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HOLOMORPHIC FUNCTIONS HAVING LARGE IMAGES

UNDER THE ACTION OF DIFFERENTIAL OPERATORS

By

LUIS BERNAL–GONZÁLEZ*

Abstract. We prove in this note that, given a simply connected
domain G in the complex plane and a sequence of infinite order linear
differential operators generated by entire functions of subexponential
type satisfying suitable conditions, then there are holomorphic func-
tions f on G such that the image of any open subset under the action
of those operators on f is arbitrarily large. This generalizes an earlier
result about images of derivatives. A known statement about close
orbits is also strengthened.

1. INTRODUCTION AND NOTATION

In this paper we denote, as usual, by N the set of positive integers, by C the

field of complex numbers and by D(a, r) the open disk {z ∈ C : |z − a| < r}. If

G is a nonempty open subset of C, then H(G) will stand for the Fréchet space of

holomorphic functions on G, endowed with the topology of the uniform convergence

on compact subsets. A domain (=nonempty open subset)G ⊂ C is said to be simply

connected whenever its complement with respect to the extended complex plane is

connected. Recall that, by Runge’s theorem [4, pp. 92-97], if G is a simply connected
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domain then the set of polynomials is dense in H(G). If A ⊂ C is a subset with

at least one finite accumulation point and G is simply connected, then the linear

manifold

HA = span {ea : a ∈ A}

is dense in H(G) (see, for instance, [7, p. 97], [6, pp. 259-260] and [2, Section 4]).

We have denoted here ea(z) = exp(az) (z ∈ C). The diameter of a subset A ⊂ C

is diam (A) = sup{|z − w| : z, w ∈ A}.

Every entire function Φ(z) =
∑∞

j=0 cjz
j generates a formal “infinite order linear

differential operator” with constant coefficients given by Φ(D) =
∑∞

j=0 cjD
j , where

D denotes the differentiation operator Df = f ′ and D0 = I = the identity operator.

The function Φ is said to be of exponential type if and only if there are constants

K1,K2 ∈ (0,+∞) such that

|Φ(z)| ≤ K1e
K2|z| (z ∈ C).

Φ is said to be of subexponential type if and only if for every ε > 0 there is a

constant K = K(ε) ∈ (0,+∞) such that

|Φ(z)| ≤ Keε|z| (z ∈ C).

Each function of subexponential type is obviously of exponential type. With essen-

tially the same methods of Valiron [9, p. 35] (see also [3, pp. 58-60] and [2, Theorem

5]), it can be proved that Φ(D) is a well-defined operator on H(G) as soon as Φ
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is of subexponential type (and, in fact, on H(C) if Φ is just of exponential type).

The reader is referred to [8] for a systematic study of this kind of operators.

From now on, if X is a linear metric space, then we denote ||x|| = d(x, 0)

for x ∈ X, where d is the (translation-invariant) metric of X. For instance, the

translation-invariant metric

d(f, g) =
∞∑

n=1

1

2n
·

supKn
|f − g|

1 + supKn
|f − g|

(f, g ∈ H(G))

generates the natural topology of G. Here (Kn) is an exhaustive nondecreasing

sequence of compact subsets of G. In 1987, R. M. Gethner and J. H. Shapiro [5],

when studying the existence of universal vectors for certain kinds of operators on

spaces of holomorphic functions, proved the following related result [5, Theorem

2.4].

THEOREM A. Suppose T is a continuous linear operator on a separable com-

plete linear metric space X and Tnx → 0 (n → ∞) for every x ∈ D, where D

is a dense subset of X and Tn = T ◦ T ◦ · · · ◦ T (n times). Let (xn) be a se-

quence in X such that xn → 0 (n → ∞). Then the set of vectors x ∈ X for which

lim infn→∞ ||Tnx− Tnxn|| = 0 is a dense Gδ subset of X.

As an application of Theorem A to function theory, it is shown in [5, Theorem

3.7] the next theorem, that establishes the existence of entire functions for which

many derivatives have “large images” on prefixed arbitrarily small open subsets.
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THEOREM B. Suppose (ρn) is an unbounded, increasing sequence of positive

numbers for which limn→∞
ρ1/n
n

n = 0. Then there exists a dense Gδ subset M of

H(G) satisfying that, for every f ∈ M and every nonempty open set V ⊂ G, there

are infinitely many n ∈ N such that f (n)(V ) ⊃ D(0, ρn).

Our aim in this note is to extend the latter result to certain kinds of infinite

order differential operators on simply connected domains. In passing, Theorem A

can also be manifestly strengthened.

