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Abstract. A genetic algorithm for constructing cocyclic Hadamard ma-
trices over a given group is described. The novelty of this algorithm is
the guided heuristic procedure for reproduction, instead of the classical
crossover and mutation operators. We include some runs of the algorithm
for dihedral groups, which are known to give rise to a large amount of
cocyclic Hadamard matrices.

1 Introduction

A Hadamard matrix is a n x n square (—1,1) matrix H,, so that H,, - HI =nl.
Equivalently, a Hadamard matrix is a square matrix over {1,—1} so that its
rows are pairwise orthogonal.

The knowledge of Hadamard matrices is a major question for applications in a
wide range of different disciplines, as in the design of good (even optimal) error-
correcting codes meeting the Plotkin bounds (see [I5] for details). A classical
reference on Hadamard matrices and their uses is [9].

It may be easily proved that the size n of a Hadamard matrix H, must be
1, 2 or a multiple of 4. It is conjectured that such a H,, exists for all n divisible
by 4. However, the proof of this conjecture remains an important problem in
Coding Theory, since there is no evidence of this fact until now.

In fact, there are infinitely many orders multiple of four for which uncertainty
about the existence of these matrices has not been removed at all. Furthermore,
even in the case that a Hadamard matrix is known to exist for a given order
n = 4t, there is no algorithm available which outputs a Hadamard matrix of this
order 4t in reasonable time, as it is pointed out in [I4].

The cocyclic framework concerning Hadamard matrices was introduced in the
90s [T2IT3] as a promising context to solve the questions above.

A cocyclic matrix My over a finite group G = {g1,..., g4} of order |G| = 4t
consists in a matrix M = (f(g,9;)), f : GxG — {1, —1} being a 2-cocycle over
G with coeflicients in {1, —1}, so that

f(9i,95) f(9:95, ) = [(95. 9%) (93> 95 9x) Y gi, 95, 9x € G
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The link between cocyclic and Hadamard matrices was first noticed in [12].
A more recent reference is [I1], in which many of the classical and more re-
cently discovered constructions of Hadamard matrices are shown to be cocyclic.
This support the idea that cocyclic construction is the most uniform construc-
tion technique for Hadamard matrices yet known. Consequently, the cocyclic
Hadamard Conjecture arises in turn.

The main advantages of working with cocyclic Hadamard matrices may be
resumed in the following facts:

— The cocyclic Hadamard test (which claims that it suffices to check whether
the summation of every row but the first is zero, see [I3] for details) runs
in O(t?) time, better than the O(#3) algorithm for usual (not necessarily
cocyclic) Hadamard matrices.

— The search space is reduced to the set of cocyclic matrices over a given group
(that is, 2° matrices, provided that a basis for 2-cocycles over G consists of

4t
s generators), instead of the whole set of <2t> matrices with entries
4t -1
in {—1,1} consisting of the row (1,.%.,1) and 4¢ — 3 vectors of length 4¢
orthogonal to (1,.%.,1).

In particular, the work in [5] suggest that the cocyclic framework (c.f. in the
table below) may reduce significantly the size of the search space in the general
framework (g.f. for brevity) case, as the table below indicates:

t 1 2 3 4 5 6 7 8
c.f. 0(10°) O(10Y) 0(102) O(10%) O(10°) O(105) O(107) O(10%)
g.£. O(10Y) O(107) O(10%) O(10%9) O(10%%) O(10'2%) O(10'77) O(102)

Considerable effort has been devoted to the design of efficient algorithms for
constructing cocyclic Hadamard matrices. Exhaustive search is not feasible for
orders 4t greater than 20 (the search space grows exponentially on t, see [5] for
instance). Consequently, alternative methods are required. As far as we know,
two different heuristic methods have been proposed until now, in terms of image
restorations [6] and genetic algorithms [2].

