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Abstract

In this note, the existence of translation-universal entire functions which are
bounded on certain closed subsets is characterized in terms of topological and
geometrical properties of such subsets. Corresponding results are also stated
in the space of holomorphic functions on the unit disk and in the space of
harmonic functions on the plane. Moreover, it is shown the existence of entire
functions which are bounded on many rays and, simultaneously, are universal
with respect to a prescribed infinite-order differential operator.

1 Introduction and notation

Throughout this paper we will use the following notations, most of them being

standard: N is the set of positive integers, C is the complex plane, R is the real line,

D := {z ∈ C : |z| < 1} is the open unit disk, B(a, r) (B(a, r)) is the euclidean

open (closed, respectively) ball with center a ∈ C and radius r > 0. By A we
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mean the closure in C of a subset A ⊂ C. The symbol T stands for the unit circle

{z ∈ C : |z| = 1}. Moreover, if G is a domain (:= connected, nonempty open subset)

of C (of RN , where N ∈ N), then H(G) (h(G)) denotes the space of all holomorphic

functions f : G→ C (of all harmonic functions u : G→ R, respectively). It becomes

a separable completely metrizable space (hence a Baire space) when it is endowed

with the compact open topology (see [27, pages 238–239]). In particular, H(C) is the

space of all entire functions. If F is a closed subset of C (of RN) then A(F ) (h(F ))

denotes the class of functions f : F → C (u : F → R) which are continuous on F

and holomorphic in the interior of F (which are harmonic in some neighbourhood

V = Vu of F , respectively). If G is a domain of C and F ⊂ G, then F is said to be

an Arakelian subset of G if and only if F is a nonempty, proper, (relatively) closed

subset of G, and G∞ \F is connected and locally connected at the∞-point of G∞ :=

the one-point compactification of G. We define an Arakelian subset of RN in an

analogous way. Finally, a subset F of a topological space X is called of first category

whenever F is the union of countable many nowhere dense subsets of X.

In 1929 Birkhoff [11] constructed an entire function which is ‘universal’ for

translations. In fact, he proved essentially that given b ∈ C \ {0} there exists a

function f ∈ H(C) such that its sequence of translates {f(· + nb) : n ∈ N} is dense

in H(C). Birkhoff’s theorem can be observed under the point of view of the operator

theory as a universality result; namely, if ϕ : C→ C denotes the translation z 7→ z+b

then the composition operator

Cϕ : f ∈ H(C) 7→ f ◦ ϕ ∈ H(C)

is universal. In general, if X is a (necessarily separable) topological vector space and

(Tn) is a sequence of operators (= continuous linear selfmappings) on X then (Tn)

is said to be universal (or hypercyclic) provided that there exists some vector x ∈ X
–called universal for (Tn)– for which the orbit {Tnx : n ∈ N} of x under (Tn) is dense

in Y . And a single operator is called universal whenever the sequence of iterates (T n)

(that is, T 1 = T , T 2 = T ◦T , and so on) is universal; in this case it is easy to see that

the set of universal vectors is dense. If X is Baire and metrizable and T is universal

then the set of universal vectors for T is residual, that is, its complement is of first

category. See [26] for a good account about these concepts and their history.
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Since 1929 many papers have dealt with the subject of universality through trans-

lations in one complex variable. Let us make a brief report, now in the language of

the universality of operators; see also the survey [26] –specially its Section 4a– which

contains a rather complete list of references including domains G 6= C,D and spaces

X 6= H(G). In 1941 Seidel and Walsh [32] were able to construct a function f ∈ H(D)

which is universal in H(D) with respect to the sequence of composition operators ge-

nerated by the noneuclidean translates z 7→ z+an
1+anz

(n ∈ N), where |an| → 1. In 1976

Luh [29] proved that for a prescribed unbounded sequence (bn) ⊂ C the sequence

(Cϕn) is universal on H(C), where ϕn is the translation z 7→ z + bn. In 1984 Duyos-

Ruis [18] showed by functional analysis methods that Cϕ (ϕ(z) = z + b, b ∈ C \ {0})
is universal on H(C) (hence there is a residual subset of universal functions), while

the residuality of the (Cϕn)-universal entire functions –where the ϕn are the above

translations– was observed by Grosse-Erdmann [25] and Gethner and Shapiro [23].

In 1988 Zappa [34] considered the universality of functions of H(C \ {0}) with res-

pect to ‘multiplicative’ translations. In 1995 Bernal and Montes [9] characterized the

sequences of automorphisms of C or D generating universal sequences of composition

operators.

Corresponding results in several complex variables can be seen in a number of

papers by Godefroy, Shapiro, Abe, Zappa, León, Prado and the first author (see [24],

[1], [2], [28], [10] and [8]). As for translation-universality in the space h(RN), see [4]

by Armitage and Gauthier.