2. SETS OF POINTS CLOSE TO THE ORBIT

OF A RELATIVELY COMPACT SEQUENCE

We start with an elementary lemma. Let X be a topological space, (Y, d) a

metric space and denote, as usual, by C(X,Y ) the space of all continuous mappings

from X into Y . If σ = (sn) and τ = (Tn) are sequences in X and C(X,Y )

respectively, then we put

M(σ, τ) = {x ∈ X : lim inf
n→∞

d(Tnx, Tnsn) = 0}.

LEMMA 1. If X, (Y, d), σ = (sn) and τ = (Tn) are as before, then M(σ, τ) is

a Gδ subset of X.

Proof. Fix a point x ∈ X. Observe that x ∈ M(σ, τ) if and only if for each
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pair N, k ∈ N there is n > N such that d(Tnx, Tnsn) < 1/k, that is,

M(σ, τ) =
∩

N∈N

∩
k∈N

∪
n>N

T−1
n (Gn,k),

where Gn,k = {y ∈ Y : d(y, Tnsn) < 1/k}, which is an open ball in X. Since Tn is

continuous, T−1
n (Gn,k) is open in X and so M(σ, τ) is a Gδ subset. ////

For every sequence σ = (sn) in X, denote

LP (σ) = {α ∈ X : α is a limit point for (sn)}.

LP (σ) may well be empty. If X and Y are topological vector spaces, then L(X,Y )

will stand for the subspace of C(X,Y ) of all linear mappings from X into Y . Recall

that a subset in a Baire space is residual if and only if it contains a dense Gδ subset.

The next result generalizes Theorem A.

THEOREM 1. Assume that X and Y are linear metric spaces, in such a way

that X is a Baire space. Let σ = (sn) and τ = (Tn) be sequences in X and L(X,Y ),

respectively. Suppose that the following three conditions are satisfied:

(a) σ is relatively compact.

(b) limn→∞ Tnα = 0 for every α ∈ LP (σ).

(c) There exists a dense subset D ⊂ X such that lim infn→∞ ||Tnx|| = 0 for all

x ∈ D.

Then M(σ, τ) is residual in X.
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Proof. Note that, by (a), LP (σ) is not empty. Recall that ||x|| = d1(x, 0) for

every x ∈ X and ||y|| = d(y, 0) for every y ∈ Y , where d1, d are the metrics on X, Y

(resp.), which are translation-invariant. By Lemma 1, M(σ, τ) is a Gδ subset of X.

Let us keep in mind the notation of the proof of that lemma. Since X is Baire and

the sets S(N, k) :=
∪

n>N

T−1
n (Gn,k) (N, k ∈ N) are open, it suffices to show that

every S(N, k) is dense in X. For this, fix N, k ∈ N, a point x0 ∈ D and ε > 0. By

(c), there is a sequence n1 < n2 < ... < nj < ... of positive integers such that

lim
j→∞

||Tnjx0|| = 0.

But σ is relatively compact, so there is a point α ∈ X and a subsequence m1 <

m2 < ... < mj < ... of (nj) such that

lim
j→∞

||smj − α|| = 0.

From (b), we have that

lim
j→∞

||Tmjα|| = 0.

In particular, there exists n > N such that ||Tnx0|| < 1
2k , ||Tnα|| < 1

2k and ||sn −

α|| < ε. Define the point

x = x0 + sn − α.

Then ||x− x0|| = ||sn − α|| < ε and, by linearity, d(Tnx, Tnsn) = ||Tnx− Tnsn|| =

||Tnx0 − Tnα+ Tnsn − Tnsn|| ≤ ||Tnx0||+ ||Tnα|| < 1
2k + 1

2k = 1
k .
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Thus, x ∈ S(N, k) ∩ {z ∈ X : d1(z, x0) < ε}, that is, every point x0 ∈ D is in

the closure of S(N, k). But D is dense in X. Consequently, S(N, k) is also dense in

X, as required. ////

3. DIFFERENTIAL OPERATORS AND LARGE IMAGES

In this section we extend Theorem B to differential operators. Recall that if

Φ(z) =
∑∞

j=0 cjz
j is a nonconstant entire function, then its multiplicity for the zero

at the origin is m = min{j ∈ {0, 1, 2, ...} : cj ̸= 0}. We start with the following

easy lemma, whose proof is omited since it is a simple calculation.