We present here a new genetic algorithm for constructing cocyclic Hadamard
matrices. The main difference with respect to that of [2] is a novel heuristic for
reproduction: instead of the usual crossover and mutation operators we shall
better use a guided reproduction procedure. Calculations in Section 5 suggest
that this new feature improves the original algorithm. This heuristic involves the
notions of i-paths and intersections introduced in [5], to be described further in
Section 2.

As it is shown in [5], dihedral groups seems to be the most prolific familiy of
groups giving rise to cocyclic Hadamard matrices. We particularize the algorithm
to the case of these groups. We also include some runs of the algorithm, which
have been worked out in MATHEMATICA 4.0, running on a Pentium IV 2.400
Mhz DIMM DDR266 512 MB.



A deeper study on the way in which 2-coboundaries over G have to be com-
bined in order to give rise to cocyclic Hadamard matrices (attending to i-paths
and intersections, as described in [5]) would lead to an improvement of the per-
formance of the guided genetic algorithm in a straightforward manner.

We organize the paper as follows. Section 2 collects some general notions
and results about cocyclic Hadamard matrices. The algorithm looking for co-
cyclic Hadamard matrices equipped with the new heuristic for reproduction is
described in Section 3. Section 4 is devoted to particularize the algorithm to the
case of dihedral group.

2 Generalities about Cocyclic Hadamard Matrices

Consider a multiplicative group G={g1 = 1,92, ..., gat }, not necessarily abelian.
A cocyclic matrix My over G consists in a binary matrix My = (f(gi, g;)) coming
from a 2-cocycle f over G, that is, a map f: G x G — {1, —1} such that

f(9i,95) [ (9595, 1) = [(95. 9%) [ (9i> 95 9%) Y gi, 95, 9 € G.

We will only use normalized cocycles f (and hence normalized cocyclic matrices
My), so that f(1,9;) = f(gi,1) = 1 for all g;,9; € G (and correspondingly
My = (f(gi,9;)) consists of a first row and column all of 1s).

Effective methods for constructing a basis B for 2-cocycles over a given
group G are known ([I2UI3],[7],[]). Such a basis consists of some representa-
tive 2-cocycles (coming from inflation and transgression) and some elementary
2-coboundaries 0;, so that every cocyclic matrix admits a unique representation
as a Hadamard (pointwise) product M = My, ...Mp, - R, in terms of some
coboundary matrices Maij and a matrix R formed from representative cocycles.

Recall that every elementary coboundary 04 is constructed from the charac-
teristic set map 04 : G — {£1} associated to an element gq € G, so that

Outargp) = Sla)bala)oulaiey)  or bt ={ 120 )

Although the elementary coboundaries generate the set of all coboundaries, they
might not be linearly independent (see [4] for instance). Moreover, since the ele-
mentary coboundary J,, related to the identity element in G is not normalized,
we may assume that dg, ¢ B.

The cocyclic Hadamard test asserts that a cocyclic matrix is Hadamard if and
only if the summation of each row (but the first) is zero [I3]. In what follows,
the rows whose summation is zero are termed Hadamard rows.

We now reproduce the notions of generalized coboundary matriz, i-walk and
intersection introduced in Definition 2 of [5].

The generalized coboundary matriz Maj related to a elementary coboundary
0; consists in negating the jth-row of the matrix My, . Note that negating a row
of a matrix does not change its Hadamard character. As it is pointed out in [5],
every generalized coboundary matrix Maj contains exactly two negative entries



in each row s # 1, which are located at positions (s,4) and (s, e), for g. = g5 'gi.
We will work with generalized coboundary matrices from now on.

A set {Maij : 1 < j < w} of generalized coboundary matrices defines an
i-walk if these matrices may be ordered in a sequence (M,,...,M;,) so that
consecutive matrices share exactly one negative entry at the i‘"-row. Such a
walk is called an i-path if the initial and final matrices do not share a common
—1, and an i-cycle otherwise. As it is pointed out in [5], every set of generalized
coboundary matrices may be uniquely partitioned into disjoint maximal i-walks.

