤ 1 on D, and in fact |g| < 1, |h| < 1 on D since f is not an m-

automorphism. On the other hand, g(a) = f(a)
am

and h(0) = f(a)
am

. If we apply
the Schwarz-Pick Lemma to g and h then one obtains ρ(g(0), g(a)) ≤ ρ(0, a)
and ρ(h(0), h(a)) ≤ ρ(0, a). Consequently, observing that g(a) = h(0), the
triangle inequality yields

ρ((−1)m+1f
[m](0)

m!
,
f [m](a)

m!
) = ρ(g(0), h(a)) ≤ ρ(0, a) + ρ(0, a) = 2ρ(0, a),

which proves (a). In order to prove (b), assume that equality in (3) holds
for some a ∈ D \ {0} with µ(f, a) ≥ m. Then

2ρ(0, a) = ρ(g(0), h(a)) ≤ ρ(g(0), g(a)) + ρ(h(0), h(a)) ≤ 2ρ(0, a),

whence ρ(g(0), g(a)) = ρ(0, a) because both terms in the last sum are not
greater than ρ(0, a). But the Schwarz-Pick Lemma tells that g ∈ Aut(D),
hence f ∈ zmAut(D). The proof is finished.

Corollary 3.2. If m is even and f ∈ Fm \Autm(D) then f (m)(0) = 0. In
other words, f ∈ Fm+1.

Proof. From (3) and the fact that µ(f, 0) ≥ m we obtain

ρ(
f [m](0)

m!
,−f

[m](0)

m!
) ≤ 2ρ(0, 0) = 0,

therefore f [m](0) = −f [m](0). Consequently, f (m)(0) = (−1)m+1f [m](0) =
0.
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It should be noted that parts (a)-(b) of Theorem 1.1 are covered with the
case m = 1 in Theorem 3.1 (observe that always µ(f, a) ≥ 1). An extension
of part (c) of Theorem 1.1 makes no sense because if m ≥ 2 then the set
{z ∈ D : µ(f, z) ≥ m} is discrete in D except for the trivial case f ≡ 0. In
view of parts (b)-(c) of Theorem 1.1 one can wonder whether f ∈ zAut(D)
implies equality in (1) for some (or even for all) z ∈ D \ {0}. In fact, we
have been able to discover the exact conditions under which equality holds in
(1). This will be accomplished in the following theorem, which strengthens
Beardon’s result.

Theorem 3.3. Suppose that f ∈ F1 \ Aut(D). We have:

(a) The inequality
ρ(f [1](0), f [1](z)) ≤ 2ρ(0, z)

is satisfied for all z ∈ D.

(b) The equality
ρ(f [1](0), f [1](z)) = 2ρ(0, z) (4)

holds for some z ∈ D \ {0} if and only if it holds for all points of a
diameter of D if and only if f ∈ zAut(D).

(c) The above equality holds for all z ∈ D \ {0} if and only if it holds for
two nonzero points lying in two distinct diameters of D if and only if
f is a 2-rotation.

Proof. Part (a) is as in Theorem 1.1. It has been transcribed for the sake
of completeness. As for (b)-(c), if equality (4) holds for some z ∈ D \ {0}
then we already know that f ∈ zAut(D) by Theorem 1.1(b). Assume now
that f ∈ zAut(D). Then f is either a rotation kz2 (|k| = 1) or a function
of the form kzϕa(z) with 0 < |a| < 1 = |k|. Without loss of generality
we can suppose k = 1 because ρ(kz, kw) = ρ(z, w) for all z, w ∈ D if
|k| = 1. If f(z) = z2 then (4) holds on the unit disk by Theorem 1.1(c). If
f(z) = zϕa(z) with a 6= 0 then a direct computation gives

f [1](z) =
1− |z|2

1−
∣∣z a−z

1−az

∣∣2 · a− 2z + az2

(1− az)2
. (5)
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On the other hand, (4) means that

1

2
log

1 +
∣∣∣ f [1](0)−f [1](z)

1−f [1](0)f [1](z)

∣∣∣
1−

∣∣∣ f [1](0)−f [1](z)

1−f [1](0)f [1](z)

∣∣∣ = log
1 + |z|
1− |z|

,

which is equivalent to∣∣∣∣∣∣∣
a− 1−|z|2

1−|z a−z
1−az |

2 · a−2z+az2

(1−az)2

1− a 1−|z|2

1−|z a−z
1−az |

2 · a−2z+az2

(1−az)2

∣∣∣∣∣∣∣ =
2|z|

1 + |z|2
(6)

due to (5) and to the fact that ψ(|z|)2) = ψ

(
2|z|

1 + |z|2

)
where ψ is the

function ψ(t) = 1+t
1−t , which is one-to-one on (0, 1). The left-hand side of (6)

can be written (after some minutes of heavy and careful calculations) as∣∣∣∣a(|1− az|2 − |z(a− z)|2)(1− az)− (1− |z|2)(1− az)(a− 2z + az2)

(|1− az|2 − |z(a− z)|2)(1− az)− a(1− |z|2)(1− az)(a− 2z + az2)

∣∣∣∣ =

∣∣∣∣ (1− |a|2)(1− |z|2)((2z − a|z|2 − az2)

(1− |a|2)(1− |z|2)(−az − az|z|2 + 1 + |z|2)

∣∣∣∣ .
Therefore, after squaring, (6) is equivalent to

(2z − a|z|2 − az2)(2z − a|z|2 − az2)(1 + |z|2)2 =

(−az − az|z|2 + 1 + |z|2)(−az − az|z|2 + 1 + |z|2)4|z|2.

New heavy simplifications lead us to the equivalence of (6) to

−2|a|2|z|4(|z|4 − 2|z|2 + 1) + (a2z2 + a2z2)(|z|6 − 2|z|4 + |z|2) = 0,

or, what is the same,

|z|2(1− |z|2)2[−2|a|2|z|2 + a2z2 + a2z2] = 0.

If z 6= 0 (otherwise, (6) is trivial) the last equality is the same as

−2aazz + (az)2 + (az)2 = 0,
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that is, (az − az)2 = 0, or, equivalently, az = az. In other words, (6) holds
if and only if az ∈ R, which in turn means that z ∈ aR, that is, (6) holds if
and only if z belongs to the diameter D ∩ aR passing through a.

With this we have proved (b) and the fact that f is a 2-rotation if and
only if (4) holds on all of D. The remaining of (c) is easy, for if (4) holds for
two nonzero points lying in two distinct diameters of D then f must be in
zAut(D) but it cannot be of the form kzϕa(z) with a 6= 0. Consequently, f
is a 2-rotation and the theorem is proved.
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