LEMMA 2. If a, b are complex numbers with a ̸= 0, and m ∈ N, then

(aDm + bDm+1)(
1

a

zm+1

(m+ 1)!
− b

a2
zm

m!
) = z (z ∈ C).

THEOREM 2. Let G be a simply connected domain of C, Φn(z) =
∑∞

j=0 c
(n)
j zj

(n ∈ N) nonconstant entire functions of subexponential type and (ρn) an unbounded

sequence of positive numbers. Denote by m(n) the multiplicity of Φn for the zero at

the origin. Suppose that the following conditions are fulfilled:

(1) The sequence (m(n)) is unbounded.

(2) max{lim supn→∞
1

1+m(n) (
ρn

|c(n)

m(n)
|
)

1
1+m(n) , lim supn→∞

1
1+m(n) (

ρn|c(n)

m(n)+1
|

|c(n)

m(n)
|2

)
1

1+m(n) }

≤ 1
e·diam (G) .

Then there exists a residual subset M of H(G) satisfying that, for every f ∈ M
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and every nonempty open subset V ⊂ G, there are infinitely many n ∈ N for which

(Φn(D)f)(V ) ⊃ D(0, ρn).

Proof. Let us try to apply Theorem 1. Firstly, observe that every Φn(D) is

a well-defined linear operator on H(G). We start in a way that is very similar to

the proof of [5, Theorem 3.7]. By the definition of multiplicity, c
(n)
j = 0 whenever

j < m(n) (n ∈ N). Since (m(n)) is unbounded, we can assume without loss of

generality that 1 ≤ m(n) ↑ ∞. Indeed, there exists a subsequence (m(nk)) such

that 1 ≤ m(nk) ↑ ∞. Then (2) obviously holds if we change (m(n)) to (m(nk)). If

the statement of the theorem is true when (m(n)) is nondecreasing and unbounded

(as we will prove inmediately), then one would get the existence of a residual subset

M ⊂ H(G) with the property that, for everyf ∈ M and every nonempty open

subset V ⊂ G, (Φnk
(D)f)(V ) ⊃ D(0, ρnk

) for infinitely many k ∈ N. But then,

trivially, the same conclusion holds by changing (nk) to the entire sequence of

positive integers.

Consequently, we can start with the following hypotheses: 1 ≤ m(n) ↑ ∞ and

max{lim supn→∞
1

m(n) (
ρn

|c(n)

m(n)
|
)

1
m(n) , lim supn→∞

1
m(n) (

ρn|c(n)

m(n)+1
|

|c(n)

m(n)
|2

)
1

m(n) } ≤ 1/e
diam (G) ,

because of (2) and the fact m(n)
m(n)+1 → 1 (n → ∞). By Stirling’s formula, 1

m(n) ∼

1
e·m(n)!1/m(n) (n → ∞), so the two numbers lim supn→∞( ρn

(m(n)+1)!·|c(n)

m(n)
|
)

1
m(n)+1 and

lim supn→∞(
ρn|c(n)

m(n)+1
|

m(n)!·|c(n)

m(n)
|2
)

1
m(n) are ≤ 1

diam (G) .

Fix a diskD(w, ε) ⊂ G and associate to it the sequence of degree one monomials
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(fn) defined as

fn(z) =
2ρn
ε

· (z − w) (z ∈ C).

Consider the sequence of functions (gn) given by

gn(z) =
2ρn
ε

·

 1

c
(n)
m(n)

· (z − w)m(n)+1

(m(n) + 1)!
−

c
(n)
m(n)+1

(c
(n)
m(n))

2
· (z − w)m(n)

m(n)!

 (z ∈ C).

Observe that Dj((z − w)k) = 0 whenever j > k. This and Lemma 2 yield

(Φn(D)gn)(z) = (c
(n)
m(n)D

m(n) + c
(n)
m(n)+1D

m(n)+1)gn(z)

=
2ρn
ε

(z − w) = fn(z) (z ∈ C).

Now, fix a compact subset K ⊂ G. Then there are positive numbers r, R such that

supz∈K |z − w| < r < R < diam (G), so 1
R > 1

diam (G) . Hence there exists n0 ∈ N

such that ( ρn

(m(n)+1)!·|c(n)

m(n)
|
)

1
m(n)+1 and (

ρn|c(n)

m(n)+1
|

m(n)!·|c(n)

m(n)
|2
)

1
m(n) are less that 1/R for all

n ≥ n0. If z ∈ K and n ≥ n0, we obtain

|gn(z)| ≤
2

ε
· ρn

|c(n)m(n)|
· |z − w|m(n)+1

(m(n) + 1)!
+

2

ε
·
ρn|c(n)m(n)+1|

|c(n)m(n)|2
· |z − w|m(n)

m(n)!

