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Abstract. Let IΠ−
2 denote the fragment of Peano Arithmetic obtained

by restricting the induction scheme to parameter free Π2 formulas. An-
swering a question of R. Kaye, L. Beklemishev showed that the provably
total computable functions (p.t.c.f.) of IΠ−

2 are, precisely, the primitive
recursive ones. In this work we give a new proof of this fact through
an analysis of the p.t.c.f. of certain local versions of induction principles
closely related to IΠ−

2 . This analysis is essentially based on the equiva-
lence between local induction rules and restricted forms of iteration. In
this way, we obtain a more direct answer to Kaye’s question, avoiding the
metamathematical machinery (reflection principles, provability logic,...)
needed for Beklemishev’s original proof.

1 Introduction

An important notion in studying the computational content of a fragment of
Arithmetic is that of its provably total computable functions. A number–theoretic
computable function f : INk → IN is said to be a provably total computable
function (p.t.c.f.) of a theory T , written f ∈ R(T ), if there is a Σ1 formula
ϕ(�x, y) such that:

1. ϕ defines the graph of f in the standard model of Arithmetic IN; and
2. T � ∀�x∃!y ϕ(�x, y).

Observe that condition 1. amounts to the computability of f , whereas condition 
2. yields an implicit measure of the complexity of f attending to the logical 
principles needed to prove that a Σ1–definition of f defines a total function. Since 
it was introduced by G. Kreisel in the 1950s this notion has been widely studied, 
and nice recursion–theoretic and computational complexity characterizations of 
the sets R(T ) have been obtained for a good number of theories T . For instance, 
by a classical result due independently to G. Mints, C. Parsons and G. Takeuti, 
the class of p.t.c.f. of the scheme of induction for Σ1–formulas IΣ1 equals to the 
class of the primitive recursive functions PR. Indeed, all classes R(IΣn), n ≥ 1, 
can be characterized in terms of the Fast Growing Hierarchy up to the ordinal 
ε0. As for weak fragments below IΣ1, their p.t.c.f. have been characterized in 
terms of subrecursive operators (bounded recursion, bounded minimization, ...)



as well as in terms of computational complexity classes. In fact, their classes
of p.t.c.f. have been intensively investigated in connection with important open
problems in Complexity Theory, mainly in the context of Bounded Arithmetic.

In spite of the wide range of the theories considered, a number of uniform
methods for characterizing the p.t.c.f. of an arithmetic theory are available. E.g.
Herbrand analyses as developed by W. Sieg in [9], S. Buss’ witnessing method [5]
or, in general, proof–theoretic techniques using Cut elimination theorem. How-
ever, for some particular fragments of Peano Arithmetic none of these standard
methods seems to be applicable. Of special interest is the case of the scheme of
parameter free Π2–induction, IΠ

−
2 , given by the induction scheme

Iϕ : ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀xϕ(x) ,
restricted to ϕ(x) ∈ Π−

2 (as usual, we write ϕ(x) ∈ Γ− to mean that ϕ is in Γ
and contains no other free variables than x). Since IΣ−

1 ⊆ IΠ−
2 and IΣ1 is Σ3–

conservative over IΣ−
1 [8], it follows that every primitive recursive function is

provably total in IΠ−
2 ; and R. Kaye asked whether the p.t.c.f. of IΠ−

2 are exactly
the primitive recursive ones. This question remained elusive until [4], where L.
Beklemishev gave a positive answer using modal provability logic techniques.
Although quite elegant, Beklemishev’s answer only provides an indirect solution.
Firstly, he reformulated IΠ−

2 in terms of local reflection principles (reflection
principles in Arithmetic are axiom schemes expressing the statement that “if a
formula ϕ is provable in a theory T then ϕ is valid”). Secondly, he derived the
result as an application of a conservation theorem for local reflection principles
whose proof leans upon properties of Gödel–Löb provability logic GL.

In this work we obtain a more direct answer to Kaye’s question, avoiding the
metamathematical machinery needed for Beklemishev’s proof. In fact, our proof
thatR(IΠ−

2 ) = PR will follow the lines of standard arguments for characterizing
classes R(T ). Let us consider, for instance, a proof that R(IΣ1) = PR. Such a
proof typically proceeds in two steps.

– Step 1: IΣ1 isΠ2–conservative over the inference rule version of the principle
of Σ1–induction Σ1–IR. So, R(IΣ1) = R(Σ1–IR).