A characterization of Hadamard rows may be easily described attending to
i-paths.

Proposition 1. [5] The i'" row of a cocyclic matric M = My, ... My, - R is
a Hadamard row if and only if

QCZ‘ — 2]1' =2t — T (2)

where ¢; denotes the number of maximal i-paths in {]\7[31,1 ey Maiw }, ri counts
the number of —1s in the it"-row of R and I; indicates the number of positions
in which R and Mail ~~Maiw share a common —1 in their it"-row.
From now on, we will refer to the positions in which R and ]\_431.1 ... My
share a common —1 in a given row simply as intersections, for brevity.
Equation (2)) is the heart of the guided heuristic procedure for reproduction
which is applied in the genetic algorithm described in this paper.

Tw

3 The Algorithm

The genetic algorithm described in [2] and implemented in [3] is based upon the
natural evolution principles of Holland’s [10]:

— The population consists of a subset of 4¢ cocyclic matrices My over G, My =
(f(gi, gj)), which are identified to a binary tuple, the coordinates (fi,..., fs)
of the 2-cocycle f with regards to the basis B. Accordingly, the coordinates
fi are the genes of the individual f.

— The evaluation function counts the number of Hadamard rows in Mj:
the more Hadamard rows My posses, the fittest M, is. In particular, an
individual ind gives rise to a cocyclic Hadamard matrix if and only if
evaluate(ind)= 4t — 1.

— Crossover combines the features of two parent chromosomes to form two
similar offspring by swapping corresponding segments of the parents.

— Mutation arbitrarily alters just one gene of a selected individual (the muta-
tion rate is fixed in 1%).

In the reproduction process, the individuals of the population are paired at
random, so that the application of the crossover operator gives rise to another 4¢
individuals, which are added to the population. The generation i + 1 is formed



from generation ¢ by choosing the 4¢ fittest individuals after the reproduction
process.

We now propose a different approach. Instead of the usual crossover and
mutation operators described above, we shall better use another heuristic for
reproduction. With probability p7 an individual My randomly selected from
the population gives rise to 4t — 1 children, so that the (i + 1)**-row of the 7*-
child is Hadamard. Otherwise the usual crossover operator is used, applied over
two individuals randomly selected. Generation P, is obtained from generation
P,, keeping the fittest individuals and replacing a set of less fit individuals with
the children just constructed, so that a population of 8¢ individuals is formed.
In this process duplicate copies of the same individual are not permitted.

Consequently, the blinded processes of crossover and mutation are now sub-
stituted by a completely oriented procedure for reproduction: this way it is guar-
anteed that anytime an individual exists such that its i**-row is Hadamard.

In order to generate these children, the genes of M, have to be modified so
that equation (2)) is satisfied. It is remarkable that the magnitudes ¢; and I;
depends heavily on the subset of 2-coboundaries which gives rise to M;. On
the contrary, the magnitude r; depends only on the representative 2-cocycles
implicated in the generation of M.

Attending to these facts, a heuristic procedure for reproduction may be
straightforwardly defined in the following way. The key idea is to modify the
genes of My corresponding to 2-coboundaries in such a manner that the magni-
tudes ¢; and I; are also modified in turn, so that the difference 2¢; — 21; is closer
to the constant value 2t — r;.

Depending on whether 2¢; — 21I; > 2t — r; or 2¢; — 2I; < 2t — r;, we need to
increase or decrease I; (resp. decrease or increase ¢;) so that the equality may
hold. More concretely:

1. If 2¢; — 21; > 2t — ry, the algorithm randomly chooses one of the following
possibilities:
— Collapses two different i-paths into just one i-path, so that ¢; decreases
1 unit.
— Introduces a new negative sharing position between R and the product
of Mp,, so that I; increases 1 unit.