<
2

ε
· ( r

R
)1+m(n) +

2

ε
· ( r

R
)m(n) → 0 (n → ∞).

Thus, gn → 0 (n → ∞) uniformly on compact subsets of G. In particular, the

null function is the unique limit point of (gn), i.e., LP ((gn)) = {0}. If P is a

fixed polynomial, then DjP = 0 for all j > degree (P ). But there is n1 ∈ N

with m(n) > degree (P ) for all n > n1, so Φn(D)P =
∑∞

j=m(n) c
(n)
j DjP = 0
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for all n > n1, which implies, trivially, that Φn(D)P → 0 (n → ∞) in H(G).

Then conditions (a), (b), (c) of Theorem 1 are fulfilled if we take X = H(G) = Y ,

Tn = Φn(D) (n ∈ N), sn = gn (n ∈ N) and D = {polynomials} (note that, trivially,

Tnα → 0 as n → ∞ if α = 0). Therefore the set M(σ, τ) is residual in H(G) for

σ = (sn), τ = (Tn). We now relabel M(σ, τ) = H(w, ε) because it depends upon

the disk D(w, ε).

Next, let us observe that H(w, ε) is precisely the set of holomorphic functions

f on G for which some subsequence of (Φn(D)f − fn) tends to zero uniformly on

compact subsets of G. Therefore, for every f ∈ H(w, ε), there are infinitely many

positive integers n satisfying |(Φn(D)f)(z) − fn(z)| < 1 for all z ∈ ∂D(w, ε) and

ρn > 1, since (ρn) is unbounded. Fix one of these n, a point a ∈ D(0, ρn) and a

point z ∈ ∂D(w, ε). We have that

|((Φn(D)f)(z)− a)− (fn(z)− a)| < 1 < ρn = 2ρn − ρn

<
2

ε
ρn · ε− |a| = |fn(z)| − |a| ≤ |fn(z)− a|,

so by Rouché’s Theorem [1, p. 153], Φn(D)f takes the value a in D(w, ε). Then

D(0, ρn) ⊂ (Φn(D)f)(D(w, ε)).

Denote M = {f ∈ H(G) : given any nonempty open subset V ⊂ G there are

infinitely many n ∈ N with D(0, ρn) ⊂ (Φn(D)f)(V )}. If {D(wj , εj) : j ∈ N}

is the set of all open disks contained in G having rational radii and centers with
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rational coordinates, then it is an open basis for G and

M =
∩
j∈N

H(wj , εj).

Since H(G) is a Baire space and each H(wj , εj) is residual, we conclude that M is

residual, as required. ////

Remarks. 1. Observe that the “high order” coefficients of the functions Φn do

not appear in condition (2) of Theorem 2.

2. We have put m(n) + 1 instead of m(n) on some denominators in condition (2)

in order to avoid that such denominators can be zero.

3. The statement of Theorem 2 holds for G = C if the word “subexponential”

is replaced to “exponential” (see Section 1). The same is true for Theorems 3,4

below.

4. Theorem B is a special case of Theorem 2: Take G = C, Φn(z) = zn (n ∈ N).

Note that here diam (G) = ∞, m(n) = n, c
(n)
m(n) = 1 and c

(n)
m(n)+1 = 0 (n ∈ N). Note

also that, trivially, the hypothesis limn→∞
ρ1/n
n

n = 0 in Theorem B is equivalent to

max{lim supn→∞
ρ1/(n+1)
n

n+1 , 0} ≤ 0.

Next, we state an additional result in order to have large images under differ-

ential operators. This time, the result does not contain Theorem B as a special

case. However, the sequence of multiplicities (m(n)) need not be bounded. Since

the proof is parallel to that of Theorem 2, we will abridge it. Just one observation

before giving the promise assertion: If a ∈ C, then Φ(D)ea = Φ(a)ea, because
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Djea = ajea (j ≥ 0).

THEOREM 3. Let G be a simply connected domain of C, Φn(z) =
∑∞

j=0 c
(n)
j zj

(n ∈ N) nonconstant entire functions of subexponential type and (ρn) an unbounded

sequence of positive numbers. Denote by m(n) the multiplicity of Φn for the zero at

the origin. Suppose that the following conditions are fulfilled:

(1) There exists a point c ∈ C \ {0} with Φn(c) ̸= 0 for every n ∈ N and

lim
n→∞

ρn
Φn(c)

= 0.