The universality of the differentiation operator

D : f ∈ H(C) 7→ f ′ ∈ H(C)

was stated by MacLane [30] in 1952. Godefroy and Shapiro [24] (see also [26] and

[10] for generalizations and improvements) unified both theorems of Birkhoff and

MacLane by showing that any infinite-order differential operator Φ(D) (see Section

2) on H(C) which is not a scalar multiple of the identity is universal.

We want to bring here a question concerning the existence of translation-universal

functions when boundedness conditions on certain subsets are added. In this setting,

the second author [13] defined a universal harmonic function as a function f ∈ h(RN)
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such that to each g ∈ h(RN) corresponds a sequence (an) ⊂ RN depending on g satis-

fying limn→∞ f(x + an) = g(x) uniformly on compact sets. Among other properties,

he proved in [13, Theorem 1] the existence of a universal harmonic function which has

strong decay (in particular, it is bounded) on any hyperplane strip. M.C. Calderón

[14, Theorem 2.1] gave an analogous concept for the space of entire functions. She

showed the existence of a universal entire function decaying very fast on every strip

and on every sector {z : 0 ≤ arg z ≤ α} with α ∈ (0, 2π) (as a matter of fact,

she considered the action of certain operators T on H(C), including the identity

operator). Very recently, Costakis and Sambarino [15, Theorem 5] proved that there

exists an entire function f whose translates z 7→ f(z + n) (n ∈ N) are dense in H(C)

such that f tends to zero as z →∞ on every sector {z : ε ≤ arg z ≤ 2π(1− ε)} with

ε ∈ (0, 1). They also show (see [15, Theorem 6]) that for a prescribed nowhere dense

set E ⊂ T, there is a D-universal entire function f tending to zero along every ray

from the origin passing trough E, that is, limr→+∞ f(rt) = 0 for all t ∈ E.

Note that in the concept of universality of [13] and [14] it is equivalent to state

that the sequence (an) exists independently of g: indeed, fix a countable dense subset

(gk) in h(RN) (or in H(C)) and consider the sequence (bn,k)n which performs the

approximation to gk; then the adequate sequence (an) is made by joining all terms

bn,k (k, n ∈ N) in a single sequence. On the other hand, any euclidean (noneuclidean)

translation in C (D) is in fact an internal law z 7→ z ∗ a = z + a (z 7→ z ∗ a = z+a
1+az

)

making C (D) a topological group, whenever C (D, respectively) is endowed with the

euclidean topology. The last two remarks motivate the following definition.

Definition 1.1. (a) A plane topological group (PTG) is a topological group (G, ∗),
such that G is a domain of C, G carries the euclidean topology and for each a ∈ G
the “translation selfmapping” τa : z ∈ G 7→ z ∗ a ∈ G is holomorphic in D.

(b) If (G, ∗) is a PTG and f ∈ H(G), then we say that f is τ -universal if and only

if there exists a sequence (an) ⊂ G such that the set {f ◦ τan : n ∈ N} is dense in

H(G).

(c) If u : RN → R is harmonic, then u is called τ -universal whenever there is a

sequence (an) ⊂ RN satisfying that the set {u(·+ an) : n ∈ N} is dense in H(RN).

Observe that we are considering “right” translations τa. Of course, one could give
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analogous concepts (and obtain analogous results) by considering “left translations”

if these are defined in a suitable way. We refer to, for instance, the book [6] for

the fundamentals about topological groups. We recall that if (X, ∗) is a metrizable

topological group –as, for instance, a PTG– then there exists a distance d on X

generating its topology such that d is translation-invariant, that is, d(x ∗ a, y ∗ a) =

d(x, y) for all x, y, a ∈ X.

Turning to the question of the boundedness of universal functions, the aim of this

paper is to furnish necessary and sufficient conditions for the existence of τ -universal

holomorphic functions on a PTG which in addition are bounded on certain prefixed

subsets of the domain G, mainly G = C, D. A corresponding result for harmonic

functions will be also provided. This will be performed in Section 3. In Section 4 we

will deal with the same question for infinite-order differential operators, so completing

the above mentioned result on D-universality due to Costakis and Sambarino. Section

2 is devoted to give several results that will reveal useful later, together with some

additional terminology.

2 Some auxiliary results

In [7] a geometrical notion was used to characterize the universality of certain

sequences of differential operators. Now, we state such notion in a more general

setting. Recall that if (X, d) is a metric space then the open (closed) d-ball with

center a ∈ X and radius r > 0 is Bd(a, r) = {x ∈ X : d(x, a) < r} (Bd(a, r) =

{x ∈ X : d(x, a) ≤ r}, respectively). Recall also that if A ⊂ X then its diameter is

δ(A) = sup{d(x, y) : x, y ∈ A}.