2. If 2¢; — 2I; < 2t — r;, the algorithm randomly chooses one of the following
possibilities:
— Splits one i-path into two different i-paths, so that ¢; increases 1 unit.
— Adds a new i-path, introducing a new 2-coboundary generator, so that
¢; increases 1 unit.
— Eliminates a negative sharing position between R and the product of
My, , so that I; decreases 1 unit.

The way in which these procedures have to be implemented depends on the
group G over which 2-cocycles are considered. In the following section we will

! Experimental results show that a good value for the parameter p, is 0.8.



explicitly show a pseudo-code of the particular heuristic procedure for reproduc-
tion in the case of dihedral groups.

The population is expected to evolve generation through generation until an
optimum individual (i.e. a cocyclic Hadamard matrix) is located. This has been
the case in the examples showed in the last section.

We include now a pseudo-code of the algorithm.

Input: a group (G,:) of order |G| =4t
Output: some (eventually one) cocyclic Hadamard matrices over G

\\ the initial population is created
pob — ()
fit «— 0
for i from 1 to 8t
ind < create new()
pob «— pob U {ind}
fit — fitU {evaluate(ind) }
}
pr — 0.8
while (max(fit)<4t—1){
\\ reproduction starts
if random(0,1) < p, then{
Jj «—random(1, 8¢)
ind; «— the j'"-individual of pob
list «+ guidedreproduction(ind;)
else
i «random(1, 8¢)
Jj «—random(1, 8¢) # ¢
(ind;,ind;) « the (i'h, j")-individuals of pob
list «+ usualreproduction(ind;, ind;)
}
remove in (pob, fit) those entries corresponding to the less
size(list) fit individuals
for i from 1 to size(list){
pob — pob U {list(i)}
fit — fit U{evaluate(list(i))}
}
}

List the individuals in pob meeting the optimal fitness, 4f—1

Some auxiliar functions have been used, which we describe now:

— create new() outputs a binary tuple of length s (s being the dimension of
the basis B of 2-cocycles over G), each bit randomly generated as 0 or 1 with
the same probability. A deeper knowledge about the properties of the group
G might lead to improved versions of this procedure. As a matter of fact, in



the case of dihedral groups, the number of 1s should be forced to 2¢, as the
tables in [5] suggest, since the density of cocyclic Hadamard matrices seems
to be maximum with this rate of 1s.

— evaluate(ind) measures the fitness of the individual ind, that is, counts the
number of the Hadamard rows (i.e. those whose summation is zero) in the
cocyclic matrix generated by the pointwise product of the matrices related to
the 2-cocycles of B corresponding to the 1s in ind. In particular, an individual
ind gives rise to a cocyclic Hadamard matrix if and only if evaluate(ind)=
4t — 1.

— random(min, max) outputs a integer in the range [min, max| randomly gen-
erated.

— guidedreproduction(ind) applies the heuristic procedure for reproduction on
the individual ind. The output consists in 4¢— 1 new individuals, the (i+1)"-
row of the i*"-individual being Hadamard.

— usualreproduction(ind,, ind;) applies the usual crossover operator for repro-
duction on the individuals ind; and ind;. The output consists in 2 new
individuals.

4 Guided Reproduction on Dihedral Groups

Denote by Dy; the dihedral group Zg; X, Z5 of order 4¢, t > 1, given by the
presentation
<a,bla® =b* = (ab)?> =1 >

and ordering
{1=1(0,0),a = (1,0),...,a* ' = (2t —1,0),b = (0,1),...,a* b= (2t — 1,1)}

In [8] a representative 2-cocycle f of [f] € H?*(Dy, Z) = ZZ3 is written inter-
changeably as a triple (A, B, K), where A and B are the inflation variables and
K is the transgression variable. All variables take values +1. Explicitly,

o AU 4 <2t o ATBE >
i Jrky o ) i ipky — O ) )
f(a’ab)_{A’JK,i+j>2t, f(a'b, a’b%) {A”B’“K,z'<j,

Let (1, B2 and v denote the representative 2-cocycles related to (A, B, K) =
(=1,1,1),(1,—-1,1), (1,1, —1) respectively.