(2) lim
n→∞

ρnR
m(n)

|c(n)m(n)| ·m(n)!
= 0 for every R ∈ (0,diam (G)).

(3) There exists a subset A ⊂ C with at least one finite accumulation point such

that limn→∞ Φn(a) = 0 for all a ∈ A.

Then the same conclusion of Theorem 2 holds.

Proof. Fix ε0 > 0 with the property that | e
ct−1
t | > |c|/2 for all t ∈ D(0, ε0),

where c is the point provided by condition (1). This time we associate to every disk

D(w, ε) ⊂ G (with 0 < ε < ε0) the sequence of functions (fn) given by

fn(z) =
4

cε
ρn · (ec(z−w) − 1) (z ∈ C).

Then Φn(D)gn = fn, where we have denoted

gn(z) =
4ρn

cε · Φn(c)
· ec(z−w) − 4ρn

cε · c(n)m(n) ·m(n)!
· (z − w)m(n) (z ∈ C).

Again the three conditions (a), (b), (c) in Theorem 1 are satisfied if we take X =

H(G) = Y , Tn = Φn(D), sn = gn (n ∈ N) and D = span {ea : a ∈ A}. Indeed,
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gn → 0 (n → ∞) in H(G) by (1) and (2). On the other hand, if φ ∈ D, then

there are finitely many complex constants c1, ..., cp and points a1, ..., ap in A such

that φ =
∑p

j=1 cjeaj . Therefore Tnφ =
∑p

j=1 cjTneaj =
∑p

j=1 cjΦn(aj)eaj → 0

(n → ∞) by (3).

The remainder of the proof is similar to that of Theorem 2 as soon as one

realizes that

|fn(z)| =
4

|c|ε
ρn |ez−w − 1| ≥ 4

ε
ρn

|z − w|
2

= 2ρn

for every n ∈ N and every z ∈ ∂D(w, ε). ////

We finish with a consequence of Theorems 2,3 for the iterates of a single differ-

ential operator Φ(D). Observe that the operator generated by a punctual product

Φ(z) · . . . ·Φ(z) (n times) is the compositional product Φ(D) ◦ . . . ◦Φ(D) (n times),

and that every Φn is of subexponential type whenever Φ is. The proof, which is

left to the reader, is based upon the following three elementary facts about a non-

constant entire function Φ(z) =
∑∞

j=0 cjz
j with multiplicity m for the zero at the

origin:

1) For every n ∈ N, mn is the multiplicity of Φn.

2) If {c(n)j : j ≥ 0} is the sequence of Taylor coefficients of Φn, then c
(n)
mn = cnm and

c
(n)
mn+1 = ncn−1

m cm+1.

3) For each r > 0, the sets A(r) = {z ∈ C : |Φ(z)| < r} and B(r) = {z ∈ C :

|Φ(z)| > r} are nonempty and open. In particular, A(1) has at least one finite
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acumulation point and B(1 + |c0|) \ {0} is not empty.

Observe again that cm is the only coefficient relevant to the conclusion of the

next result. Theorem 4 also contains Theorem B as a special case.

THEOREM 4. Let G be a simply connected domain of the complex plane,

Φ(z) =
∑∞

j=0 cjz
j a nonconstant entire function of subexponential type with multi-

plicity m and (ρn) an unbounded sequence of positive numbers. Suppose that one of

the following properties is satisfied:

(1) c0 ̸= 0 and lim supn→∞
ρn

|c0|n = 0.

(2) c0 = 0 and lim supn→∞
ρ1/n
n

nm ≤ ( m
e·diam (G) )

m · |cm|.

Then the same conclusion of Theorem 2 holds.

Only a remark before the end. Fix N ∈ N. By considering sequences of func-

tions of the form fn(z) = α(n, ε)(z − w)N or of the form fn(z) = α(n, ε)[ec(z−w) −∑N−1
j=0

cj(z−w)j

j! ] (n ∈ N), where c and α(n, ε) are appropriate constants, the inter-

ested reader (if any) could try to show that, under suitable conditions on the Taylor

coefficients c
(n)
j of the entire functions Φn (or on the coefficients cj of a single Φ),

there exists a residual subset M ⊂ H(G) with the following property: for each

member f ∈ M and each nonempty open subset V ⊂ G, there are infinitely many

n ∈ N for which the equation f (n)(z) = w has at least N solutions in V for every

w ∈ D(0, ρn).
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