– Step 2: Applications of Σ1–IR correspond to applications of the primitive
recursion operator.

The main obstacle to apply this argument to IΠ−
2 is that there is no simple,

direct argument to reduce IΠ−
2 to an inference rule version of it. Here we solve

this problem by showing that IΠ−
2 is equivalent to I(Σ−

2 ,K2), a certain version
of the parameter free Σ2–induction scheme where the elements x for which the
induction axiom claims ϕ(x) to hold are restricted to be Σ2–definable elements.
Equipped with this result, it is easy to obtain that IΠ−

2 is Π2 (in fact, Π3)
conservative over the corresponding inference rule version (Σ2,K2)–IR. Then,
we show that applications of (Σ2,K2)–IR correspond to (restricted forms) of the
iteration operator and thus all functions in R(IΠ−

2 ) are primitive recursive.
Our analysis also yields a new conservation theorem for fragments of Peano

Arithmetic, which is of independent interest. Namely, we prove that IΠ−
2 is Π3–

conservative over IΣ1. This improves on a previous result by Beklemishev in [4],



where conservativity between these theories with respect to boolean combina-
tions of Σ2–sentences was established.

We close this section by giving a precise definition of the auxiliary scheme
that will be central in our analysis of the class of p.t.c.f. of IΠ−

2 .
Let L = {0, S, +, ·, <} denote the language of first order Arithmetic. If Γ is

a set of formulas of L, then IΓ is the theory axiomatized over Robinson’s Q by
the induction scheme, Iϕ, restricted to formulas ϕ(x) ∈ Γ . If free variables other
that x are not allowed, we write ϕ(x) ∈ Γ− and, accordingly, IΓ− denotes the
theory axiomatized over Q by the axioms Iϕ, for ϕ(x) ∈ Γ−.

Definition 1. I(Σ2,K2) is the theory given by IΣ−
1 together with the scheme

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)) →
→ ∀x1, x2 (δ(x1) ∧ δ(x2) → x1 = x2) → ∀x (δ(x) → ϕ(x))

where ϕ(x) ∈ Σ2 and δ(x) ∈ Σ−
2 . The natural inference rule associated to this

scheme, denoted (Σ2,K2)–IR, is given by:

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1))

∀x1, x2 (δ(x1) ∧ δ(x2) → x1 = x2) → ∀x (δ(x) → ϕ(x))

where δ(x) ∈ Σ−
2 and ϕ(x) ∈ Σ2. Finally, if we restrict the scheme to ϕ(x) ∈

Σ−
2 , we obtain the parameter free counterpart of I(Σ2,K2), denoted I(Σ

−
2 ,K2).

Remark 1. Firstly, let us recall that, given a model A, K2(A) denotes the set
of elements of A that are definable in A by a formula δ(x) ∈ Σ2. This explains
why K2 appears in our notation for these theories. Secondly, if A |= IΣ−

1 , then
K2(A) ≺2 A (i.e., K2(A) is a Π2–elementary substructure of A). This property
plays an important role in what follows and it is because of it that I(Σ2,K2) is
axiomatized over IΣ−

1 instead of over a weaker system (such as Q or IΔ0).

A key fact is that I(Σ−
2 ,K2) provides an alternative formulation of IΠ−

2 :

Lemma 2. IΠ−
2 ≡ I(Σ−

2 ,K2).

Proof. We only prove that I(Σ−
2 ,K2) extends IΠ

−
2 . The converse is similar. Let

A |= I(Σ−
2 ,K2) and ϕ(x) ∈ Π−

2 such that A |= ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)).
Assume A |= ∃x¬ϕ(x). Since A |= IΣ−

1 , K2(A) ≺2 A and there is a ∈ K2(A)
such that A |= ¬ϕ(a). Let δ(v) be a Σ2 formula defining the element a and let
θ(x) be ∃v (δ(v) ∧ ¬ϕ(v − x)). Clearly, A |= θ(0) ∧ ∀x (θ(x) → θ(x + 1)). By
I(Σ−

2 ,K2), A |= θ(a) and so A |= ¬ϕ(0), which is a contradiction.

Given a theory T and an inference rule R, we denote by [T,R] the closure of T
under first order logic and unnested applications of R. We denote by T +R the
closure of T under first order logic and (nested) applications of R. Therefore,
T +R =

⋃
k∈ω[T,R]k, where [T,R]0 = T and [T,R]k+1 = [[T,R]k, R].