Definition 2.1. If (X, d) is a metric space and A is a nonempty subset of X then the

inscribed radius (or Tchebychef radius) of A is defined as the number ρd(A) ∈ [0,+∞]

given by

ρd(A) = sup{r > 0 : there exists a closed ball B of radius r with B ⊂ A}.

It is clear that if A is open in X then ρd(A) > 0. When d is the euclidean distance
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on C or RN then the subscript d in ρd and in the d-balls will be dropped. Now, we

state the following auxiliary geometrical result to be used later.

Lemma 2.1. Let (X, d) be a connected metric space with δ(X) = +∞. If A is a

subset of X with ρd(A) = +∞ and B is any closed d-ball, then ρd(A \B) = +∞.

Proof. Here we will also delete the subscript d. Hence we have that ρ(A) = +∞ and

that B = B(a,R) for certain a ∈ X, R > 0. Since δ(X) = +∞, given x0 ∈ X we have

that the mapping x ∈ X 7→ d(x, x0) ∈ [0,+∞) is not bounded. But d is continuous

and X is connected. Therefore, given x0 ∈ X and r > 0, there exists x ∈ X such

that d(x, x0) = r.

Fix M > 0. We are looking for a point c ∈ X with B(c,M) ⊂ A \ B. By

hypothesis, there exists b ∈ X satisfying B(b, 3M + 2R + 1) ⊂ A. At this point we

distinguish two cases. If d(a, b) > M+R and c := b then B(c,M) ⊂ B(b, 3M+2R+1)

and, by the triangle inequality, B(c,M) ∩ B(a,R) = ∅, whence we are done. If,

on the contrary, d(a, b) ≤ M + R, then again by the triangle inequality we obtain

B(a,R) ⊂ B(b,M + 2R). Choose c ∈ X with d(b, c) = 2M + 2R + 1. We claim that

B(c,M) ⊂ A \ B. Indeed, a further use of the triangle inequality gives B(c,M) ⊂
B(b, 3M + 2R + 1) ⊂ A. Finally, by way of contradiction, let us suppose that there

exists some point x ∈ B(c,M) ∩ B. Then d(x, c) ≤ M and d(x, a) ≤ R, hence

d(c, a) ≤M+R, which yields d(b, c) ≤ d(c, a)+d(b, a) ≤ 2M+2R, that is absurd.

Next, we enunciate the Arakelyan theorem that can be found in [19, pages 153–

154].

Lemma 2.2. If F is a relatively closed subset of a domain G in C, then F is an

Arakelian subset if and only if for every g ∈ A(F ) and ε > 0 there is a holomorphic

function f in G such that |f(z)− g(z)| < ε for all z ∈ F .

We now establish as lemmas two powerful results about tangential approximation

of holomorphic or harmonic functions. The first one is a variant for G = C of the

Arakelian theorem, see [3] or [19, pages 160–162]. The second one is a harmonic

version by Armitage and Goldstein of this theorem, see [5, Theorem 1.1] or [20,
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Corollary 5.10]. If x = (x1, . . . , xN) ∈ RN then ‖x‖ denotes its norm ‖x‖ = (x2
1 +

· · ·+ x2
N)1/2.

Lemma 2.3. If F is a closed subset of C, then F is an Arakelian subset if and

only if for every g ∈ A(F ) and every continuous function ε : [0,+∞)→ (0,+∞) with∫ +∞

1

t−3/2 log(1/ε(t)) dt < +∞, there is an entire function f such that |f(z)−g(z)| <

ε(|z|) for all z ∈ F .

Lemma 2.4. If F is an Arakelian subset of RN , then for each v ∈ h(F ) and each

choice of positive numbers a and ε, there exists u ∈ h(RN) such that |u(x)−v(x)| <
ε(1 + ‖x‖)−a for all x ∈ F .

The following result is purely topological and its content can be found in [21,

Section 5, pages 242–243]. Given a relatively closed subset F of a domain G ⊂ C,

we set F̂ := F ∪ c(F ), where c(F ) denotes the union of the connected components of

G\F having compact closure in G, that is, the union of the ‘holes’ of F . So c(F ) = ∅
if F has no holes.

Lemma 2.5. Let G ⊂ C be a domain and F be a relatively closed subset of G. Then

we have:

(a) F is Arakelian in G if and only if c(F ) = ∅ and c(F ∪K) is relatively compact in

G for every compact subset K of G.

(b) If F is Arakelian in G and K ⊂ G is compact then F̂ ∪K is Arakelian in G.

(c) If F is Arakelian in G and K is a compact subset of G with connected complement

such that F ∩K = ∅, then F ∪K is Arakelian in G.