A basis for 2-coboundaries is described in [5], and consists of the elementary
coboundaries {3y, . .., 9,2¢-3; }. This way, a basis for 2-cocycles over Dy, is given
by B = {aau ooy Ogzi-syp, 517 B2, ’Y}

We focus in the case (4, B, K) = (1, —1,—1) (that is, R = [$27), since compu-
tational results in [8I5] suggest that this case contains a large density of cocyclic
Hadamard matrices.

Furthermore, as it is pointed out in Theorem 2 of [5], cocyclic matrices over
Dy using R are Hadamard matrices if and only if rows from 2 to ¢ are Hadamard.
We have updated the genetic algorithm in turn, so that only rows from 2 to ¢



are used in order to check whether their summations are zero. Accordingly, the
fitness of an individual runs through the range [0,¢ — 1].

In order to define the heuristic procedure for reproduction we need to know
how the 2-coboundaries in B have to be combined to form i-paths, 2 < i < t.
This information is given in Proposition 7 of [5].

Proposition 2. [5] For 1 < i < 2t, a mazimal i-walk consists of a mazimal
subset in

(MC')U""Mazt) or (M02t+17"‘7M04t)

formed from matrices (..., Mj, My, ...) which are cyclically separated in i — 1
positions (that is j £ (i — 1) = k mod 2t).

We now have enough information about how to combine 2-coboundaries in B in
order to modify the value of 2¢; — 21;, so that 2¢; — 2I; = 2t — r;, that is, the
ith-row of our individual being Hadamard.

Notice that since 7, = 2(i — 1) for 2 < ¢ < t, the cocyclic Hadamard test
reduces toc;, — I; =t —i+ 1, for 2 <i <t

We include below a pseudo-code of the guidedreproduction procedure de-
scribed in the section before, particularized to the case of dihedral groups.

Input: an individual ind of the population
Output: a list newpob of 4t —1 individuals, the (i + 1)""-row of the
ith-individual being Hadamard

newpob «— ()
for i from 2 to t{
ipaths < list with the maximal i-paths naturally related to ind
c+ size of ipaths
intersec «+ intersecting positions of —1s in the i*"-row of ind
I «+— size of intersec
while c— T #t—i+1{
if e—I>t—i+1{
ind «— decrease (ipaths, intersec,i— 1,random(1,2))
else{
ind « increase (ipaths,intersec,i— 1,random(1,3))
¥

recompute the values ipaths, ¢, intersec and I related to ind
}
newpob «— newpob U {ind}

}

newpob



Some auxiliar functions have been used, which we describe now:

— decrease(ipaths, intersec,i — 1, j) tries to decrease the value ¢ — I, that is,
size(ipaths)—size(intersec). This function acts in a different way, depending
on the value of 1 < j < 2:

e decrease(ipaths,intersec,i—1,1) outputs an individual ind with exactly
size(ipaths) — 1 i-paths. More concretely, it extends one of the i-paths
(say p1, randomly selected) in ipath to the left, until this i-path is con-
nected to a previously existent i-path, say ps. There are two possibilities
now: if p; # ps, then p; and ps have been merged into a solely path. On
the contrary, if p; = po, then p; has been extended to form a i-cycle. In
both cases, we have effectively generated a new individual consisting of
size(ipaths) — 1 i-paths.

e decrease(ipaths,intersec,i — 1,2) outputs an individual ind with ex-
actly size(intersec) + 1 intersections. It suffices to randomly choose a
2-coboundary sharing a negative entry with R in the i*’-row, in case
that it exists. Otherwise the function

decrease(ipaths, intersec,i — 1,1)
should be called.