The first step in the analysis of IΠ−
2 is a suitable reduction of I(Σ2,K2) to a

fragment defined by the rule (Σ2,K2)–IR. Indeed, we have:



Proposition 3. I(Σ2,K2) is Π3–conservative over IΣ−
1 + (Σ2,K2)–IR.

Very conveniently, this reduction can be carried out by the same tools used to
derive the reduction of IΣ1 to Σ1–IR (e.g., by adapting the cut–elimination
argument used in [3] to derive a similar reduction for the Collection scheme).
Alternatively, in [6], lemma 3.6, we gave a model–theoretic proof of this result
using the notion of a Σn+1–closed model, following the methods introduced by
Avigad in [1].

2 Local Induction and Restricted Iteration

Next step in our analysis is to show that applications of (Σ2,K2)–IR correspond
to (a restricted form of) the iteration operator. To this end, we shall consider
extensions of L obtained by adding a finite set of unary function symbols, F =
{f1, . . . , fn}, and a (finite or countable) set of new constant symbols, C. Through
this section we consider a fixed set of constants, C, and we shall denote by LF
the language L+{f1, . . . , fn}+C. If g is a new unary function symbol then LF ,g

will denote the language L{f1,...,fn,g}.

Definition 4. Let f ∈ F a unary function symbol and T an LF–theory. We say
that f is an iterable non decreasing function over T if the theory T proves:

∀x1, x2 (x1 ≤ x2 → f(x1) ≤ f(x2)), and ∀x (x2 < f(x))

Let ΣF
0 be the class of bounded formulas of LF . Classes ΣF

n+1 and ΠF
n+1 are

defined as usual. The theory IΣF
0 is the LF–theory axiomatized over Q by

– The induction axiom Iϕ for each formula ϕ ∈ ΣF
0 , and

– Axioms for each f ∈ F :
∀x1, x2 (x1 ≤ x2 → f(x1) ≤ f(x2)), and ∀x (x2 < f(x))

This is a basic theory to deal with the iteration of f and to guarantee the usual
properties of the iteration of a nondecreasing function with a ΠF

0 –definable
graph. The basic facts provable in this theory were stated in [6]. Next result
collects together the facts that we shall need in the present context.

Proposition 5. For each f ∈ F there exists a formula ITf(z, x, y) ∈ ΣF
0 such

that the following formulas are theorems of IΣF
0 :

1. ITf (z, x, y1) ∧ ITf(z, x, y2) → y1 = y2.
2. (ITf (0, x, y) ↔ x = y) ∧ (ITf (1, x, y) ↔ f(x) = y).
3. ITf (z + 1, x, y) ↔ ∃y0 ≤ y (ITf (z, x, y0) ∧ f(y0) = y).
4. ITf (z, x, y) → ∀z0 < z ∃y0 < y ITf(z0, x, y0).
5. z ≥ 1 ∧ ITf(z, x, y) → x2 < y ∧ z ≤ y.
6. z ≥ 1 ∧ x1 ≤ x2 ∧ ITf (z, x1, y1) ∧ ITf (z, x2, y2) → y1 ≤ y2.
7. ITf (z1, x, y0) ∧ ITf (z2, y0, y) → ITf (z1 + z2, x, y).

In what follows we use a more suggestive notation and write fz(x) = y instead
of ITf (z, x, y).



Definition 6. We say that f ∈ F is a dominating function over T if, for any
term t(x) of LF , there exists k ∈ ω such that T proves

∀x (t(x) ≤ fk(x+ σ(t)))

where σ(t) = c1+ · · ·+ cm and c1, . . . , cm are all the constants occurring in t(x).

Lemma 7. Let T be an extension of IΣF
0 and let f ∈ F a (iterable nonde-

creasing) dominating function over T . Then, for each term t(x1, . . . , xm) of LF
whose variables are among x1, . . . , xm, there exists k ∈ ω such that

T � t(x1, . . . , xm) < fk(x1 + · · ·+ xm + σ(t)).