To finish, recall that if Φ(z) =
∑∞

k=0 akz
k is an entire function of exponential type

–that is, there are positive finite constants A, B satisfying |Φ(z)| ≤ AeB|z| (z ∈ C)–

then the formal expression Φ(D) =
∑∞

k=0 akD
k (where D0 = I = the identity opera-

tor) defines in fact an operator –in general, an “infinite-order differential operator”–

on H(C). The entire function Φ is said to be of subexponential type whenever given

ε > 0 there is a constant A = Aε ∈ (0,+∞) satisfying |Φ(z)| ≤ Aeε|z| (z ∈ C). In

other words, Φ is of exponential (subexponential) type if and only if it has either

growth order < 1 or growth order 1 and finite growth type (it has either growth
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order < 1 or growth order 1 and growth type 0, respectively). Obviously, if Φ is of

subexponential type then it is also of exponential type. The content of the following

lemma can be found in [12].

Lemma 2.6. An entire function Φ(z) =
∑∞

k=0 akz
k is of exponential type if and only

if limk→∞(k!|ak|)1/k = 0.

3 Bounded τ-universality

In this section, our results about the existence of a τ -universal function which is

bounded on a certain prescribed subset F will be listed and proved. The inscribed

radius will play a crucial role. Specifically, a necessary condition for such existence

on general PTGs is shown in Theorem 3.1. In Theorem 3.3, a complete geometrical

and topological characterization of the possible subsets F is given for C. If we assume

that F is Arakelian, a similar statement of existence is shown for D in Theorem 3.4.

Finally, a corresponding result of ‘bounded’ τ -universality in the setting of harmonic

functions on RN is stated in Theorem 3.5.

Theorem 3.1. Let (G, ∗) be a PTG. Assume that d is a distance on G satisfying

the following two properties:

(i) d is translation-invariant and generates the topology of G.

(ii) Every closed d-ball is compact.

Let F be a nonempty, proper subset of G. If there exists a τ -universal function

f ∈ H(G) such that f is bounded on F then ρd(G \ F ) = +∞.

Proof. Suppose, by way of contradiction, that R := ρd(G \ F ) < +∞ and that

there exists a τ -universal function f ∈ H(G) which is bounded on F . Then there

exist a sequence (an) ⊂ C and a constant M ∈ (0,+∞) such that the sequence

(f ◦ τan) of translates of f is dense in H(G) and |f(z)| ≤ M for all z ∈ F . We have

that Bd(an, R + 1) ∩ F 6= ∅ for all n ∈ N. Observe that due to (i) it holds that

Bd(a, r) = {z ∗ a : z ∈ Bd(e, r)} (a ∈ C, r > 0), where e is the neutral element of

(G, ∗). Therefore we can find a sequence (bn) ⊂ Bd(e, R + 1) with bn ∗ an ∈ F for
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all n ∈ N. Let us consider the constant function g(z) := M + 1. Then there exists a

sequence {n(1) < n(2) < · · ·} ⊂ N such that f ◦ τan(j)
→ g as j → ∞ uniformly on

compacta in G. Thus, (ii) yields that, in particular,

lim
j→∞

sup
z∈Bd(e,R+1)

|f(z ∗ an(j))−M − 1| = 0,

which is absurd, since |f | ≤M on F and we have for any n ∈ N that

sup
z∈Bd(e,R+1)

|f(z ∗ an)−M − 1| ≥ |f(bn ∗ an)−M − 1| ≥M + 1− |f(bn ∗ an)| ≥ 1.

This concludes the proof.

Remarks 3.2. 1. If in particular we set G = C, Theorem 3.1 shows that if there

exists some translation-universal entire function that is bounded on a prefixed set F ,

then ρ(C\F ) = +∞; indeed, take as ∗ the usual sum and as d the euclidean distance.

With an analogous proof, the last theorem also holds for h(RN) when RN is endowed

with the ordinary sum and with the euclidean distance. If G = D and the disk is

endowed with the hyperbolic (or Poincaré) distance dP (z, w) := tanh−1 | z−w
1−zw | (see [17]

for a quite complete description) and with the internal law z ∗ w = z+w
1+zw

(z, w ∈ D),

then Theorem 3.1 also applies (recall that dP is invariant under the automorphisms

of D and generates the usual topology on D, and that the dP -balls are euclidean

balls in D; specifically, BdP (a,R) = B( (1−tanh2R)a

1−|a|2 tanh2R
, (1−|a|2) tanhR

1−|a|2 tanh2R
) for all a ∈ D and

all R ∈ (0,+∞)) yielding that if F is a subset of D and there exists a translation-

universal function f ∈ H(D) which is bounded on F , then ρdP (D \ F ) = +∞.

2. We illustrate with an example in C that some kind of restriction on the subset F

is necessary: The set F := C\
⋃
n≥3B(2n, n) is a closed subset which is not contained

in any Arakelian subset of C, and satisfies ρ(C \ F ) = +∞; an application of the

Maximum Modulus Principle shows that if an entire function f is bounded on F then

it must be bounded on C, so f is constant and therefore it cannot be τ -universal.

