
Using Maude?

Manuel Clavel1, Fransisco Durán2, Steven Eker2, Patrick Lincoln2,
Narciso Mart́ı-Oliet3, Jose Meseguer2, and Jose F. Quesada4

1 Department of Philosophy, University of Navarre, Spain
2 SRI International, Menlo Park, CA 94025, USA

3 Facultad de Ciencias Matemáticas, Universidad Complutense, Madrid, Spain
4 CICA (Centro de Informática Cient́ıfica de Andalućıa), Seville, Spain

Maude is a wide-spectrum reflective logical language based on rewriting logic [7]
that can be used to specify, prototype, and formally analyze concurrent soft-
ware systems, specification languages, logics, and theorem provers. Because of
its efficient implementation, it can also be used as a programming language and
as a meta-tool to generate other tools. This paper gives a brief introduction to
the language and illustrates with examples some of the features of the current
version, available free of charge together with examples, documentation, and
papers from SRI: see http://maude.csl.sri.com. The key characteristics of
Maude can be summarized as follows:

– Based on rewriting logic. This makes it particularly well suited to express
concurrent and state-changing aspects of systems declaratively.

– Wide-spectrum. Rewriting logic is a logical and semantic framework for both
specification and efficient execution.

– Multiparadigm. Since rewriting logic conservatively extends equational logic,
an equational style of functional programming is naturally supported in a
sublanguage. A declarative style of concurrent object-oriented programming
is also supported with a simple logical semantics.

– Reflective. Rewriting logic is reflective [4, 1]. The design of Maude capitalizes
on this fact to support a novel style of metaprogramming with very powerful
module-combining and module-transforming operations that surpass those
of traditional parameterized programming.

– Internal Strategies. The strategies controlling the rewriting process can be
defined by rewrite rules and can be reasoned about inside the logic [4, 5, 1].

Maude’s implementation has been designed with the explicit goals of sup-
porting executable specification and formal methods applications, of being easily
extensible, and of supporting reflective computations. Although it is an inter-
preter, its advanced semicompilation techniques support flexibility and trace-
ability without sacrificing the performance of up to 1.665 million rewrites per
second in the free theory and between 131 thousand, and 1 million rewrites per
second if associativity and commutativity axioms are used, on a 500MHz Alpha.
? Supported through Rome Laboratories contract F30602-97-C-0312, by DARPA and

NASA through Contract NAS2-98073, by Office of Naval Research Contract N00014-
96-C-0114, and N00014-99-C-0198.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/222572711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://maude.csl.sri.com

A Decision Procedure for Bands

Bands are idempotent semigroups. Deciding the word problem for bands is a
subtle problem, since the naive approach of using the idempotency equation
as a string rewriting rule yields a nonconfluent system. The Maude module
below specifies the confluent and terminating equational system proposed by
Siekmann and Szabo [8]. The subtle part is that, even though the rules are
string rewriting rules applied modulo associativity, the added conditional rule
has to compare sets of elements in appropriate substrings. Thus, in addition
to a sort List with an associative concatenation operator, we also need an
auxiliary sort Set with an associative and commutative union operation and
an idempotency equation. This illustrates Maude’s support for rewriting modulo
equational axioms. All combinations of associativity, commutativity, and left and
right identity are supported.

fmod ASSOC-IDP is protecting QID .

sorts List Set . subsorts Qid < List Set .

op __ : List List -> List [assoc] . *** list concatenation

op _,_ : Set Set -> Set [assoc comm] . *** set union

op {_} : List -> Set . *** set of a list

var I : Qid . var S : Set . vars L P Q : List .

eq S,S = S . eq L L = L . *** set and list idempotence

ceq L P Q = L Q if {L} == {Q} and {L P} == {L} .

eq {I} = I . eq {I L} = I,{L} .

endfm

We can then decide the equality of two given words by equality, e.g.,

reduce ’a ’b ’c == ’a ’b ’c ’b ’a ’b ’c

It is not difficult to see that both words are reductions, using the idempotency
equation as a rule, from the common ancestor ’a ’b ’a ’b ’c ’b ’a ’b ’c.

Reflection and the META-LEVEL

Rewriting logic is reflective [4, 1] in the precise sense that there is a finitely
presented rewrite theory U such that for any finitely presented rewrite theory T
(including U itself) we have the following equivalence

T ` t −→ t′ ⇐⇒ U ` 〈T , t〉 −→ 〈T , t′〉
where T and t are terms representing T and t as data elements of U . In Maude re-
flection is efficiently supported through its predefined META-LEVELmodule, which
provides key functionality for the universal theory U . In particular, META-LEVEL
has sorts Term and Module, whose respective terms are metarepresentations t and
T , for t term and T a module (that is, a rewrite theory). For example, a term
t =f(a,g(b)), in a module FOO, with a, b constants of sort Foo is metarepre-
sented as t =’f[{’a}Foo,’g[{’b}Foo]]. META-LEVEL has a number of functions
for performing metalevel computations in the universal theory [2]. In particular,
the meta-apply function applies at the metalevel a rule in a module to a term.
Its operator declaration is
op meta-apply : Module Term Qid Substitution MachineInt -> ResultPair .