Remark 2. Languages LF and the notion of a dominating function are tailored
to deal with the following situation. Assume Γ = {θ1, . . . , θm} is a finite set of
Σ0–formulas with only two free variables, say x and y, and for each j = 1, . . . ,m,
θ̄j(x, y) denotes the formula ∀u ≤ x∃v ≤ y θj(u, v). Let F = {f1, . . . , fm, f} be
a set of unary function symbols and let T be the extension of IΣF

0 with the
following additional axioms:

– For each j = 1, . . . ,m, ∀x (fj(x) = y ↔ ∃y0 ≤ y (θ̄j(x, y0)∧y = (x+1)2+y0).
– ∀x (f(x) = (x+ 1)2 + f1(x) + · · ·+ fm(x)).

Then, every h ∈ F is an iterable nondecreasing function over T and f is a
dominating function over T . This last fact can be proved by induction on terms.
The most interesting case occurs when t(x) is a product of two terms, t1(x)·t2(x).
By induction hypothesis, t1(x) ≤ fk(x + σ(t1)) and t2(x) ≤ f l(x + σ(t2)), for
some k ≥ max(l, 2) (so, for every u, fk(u) ≥ k ≥ 2.) Then,

t(x) ≤ (t1(x) + t2(x))
2 ≤ f(t1(x) + t2(x)) ≤ f(fk(x+ σ(t1)) + f l(x+ σ(t2)))

≤ f(2 · fk(x+ σ(t))) ≤ f((fk(x+ σ(t)))2) ≤ fk+2(x+ σ(t))

and we conclude that t(x) ≤ fk+2(x+ σ(t)). The remaining cases are similar.

As a final step in the analysis of (Σ2,K2)–IR and due to technical reasons,
it will be convenient to denote the Σ2–definable elements by closed terms of
an extended language. This motivates the introduction of the following local
induction rules.

Definition 8. For each set of formulas Γ and each set of closed terms Λ0 of
LF we consider the rules (where ϕ(x) ∈ Γ and t ∈ Λ0):

(Γ,Λ0)–IR :
ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))

ϕ(t)

(Γ,Λ0)–IR0 :
∀x (ϕ(x) → ϕ(x+ 1))

ϕ(0) → ϕ(t)

Definition 9. We say that Λ0 is exponentially closed over T if for every t, s ∈
Λ0 there exists t′ ∈ Λ0 such that [T, (ΣF

1 , Λ0)–IR] � ∃y ≤ t′ (st = y).



These rules were intensively studied in [6], where the following results were
obtained. From now on, we assume that T is a fixed extension of IΣF

0 obtained
by adding a set of ΠF

1 sentences, and Λ0 denotes the set of all closed terms of
a sublanguage of LF extending L and containing the set of constants C (and so
Λ0 is closed under sum and product).

Remark 3. Let us note that under these assumptions T satisfies a natural version
of Parikh’s theorem (see [7], chapter 5, theorem 1.4). This fact will be used
extensively without further comments.

In addition, we assume that there is f ∈ LF a dominating function over T and
Λ0 is exponentially closed over T . Then, we have (see lemma 4.8, lemma 4.10
and theorem 4.14 of [6]):

Proposition 10. T + (ΠF
2 , Λ0)–IR ≡ T + {∀x∃y (f t(x) = y) : t ∈ Λ0}.

Theorem 11. T + (ΠF
2 , Λ0)–IR0 is ΠF

2 –conservative over T + (ΠF
2 , Λ0)–IR.

Here we extend our work in [6] and obtain a new theorem on these local induction
systems that will be crucial to derive our main result. The ideas involved are
similar to the ones used in [6] to obtain Proposition 10 and Theorem 11.

Theorem 12. T + IΣF
1 extends T + (ΣF

2 , Λ0)–IR.

Proof. The arguments used in [2], proposition 2.1, can be easily adapted to yield
that for every k ∈ ω, [T, (ΣF

2 , Λ0)–IR]k ≡ [T, (ΠF
2 , Λ0)–IR0]k. So it is enough to

prove that for every k ∈ ω, T + IΣF
1 extends [T, (ΠF

2 , Λ0)–IR0]k. We proceed
by induction on k ∈ ω:

Case k = 0 is trivial; so, let us assume that T+IΣF
1 extends [T, (ΠF

2 , Λ0)–IR0]k.
Let t ∈ Λ0 and ϕ(u, v) ∈ ΠF

2 such that

(†) [T, (ΠF
2 , Λ0)–IR]k � ∀u (ϕ(u, v) → ϕ(u + 1, v)).

We must prove that T + IΣF
1 � ϕ(0, v) → ϕ(t, v).