3. Condition (ii) in Theorem 3.1 cannot be derived from (i). For instance, the distance

d(z, w) := |z−w|
1+|z−w| is a translation-invariant distance on the PTG (C,+) generating

the topology of C, but Bd(0, 1) = C, which is not compact in C.
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Theorem 3.3. Let F be a closed subset of C. Then the following conditions are

equivalent:

(a) There exists a τ -universal entire function f such that f is bounded on F .

(b) There exists an Arakelian subset F0 of C such that F ⊂ F0 and ρ(C\F0) = +∞.

Proof. Assume that (a) is true and define F0 := {z ∈ C : |f(z)| ≤ supF |f |}. Then

F0 is Arakelian by [16, Theorem 1]. Obviously, F ⊂ F0 and f is bounded on F0. By

Theorem 3.1 we have that ρ(C \ F0) = +∞.

As for the converse, suppose that F0 is Arakelian, F ⊂ F0 and ρ(C \ F0) = +∞.

From Lemma 2.1 we can select a sequence of pairwise disjoint closed balls B(an, n+1)

such that B(an, n+ 1) ∩ F0 = ∅ for all n ∈ N. Set Bn := B(an, n) (n ∈ N). It is easy

to check that the set

F̃0 := F0 ∪
∞⋃
n=1

Bn

is an Arakelian subset of C. Let {Pn : n ∈ N} be a countable subset of H(C), for

instance, the set of polynomials whose coefficients have rational real and imaginary

parts. We can construct a sequence (Qn) whose members are in {Pn : n ∈ N} such

that every function Pm occurs infinitely many times in (Qn).

Next, we consider the function g : F̃0 → C given by

g(z) =

{
0 if z ∈ F
Qn(z − an) if z ∈ Bn.

Then, obviously, g ∈ A(F̃0). By Lemma 2.3 (with ε(t) := exp(−t1/4)), there exists an

entire function f such that

|f(z)− g(z)| < exp(−|z|1/4) for all z ∈ F̃0. (1)

In particular, |f(z)− 0| < 1 for all z ∈ F0, so f is bounded on F0, hence on F .

Finally, we show that the sequence (f ◦ τan) is dense in H(C), so making f a

τ -universal function. For this, fix a basic open set D(h,R, ε) := {ϕ ∈ H(C) : |ϕ(z)−
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h(z)| < ε for all z ∈ B(0, R)} for the topology of H(C), where ϕ ∈ H(C), R > 0 and

0 < ε < 1. It must be proved that there is a number n ∈ N such that

f ◦ τan ∈ D(h,R, ε). (2)

Observe first that

lim
n→∞

min
z∈Bn

|z| = +∞. (3)

Indeed, if this were not true, then one could choose two sequences {n1 < n2 < · · ·} ⊂
N, zj ∈ Bnj

(j ∈ N) and a positive finite constant M with |zj| ≤ M for all j ∈ N.

Hence some subsequence of (zj) would converge to a finite point, which is absurd

because |zj − zk| ≥ 1 for all j, k ∈ N with j 6= k. Therefore (3) holds. By (3) and the

denseness of polynomials, there exist n0,m ∈ N such that minw∈Bn |w| > (log(2/ε))4,

n > R for all n > n0 and |Pm(z) − h(z)| < ε/2 for all z ∈ B(0, R). Fix n > n0

satisfying Qn = Pm. Consequently, from (1) we obtain for all z ∈ B(0, R) that

|f(z + an)− h(z)| ≤ |f(z + an)− g(z + an)|+ |g(z + an)− h(z)|

≤ exp(−( min
w∈Bn

|w|)1/4) + |Qn(z)− h(z)| < ε

2
+
ε

2
= ε,

and this is (2).

Theorem 3.4. Let F be an Arakelian subset of D. Then the following conditions

are equivalent:

(a) There exists a τ -universal function f ∈ H(D) such that f is bounded on F .

(b) ρdP (D \ F ) = +∞ .

Proof. By Theorem 3.1 we have again that (a) implies (b). As for the converse,

suppose that ρdP (D\F ) = +∞. Consider again a countable dense subset {Pn : n ∈ N}
of H(D), and let (Qn) be a sequence such that every function Pm occurs infinitely

many times in (Qn). Recall that in the PTG D the origin is the neutral element for

∗ and that the ∗-inverse element for each z ∈ D is −z.