The first and second arguments are metarepresentations T , and t for a module
T and a term t; the third argument is the label of the rule, the fourth is a
substitution instantiating some variables in the rule, and the fifth is a number
indicating the match instance with which we want to rewrite. Since matching
may be performed modulo axioms such as associativity, commutativity and/or
identity, in general a rule may match a subject term in several different ways. The
result of applying the function is a pair, consisting of the (metarepresentation
of) the rewritten term and the matching substitution in case of success, or an
error constant and the empty substitution in case of failure.

A Reflective Example

The following example demonstrates the use of the Maude metalevel. The ex-
ample consists of defining a metalevel function findAllRewrites that, given
a term t in a module T , will find (the representation of) all one-step rewrites
from t. Note that meta-apply only applies a rule at the top of the subject term,
whereas here we want all one-step rewrites at all term positions.

fmod META is protecting META-LEVEL .

sort TermSet . subsort Term < TermSet .

var T : Term . var S : Substitution . var L : Qid .

vars TL Before After : TermList . vars OP SORT : Qid .

var N : MachineInt . op first : ResultPair -> Term .

op ~ : -> TermList . eq ~, TL = TL . eq TL, ~ = TL . op {} : -> TermSet .

op _|_ : TermSet TermSet -> TermSet [assoc comm id: {}] .

op meta-apply1 : Term Qid MachineInt -> Term .

op findAllRewrites : Term Qid -> TermSet .

op findTopRewrites : Term Qid MachineInt -> TermSet .

op findLowerRewrites : Term Qid -> TermSet .

op rewriteArguments : Qid TermList TermList Qid -> TermSet .

op rebuild : Qid TermList TermSet TermList -> TermSet .

eq meta-apply1(T, L, N) = first(meta-apply([’FOO], T, L, none, N)) .

eq T | T = T . eq first({T, S}) = T .

eq findAllRewrites(T, L) = findTopRewrites(T, L, 0) | findLowerRewrites(T, L) .

eq findTopRewrites(T, L, N) = if meta-apply1(T, L, N) == error* then {}
else meta-apply1(T, L, N) | findTopRewrites(T, L, N + 1) fi .

eq findLowerRewrites({OP}SORT, L) = {} .

eq findLowerRewrites(OP[TL], L) = rewriteArguments(OP, ~, TL, L) .

eq rewriteArguments(OP, Before, T, L) = rebuild(OP, Before, findAllRewrites(T, L), ~) .

eq rewriteArguments(OP, Before, (T, After), L) =

rebuild(OP, Before, findAllRewrites(T, L), After) |

rewriteArguments(OP, (Before, T), After, L) .

eq rebuild(OP, Before, {}, After) = {} .

eq rebuild(OP, Before, T, After) = OP[Before, T, After] .

eq rebuild(OP, Before, (T | TS), After) = (OP[Before, T, After]) |

rebuild(OP, Before, TS, After) .

endfm

Given a module FOO with only one rule labeled ’one, the following finds all
one step rewrites from f(a, g(b)).

reduce findAllRewrites(’f[{’a}Foo,’g[{’b}Foo]], ’one).

Applications

Maude is a wide-spectrum language and an attractive formal meta-tool for build-
ing many advanced applications and formal tools. Substantial applications in-
clude: a module system for Maude implemented in Maude [6], an inductive
theorem prover; a Church-Rosser checker (both part of a formal environment
for Maude and for the CafeOBJ language [3]); an HOL to Nuprl translator; a
proof assistant for the Open Calculus of Constructions (OCC); and a translator
from J. Millen’s CAPSL specification language to the CIL intermediate lan-
guage. In addition, several language interpreters and strategy languages, several
object-oriented specifications—including cryptographic protocols and network
applications—and a variety of executable translations mapping logics, architec-
tural description languages and models of computation into the rewriting logic
reflective framework have been developed by different authors.

We thank everyone on the Maude team for their contributions to the system
and this paper. We thank our colleagues working on similar systems such as
CafeOBJ and ELAN for interesting discussions and helpful comments.

References

[1] Manuel Clavel. Reflection in general logics and in rewriting logic, with applications
to the Maude language. Ph.D. Thesis, University of Navarre, 1998.

[2] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,
José Meseguer, and José Quesada. Maude: specification and programming in rewrit-
ing logic. SRI International, January 1999, http://maude.csl.sri.com.

[3] Manuel Clavel, Francisco Durán, Steven Eker, and José Meseguer. Build-
ing equational proving tools by reflection in rewriting logic. In Proc. of
the CafeOBJ Symposium ’98, Numazu, Japan. CafeOBJ Project, April 1998.
http://maude.csl.sri.com.

[4] Manuel Clavel and José Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Applica-
tions, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier, 1996.
http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/volume4.htm.

[5] Manuel Clavel and José Meseguer. Internal strategies in a reflective logic. In
B. Gramlich and H. Kirchner, editors, Proceedings of the CADE-14 Workshop on
Strategies in Automated Deduction (Townsville, Australia, July 1997), pages 1–12,
1997.

[6] Francisco Durán. A reflective module algebra with applications to the Maude
language. Ph.D. Thesis, University of Malaga, 1999.

[7] José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[8] J. Siekmann and P. Szabo. A noetherian and confluent rewrite system for idempo-
tent semigroups. Semigroup Forum, 25:83–110, 1982.

http://maude.csl.sri.com
http://maude.csl.sri.com
http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/volume4.htm

	Using Maude*
	A Decision Procedure for Bands
	Reflection and the META-LEVEL
	A Reflective Example
	Applications
	References