Without loss of generality, we can assume that ϕ(u, v) ≡ ∀x∃y ϕ0(u, x, y, v),
with ϕ0(u, x, y, v) ∈ ΣF

0 . Let g be a new unary function symbol and T g the

extension of T + IΣF ,g
0 obtained by adding the sentences:

∀x1, x2 (x1 ≤ x2 → g(x1) ≤ g(x2)), ∀x (x2 < g(x)) and ∀x (f(x) ≤ g(x)).

Thus, g is a dominating (iterable nondecreasing) function over T g. By (†), it
follows that [T g, (ΠF ,g

2 , Λ0)–IR]k � ϕg, where ϕg is the following sentence:

∀u (∀x∃y ≤ g(x+ u+ v)ϕ0(u, x, y, v) → ∀x∃y ϕ0(u+ 1, x, y, v)).

Claim. There is a closed term τ0 ∈ Λ0 such that T g + ∀x∃y (gτ0(x) = y) proves

∀u (∀x∃y ≤ g(x+u+ v)ϕ0(u, x, y, v) → ∀x∃y ≤ gτ0(u+x+ v)ϕ0(u+1, x, y, v))



Proof of Claim: We distinguish two cases:

Case 1: k = 0. Then T g � ϕg. Hence, by Parikh’s theorem, there exists a term
s(u, x, v) of LF ,g such that

T g � ∀u (∀x∃y ≤ g(x+u+v)ϕ0(u, x, y, v) → ∀x∃y ≤ s(u, x, v)ϕ0(u+1, x, y, v))

By Lemma 7, there is m ∈ ω such that T g � s(u, x, v) < gm(u + x + v + σ(s)).
By induction on z it can be proved that

T g � gu(x+ z) = y1 ∧ gu+z(x) = y2 → y1 ≤ y2

and, thus, if τ0 = m+ σ(s) then τ0 ∈ Λ0 and the result follows.

Case 2: k ≥ 1. Since [T g, (ΠF ,g
2 , Λ0)–IR]k � ϕg and ϕg is a ΠF ,g

2 –formula, by

Theorem 11, T g + (ΠF ,g
2 , Λ0)–IR also proves ϕg. It follows from Proposition 10

that there exist t1, . . . , tn ∈ Λ0 such that

T g + {∀x∃y (gtj (x) = y) : j = 1, . . . , n} � ϕg.

Let r = t1 + · · ·+ tn. Then, by part (4) of Proposition 5, T g + ∀x∃y (gr(x) = y)
extends T g + {gtj is total : j = 1, . . . , n}. Let h be a new unary function
symbol and let T h be the extension of T g obtained by adding to T g the axiom
∀x (gr(x) = h(x)). Then T h � ϕg and T h is conservative over T g.

By Proposition 5, h is an iterable nondecreasing function over T h and T h �
∀x (g(x) ≤ h(x)). Therefore, h is a dominating function over T h and T h extends

IΣF ,g,h
0 . By Parikh’s theorem, there is a term s(u, x, v) of LF ,g,h such that

T h � ∀u (∀x∃y ≤ g(x+u+v)ϕ0(u, x, y, v) → ∀x∃y ≤ s(u, x, v)ϕ0(u+1, x, y, v))

and, by Lemma 7, there ism ∈ ω such that T h � s(u, x, v) < hm(u+x+v+σ(s)).
Recall that T h � hu(x + z) = y1 ∧ hu+z(x) = y2 → y1 ≤ y2 and, thus, if
σ0 = m+ σ(s) then σ0 ∈ Λ0 and T h + ∀x∃y (hσ0(x) = y) proves

∀u (∀x∃y ≤ g(x+u+v)ϕ0(u, x, y, v) → ∀x∃y ≤ hτ0(u+x+v)ϕ0(u+1, x, y, v))

Using part (7) of Proposition 5, we can prove, by ΣF ,g,h
0 –induction, that

T h � hz(x) = y ↔ gr·z(x) = y

As a consequence, T h + ∀x∃y (hσ0(x) = y) proves

∀u (∀x∃y ≤ g(x+u+v)ϕ0(u, x, y, v) → ∀x∃y ≤ gr·σ0(u+x+v)ϕ0(u+1, x, y, v))

Hence, putting τ0 = r ·σ0 ∈ Λ0, the result follows concluding the proof of Claim.