— increase(ipaths, intersec,i — 1,7) tries to increase the value ¢ — I, that is,
size(ipaths)—size(intersec). This function acts in a different way, depending
on the value of 1 < j < 3:

e increase(ipaths,intersec,i — 1,1) tries to increase the number of the
i-paths in ipaths, by splitting an existent i-path into two different -
paths. This is only possible for i-paths consisting of at least three 2-
coboundaries. If it is the case, it suffices to delete any 2-coboundary
different from the extremes of the i-path. If not, the function

increase(ipaths, intersec,i — 1,1 + random(1, 2))
is called.

e increase(ipaths,intersec,i — 1,2) tries to increase the number of the
i-paths in ipaths, by adding a new i-path in ipaths which does not
extend any of the previously existent i¢-paths. This is only possible if a
2-coboundary exists such that it is not adjacent to any of the i-paths in

ipaths. If it is not the case, the function
increase(ipaths, intersec,i — 1,2 + (—1)rendom(1,2))
is called.

e increase(ipaths,intersec,i — 1,3) tries to create an individual ind with
size(intersec)—1 intersections. It suffices to randomly delete a 2-coboun-
dary sharing a negative entry with R in the i*"-row, in case that it exists.
Otherwise the function

increase(ipaths, intersec,i — 1, random(1, 2))

is called.



5 Examples and Further Work

All the calculations of this section have been worked out in MATHEMATICA 4.0,
running on a Pentium IV 2.400 Mhz DIMM DDR266 512 MB.

The table below shows some cocyclic Hadamard matrices over Dy, (under-
stood as the pointwise linear combinations of the corresponding 2-cocycles of
the basis B described in the preceding section), and the number of iterations
and time required (in seconds) as well. Notice that the number of generations
is not directly related to the size of the matrices, because of the randomness
inherent in any genetic algorithm.

t |iter.| time |product of generators of 2-cocycles over Dy

210 0” (0,1,0,0,0,0,1,1)

310 0” 1(0,1,1,1,0,0,1,0,0,0,1,1)

410 0” |(,1,0,1,1,1,0,0,1,1,1,0,0,0,1,1)

50 1 ] 0.2" (1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,1,0,0,1,1)

6| 1 | 04" |1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,1,1,0,0,0,0,0,1,1)

712 |287"](0,1,1,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,1)

8| 2 |4.54"1(0,1,0,0,1,1,1,0,0,1,0,0,0,0,0,1,1,1,0,1,0,1,1,0,0,0, 1,0, 1,
0,1,1)

9|11 51.2”|(1,1,0,1,1,1,1,0,1,1,1,1,0,1,0,0,1,0,0,0,1,1,0,1,0,1,1,1,0,
1,0,0,0,0,1,1)

10| 8 |65.11”{(1,0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,0,
0,0,0, 1,110011)

11193 | 21" |(1,1,0, ,1,0,1,1,0,1,0,1,0,1,0 0,0,0,0,1,1,1,1,1,0,1,1,0,1,
1,1,0,0,1,1,1,0,1,1,1,1,0,1,1)

12| 44 |18'44"|(0,0,1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1, 1,
0,0,1, 70,1,0,1,0,1,0,1,0,0,1,0,0,1,1)

13] 40 |22'12"|(1,1,1,0,1,1,1,1,1,1,0,0,0,1,1,0,1,1,1,1,0,0,1,0,1,0,0, 1,0,
0,1,1,1,1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,1,1)

We have experimented 20 runs for each odd value of 3 < ¢ < 13 and for each
of the values of the parameter p, over the range p, = i/10, 0 < ¢ < 10, which
we can not reproduce here due to the page constraints. All of them found some
cocyclic Hadamard matrices. Experimentally, the average time and the average
number of required iterations suggest that the optimum value for p, is 0.8.

Unfortunately, the algorithm has not been able to find cocyclic Hadamard
matrices for ¢ > 13 due to memory limitations: the computer breaks as soon as
5 hours (or equivalently 3000 generations) are reached.

The authors are convinced that improved versions of the algorithm are still to
be implemented (for instance, as soon as a method for simultaneously generating
a group of Hadamard rows is described). The work in [I] supports this idea.
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