Fix n ∈ N and consider the ball Bn := B(0, n/(n+ 1)) ⊂ D. Since F is Arakelian

and Bn is compact, Lemma 2.5 says us that Hn := F̂ ∪Bn is also an Arakelian subset
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of D. Observe that

ρdP (D \Hn) = +∞. (4)

Indeed, by Lemma 2.5 the set c(F ∪Bn) is relatively compact in D, so Bn∪ c(F ∪Bn)

is also relatively compact. Therefore there is a closed dP -ball B with Bn ∪ c(F ∪
Bn) ⊂ B. Hence Hn ⊂ F ∪ B. But, from the hypothesis, ρdP (D \ F ) = +∞,

whence ρdP (D \ Hn) ≥ ρdP (D \ (F ∪ B)) = ρdP ((D \ F ) \ B) = +∞, where the

last equality follows from Lemma 2.1. Then (4) holds. Consequently, there is a ball

Sn := BdP (an, n) = BdP (0, n) ∗ an ⊂ D \Hn. Again by Lemma 2.5, Fn := Sn ∪Hn is

an Arakelian subset of D.

Next, we use an induction procedure following ideas of Sinclair (see [33] and [22]).

Assume that for some n ∈ N the functions f0 := 0, f1, . . . , fn−1 ∈ H(D) have been

defined. Consider the function gn : Fn → C given as

gn(z) =

{
fn−1 if z ∈ Hn

Qn(z ∗ (−an)) if z ∈ Sn.

From Lemma 2.2, there exists fn ∈ H(D) such that |fn − gn| < 1/2n on Fn. In

particular, we obtain for each n ∈ N that

|fn(z)− fn−1(z)| < 1/2n for all z ∈ Bn ∪ F, (5)

and

|fn(z)−Qn(z ∗ (−an))| < 1/2n for all z ∈ Sn. (6)

Since every compact subset of D is eventually contained in all except a finite number of

balls B(n/(n+ 1)), it is deduced from (5) that the series
∑∞

n=0(fn − fn−1) converges

uniformly on compacta in D, so it defines a function f ∈ H(D). Again by (5),

|f | <
∑∞

n=0 1/2n = 1 on F , whence f is bounded on F .

It remains to show that f is τ -universal. In fact, we have that the sequence

(f ◦ τan) is dense in H(D), where τa(z) = z ∗ a. To see this, observe that for every n

we can write f as f = fn +
∑∞

k=n+1(fk − fk−1). Fix a basic open set D(h,R, ε) :=

{ϕ ∈ H(C) : |ϕ(z)− h(z)| < ε for all z ∈ B(0, R)} for the topology of H(D), where

ϕ ∈ H(D) and R, ε ∈ (0, 1). It must be proved that f ◦ τan ∈ D(h,R, ε) for some

n ∈ N. We have that there exist m,n0 ∈ N such that |Pm(z) − h(z)| < ε/3 for all
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z ∈ B(0, R) and B(0, R) ⊂ BdP (0, n) for all n > n0. Fix n > n0 with Qn = Pm and

1/2n < ε/3. Then f ◦ τan ∈ D(h,R, ε) because for every z ∈ B(0, R) we have from

(5) and (6) that

|f(z ∗ an)− h(z)| ≤ |fn(z ∗ an)− h(z)|+
∞∑

k=n+1

|fk(z)− fk−1(z)|

≤ |fn(z ∗ an)−Qn(z)|+ |Qn(z)− h(z)|+ 1

2n
<

1

2n
+

1

2n
+
ε

3
+ < ε.

Thus the translates f ◦ τan are dense in H(D), as required.

Two opposite examples are furnished in the following corollary.

Corollary 3.5. Let D0 ⊂ D be an open ball which is tangent to T and S be a small

sector S := {t0z : π − α < arg(z − 1) < π + α, |z − 1| < β} (α ∈ (0, π/2), β ∈ (0, 1))

with vertex at a point t0 ∈ T. Then we have:

(a) There exists a τ -universal function f ∈ H(D) such that f is bounded in D\D0.

(b) There exists no τ -universal function f ∈ H(D) such that f is bounded in D\S.

Proof. It is evident that D\D0 and D\S are Arakelian sets in D. In view of Theorem

3.4, our unique task is to show that ρdP (D0) = +∞ > ρdP (S). Since dP is invariant

under rotations, we may suppose without loss of generality that D0 = B(a, 1− a) for

some a ∈ (0, 1) and that t0 = 1.