Let A |= T + IΣF
1 and c ∈ A such that A |= ϕ(0, c). We shall show that

A |= ϕ(t, c). Let ψ(x, y, c) ∈ ΣF
0 the formula

∀z ≤ x∃w ≤ y (ϕ0(0, z, w, c) ∧ y = w + f(x)).



Then A |= ∀x∃yψ(x, y, c) and the formula ψ(x, y, c)∧∀z < y¬ψ(x, z, c) defines a
total nondecreasing function H : A → A. There is a ΣF

0 formula, that we denote
by Hz(x) = y, defining the iteration of H and, since A |= IΣF

1 , we have

A |= ∀x∀z ∃y (Hz(x) = y).

Let θ(u, v) be the following ΠF
1 formula:

u > t ∨ ∀x∀y1
[
Hτu

0 (x+ u+ v) = y1 → ∃y ≤ y1 ϕ0(u, x, y, v)
]
.

Since A |= ∀x∃y (H(x) = y), by definition of θ(u, v) we have A |= θ(0, v). Let us
show that A |= ∀u (θ(u, v) → θ(u + 1, v)).

Pick a, b ∈ A such that A |= a ≤ t ∧ θ(a, b). Then, the formula Hτa
0 (x) = y

defines a total nondecreasing function in A and we can use it to get an expansion
of A to a model Ag of T g such that Ag |= ∀x∃y ≤ g(x+ a+ b)ϕ0(a, x, y, b). By

part (7) of Proposition 5, we can prove by ΣF ,g
0 –induction on z that

Ag |= ∀z ≤ τ0 [g
z(x+ a+ b) = Hτa

0 ·z(x+ a+ b)]

In particular, Ag |= ∀x (gτ0(x+a+b) = Hτa
0 ·τ0(x+a+b)) and, as a consequence,

Ag |= T g + ∀x∃y (gτ0(x) = y). Hence, by the Claim, we conclude that Ag |=
∀x∃y ≤ gτ0(x+ a+ b)ϕ0(a+ 1, x, y, b) and, therefore, A |= θ(a+ 1, b).

We have shown that A |= θ(0, v) ∧ ∀u (θ(u, v) → θ(u + 1, v)), and we know
that A |= IΠF

1 (because IΣF
1 ≡ IΠF

1 ), so, A |= ∀u θ(u, b). In particular, since

A |= θ(t, v) → ∀x∃y ≤ Hτ t
0(t+ x+ v)ϕ0(t, x, y, v),

we conclude A |= ϕ(t, v).

3 Main Result

We are now ready to obtain the main results. Firstly, we need a version of
Theorem 12 in the language of first–order Arithmetic.

Lemma 13. IΣ1 extends IΔ0 + (Σ2,K2)–IR.

Proof. Let A |= IΣ1 and ϕ(x) ∈ Σ2 such that

(•) IΔ0 + (Σ2,K2)–IR � ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)).

We must show that for every δ(u) ∈ Σ−
2 ,

(�) A |= ∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2) → ∀x (δ(x) → ϕ(x)).

By (•) there exist formulas ϕ1(x), . . . , ϕr(x) ∈ Σ2 and δ1(x), . . . , δr(x) ∈ Σ−
2

such that IΔ0 plus the sentences

αj : ∀x1 ∀x2(δj(x1) ∧ δj(x2) → x1 = x2) → ∀x (δj(x) → ϕj(x))



(j = 1 . . . , r) proves ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+1)). More precisely for each j ≤ r,

IΔ0 +
∧

1≤i<j

αi � ϕj(0) ∧ ∀x (ϕj(x) → ϕj(x+ 1)),

and IΔ0 +
∧r

i=1 αi � ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)).
Let E = {j : 1 ≤ j ≤ r, A |= ¬∃xδj(x)} and, for each j ∈ E, let θj(x, y) ∈ Π0

such that ¬∃x δj(x) is equivalent to ∀x∃y θj(x, y). Let m the cardinal of E and
let F = {f1, . . . , fm, f} a set of new unary function symbols. From the set of
Σ0 formulas Γ = {θj(x, y) : j ∈ E}, we define a theory T as in Remark 2.
Let L(A) denote the language obtained by adding to L a constant symbol a, for
each a ∈ A. Put T ′ = T +DΠ1(A), where DΠ1(A) is the Π1–diagram of A. Let
Λ0 be the set of closed terms of L(A) containing only constants of the form a
for a ∈ K2(A). Then A has a natural expansion AF to the language LF ∪ L(A)
such that AF |= T ′ + IΣF