The ball B(1, 1− a) is a neighbourhood of 1 intersecting D0. Take any sequence

(xn) ⊂ (0, 1) tending to 1. Since xn → 1, there exists n1 ∈ N such that B(0, 1/2) ∗
xn1 ⊂ B(1, 1− a). But B(0, 1/2) ∗ xn1 is an euclidean ball with center at (0, 1), so it

is a subset of D0. By induction, we get an increasing sequence (nk) ⊂ N satisfying

Bk := B(0, k/(k + 1)) ∗ xnk
⊂ D0 for all k ∈ N. But, since dP is invariant under

automorphisms of D, we have that the Poincaré radius of Bk equals the Poincaré

radius of B(0, k/(k + 1)), which tends to +∞ because the increasing sequence of

balls B(0, k/(k + 1)) exhausts D and the Poincaré diameter δ(D) of D is +∞. This

proves (a). As for (b), from the rotation-invariance of dP together with the fact that

the subsets which are far from T do not contribute to make ρdP large, it is enough

to find a finite constant M such that δ(B) ≤ M for any ball B ⊂ S of the form

13



B = B(a, r), with a ∈ ((2/c)− 1, 1), r = (1− a) sinα, where c is a fixed number with

1 < c < cscα; that is, B is a maximal ball in S which is near the boundary. Let us

set M := tanh−1(c sinα). Finally, the rotation-invariance of dP and the fact that the

lines passing through the origin are hyperbolic geodesics between points which are

aligned with the origin drive us to assert that δ(B) is the dP -distance between the

points a− r, a+ r, hence

δ(B) = tanh−1

∣∣∣∣ (a+ r)− (a− r)
1− (a+ r)(a− r)

∣∣∣∣ < tanh−1 2(1− a) sinα

1− a2
= tanh−1 2 sinα

1 + a
< M,

as required.

Theorem 3.6. Let F be an Arakelian subset of RN . Then the following conditions

are equivalent:

(a) There exists a τ -universal function u ∈ h(RN) such that u is bounded on F .

(b) ρ(RN \ F ) = +∞.

Proof. The statement can be proved along the same lines as the proof of Theorem

3.1, where this time Lemma 2.4 (with for instance a = 1) should be used instead of

Lemma 2.3. The details are left to the interested reader.

4 Infinite-order differential operators

We recall that given a subset A ⊂ C with some finite accumulation point, the set

HA := span{ea : a ∈ A} where ea(z) := exp(az) is dense in H(C) [24, Section 5].

In particular, if Φ is a nonconstant entire function, we have that HΦ−1({|z|>1}) and

HΦ−1({|z|>1}) are dense in H(C).

Lemma 4.1. Assume that a number ε > 0, a compact subset K ⊂ C, a nonconstant

entire function Φ of exponential type and a function g ∈ HA have been prescribed,

where A := Φ−1({|z| > 1}). Then there exists an n0 ∈ N with the property that for

every n ≥ n0 there is an entire function Fn ∈ HA satisfying Φ(D)nFn = g on C and

|Fn| < ε on K.
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Proof. We can write g =
∑N

j=1 cjeaj for some N ∈ N and certain complex constants

cj, aj such that |Φ(aj)| > 1 for all j = 1, . . . , N . Since Φ(D)ea = Φ(a)ea (a ∈ C), it

is enough to take

Fn =
N∑
j=1

cj
Φn(aj)

eaj ,

for all n ≥ n0 where n0 is chosen so that

( min
1≤j≤N

|Φ(aj)|)n0 >
N

ε
max

1≤j≤N
{|cj| sup

z∈K
exp |ajz|},

which is possible because limn→∞(min1≤j≤N |Φ(aj)|)n = +∞.

We finish the paper with the promised extension of Costakis-Sambarino’s result

on bounded D-universality. Observe that the conditions as on the set E as on the

kind of operators have been weakened.

Theorem 4.2. Let T be the operator on H(C) given by T = Φ(D), where Φ is a

nonconstant entire function of subexponential type. Let E be a prescribed subset of

first category in T. Then there exists an entire T -universal function f satisfying

lim
r→+∞

f(rt) = 0 for each t ∈ E.

Proof. By hypothesis, there are countably many closed subsets En (n ∈ N) with

empty interior in T such that E ⊂ ∪∞n=1En. Let F = ∪∞n=1Fn, where Fn := {rt : r ≥
n and t ∈ En}. Each set Fn is closed in C with empty interior. Since C is a Baire

space, F has also empty interior. Since a convergent sequence of points of F must be

included in finitely many sets Fn, we get that F is also closed in C.

Consider the set

A = {g ∈ H(C) : |g(z)| < ε(|z|) for all z ∈ F}

where ε(t) := exp(−t1/4). Hence ε(t) is a positive, continuous function decreasing to

zero as t→ +∞. We will use later that it also satisfies the integrability condition of

Lemma 2.3.
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Thus, we would be done if we were able to find a function f ∈ A which is also

universal for T .

Note that the null function is in A and that A can be written as the intersection

of the open sets Ak := {g ∈ H(C) : |g(z)| < ε(|z|) for all z ∈ B(0, k) ∩ F} (k ∈ N).

Consequently, A is a nonempty Gδ subset of H(C). Hence, by Alexandroff’s theorem,

A endowed with the topology inherited from H(C) is a completely metrizable space,

so a Baire space. Thus, we can apply Baire’s category arguments to prove that there

exists a residual (so nonempty) subset in A consisting of universal functions for T .