1 . By Proposition 12, AF |= T ′ + (ΣF
2 , Λ0)–IR. Given

δ(x) ∈ Σ−
2 , we can distinguish several cases:

If A |= ¬∃x δ(x) then (�) obviously holds. On the other hand, if A |= ¬
∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2), since this is a Σ2–sentence and T ′ extends
DΠ1(A), we have that T ′ � ¬∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2). So,

T ′ � ∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2) → ∀x (δ(x) → ϕ(x)).

In that way (�) holds again. We must deal with a last case: A |= ∃!x δ(x).
Then there exists d ∈ K2(A) such that A |= δ(d) and d ∈ Λ0. In order to

verify (�) it is enough to show that T ′ + (ΣF
2 , Λ0)–IR � ϕ(d).

We prove, by induction on j, that for all j = 1, . . . , r, T ′ +(ΣF
2 , Λ0)–IR � αj .

Let j ≤ r, and assume that T ′ + (ΣF
2 , Λ0)–IR � ∧

1≤i<j αi. Then

(•)j T ′ + (ΣF
2 , Λ0)–IR � ϕj(0) ∧ ∀x (ϕj(x) → ϕj(x+ 1)).

If j ∈ E or A |= ¬∀x1 ∀x2(δj(x1) ∧ δj(x2) → x1 = x2) then, reasoning as
in previous cases, we conclude that T ′ � αj . If A |= ∃!x δj(x), then there exists
b ∈ K2(A) such that A |= δj(b) and b ∈ Λ0. Using (•)j we get T ′+(ΣF

2 , Λ0)–IR �
ϕj(b). As a consequence, T ′ + (ΣF

2 , Λ0)–IR � ∃x (δ(x) ∧ ϕj(x)), and it follows
that T ′ + (ΣF

2 , Λ0)–IR � αj , as required.
We have proved that T ′ + (ΣF

2 , Λ0)–IR � ∧r
j=1 αj ; hence

T ′ + (ΣF
2 , Λ0)–IR � ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1))

It follows that T ′ + (ΣF
2 , Λ0)–IR � ϕ(d) and, as a consequence, (�) holds.

Our last theorem extends a previous conservation result obtained in [4] and, as
a direct corollary, yields the characterization of the p.t.c.f. of IΠ−

2 .

Theorem 14. IΠ−
2 is Π3–conservative over IΣ1.

Proof. Let θ be a Π3 sentence provable in IΠ−
2 . Then I(Σ2,K2) � θ by

Lemma 2 and IΣ−
1 + (Σ2,K2)–IR � θ by Proposition 3. We need the

following fact:



Claim. IΣ−
1 + (Σ2,K2)–IR ≡ IΣ−

1 + (IΔ0 + (Σ2,K2)–IR)

Proof of Claim: Each axiom of IΣ−
1 is a Σ3 sentence, so it is enough to prove

that for every σ0(u) ∈ Π2,

[IΔ0, (Σ2,K2)–IR] + ∃u σ0(u) extends [IΔ0 + ∃u σ0(u), (Σ2,K2)–IR].

Assume IΔ0 + ∃u σ0(u) � ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)), with ϕ(x) ∈ Σ2, and let
ψ(x, u) ∈ Σ2 be σ0(u) → ϕ(x). Then, IΔ0 � ψ(0, u)∧∀x (ψ(x, u) → ψ(x+1, u)),
and, therefore, [IΔ0, (Σ2,K2)–IR] � Uδ → ∀x (δ(x) → ψ(x, u)), where δ(x) is in
Σ−

2 and Uδ denotes the sentence ∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2). Then it
holds that [IΔ0, (Σ2,K2)–IR] also proves

∃u σ0(u) → (Uδ → ∀x (δ(x) → ϕ(x)))

and so [IΔ0, (Σ2,K2)–IR] + ∃u σ0(u) � Uδ → ∀x (δ(x) → ϕ(x)), as required.

It follows from this Claim and Lemma 13 that IΣ1 extends IΣ
−
1 +(Σ2,K2)–IR

and, therefore, IΣ1 � θ.
Corollary 15. The class of provably total computable functions of IΠ−

2 is the
class of primitive recursive functions.
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