For this, observe that A ∩ {T−universal functions} is the intersection of the sets

E(s, j,m) =
⋃
n∈N

{g ∈ A : |T ng − hj(z)| < 1

s
for all z ∈ B(0,m)} (s, j,m ∈ N),

where {hj}j∈N is a countable dense subset of HA and A := Φ−1({|z| > 1}). Therefore,

it is enough to see that each set E(s, j,m) is open (this is easy by the continuity of

each operator T n) and dense in A. In order to prove the denseness, fix s, j,m ∈ N
together with a function g0 ∈ A and numbers δ, R > 0. Because of the nature of the

topology of A we must find a positive integer n and a function f ∈ A so that

sup
|z|≤R

|f(z)− g0(z)| < δ and sup
|z|≤m

|(T nf)(z)− hj(z)| < 1/s. (7)

We may assume without loss of generality that R ≥ m. Let γ be defined as

γ = inf
z∈F∩B(0,R+2)

{ε(|z|)− |g0(z)|}

and choose any constant β such that 0 < β < min{δ, γ}; note that this implies that

we also have β < infz∈F∩B(0,R+2) ε(|z|). Since HB where B := Φ−1({|z| < 1}) is dense

in H(C), we may find a function q0 ∈ HB such that

sup
|z|≤R+1

|q0(z)− g0(z)| < β/4. (8)

Recall that hj ∈ HA. From Lemma 4.1 and from the facts that q0 ∈ HB and T nea =

Φn(a)ea → 0 (n → ∞) for all a ∈ B, it is derived the existence of an n ∈ N and of

an entire function H such that T nH = hj on C, and

|H(z)| < β/4 and |T nq0(z)| < 1/2s for all z ∈ B(0, R + 1). (9)

16



Let q := q0 +H. Then, by the triangle inequality,

sup
|z|≤R+1

|q(z)− g0(z)| < β/2. (10)

Since T n = Φn(D) and Φn is also of subexponential type, by Lemma 2.6 we derive

that |ak| ≤ M(1/2)k/k! (k ≥ 0) for some finite constant M > 0, where the ak’s are

the Taylor coefficients of Φn. If we use Cauchy’s estimates then for every z ∈ B(0, R)

and every h ∈ H(C) we obtain that

|(T nh)(z)| ≤
∞∑
k=0

|akh(k)(z)| ≤M

∞∑
k=0

(1/2)k

k!
k!

sup|w−z|=1 |h(w)|
1k

≤ 2M sup
B(0,R+1)

|h|.

Consequently, if h is entire and supB(0,R+1) |h| < 1/(4Ms) =: β1, then

sup
|z|≤R

|(T nh)(z)| < 1/2s. (11)

Finally, set F̃ := B(0, R + 1) ∪ F and define the function g : F̃ → C by

g(z) =

 q(z) if z ∈ B(0, R + 1)
0 if z ∈ {|w| ≥ R + 2} ∩ F
(1− t)q(z) if z ∈ {|w| = R + 1 + t} ∩ F, 0 ≤ t ≤ 1.

Observe that F̃ is an Arakelian set and that g is continuous on it and holomorphic

in its interior. It is elementary to construct a continuous positive function ε1(t) on

[0,+∞) such that ε1(t) ≤ ε(t) for all t ≥ 0, ε1(t) < min{β/2, β1} for 0 ≤ t ≤ R + 2

and such that ε1(t) still satisfies the integrability condition given in Lemma 2.3.

Consequently, there exists an entire function f with |f(z)− g(z)| < ε1(|z|) for every

z ∈ F̃ . Putting all inequalities (9) to (11) together, we get in a similar way to the

final part of the proof of Theorem 6 in [15] that f ∈ A and that (7) is fulfilled. Suffice

it to say that (11) should be applied on h := f − q. The (cumbersome, but easy)

details are left to the interested reader.

Remarks 4.3. 1. If T is as in the last theorem, then there exist a set E ⊂ T with full

linear measure and a T -universal entire function f such limr→∞ f(rt) = 0 for each t ∈
E. Indeed, it suffices to choose E =

⋃∞
n=1 En where En is a Cantor set in T of measure

2π − (1/n).
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2. The statement of Theorem 4.2 is sharp, at least in terms of growth order and

growth type. Indeed, if Φ is allowed to be only of exponential type then the universal

entire function f of the statement may not exist: Take for instance E := {1} and

Φ(z) := ez; then Φ(D) becomes the translation operator f(·) 7→ f(· + 1) and, if f

were universal, then the limit limr→+∞ f(r) could not exist.
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[7] L. Bernal-González, Derivative and antiderivative operators and the size of com-

plex domains, Annales Polon. Math. 59 (1994), 267–274.
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