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Abstract. In this note, the universality of a sequence of operators
associated to the partial sums of the Taylor series of a holomorphic
function is investigated. The emphasis is put on the fact that the Taylor
series are evaluated at a prescribed point and the variable is the center
of the expansion. The dynamics of the sequence of operators linked to
the partial sums of a power series that is not generated by an entire
function is also studied.

1. Introduction, preliminaries and background

Universal Taylor series and universal sequences of differential operators
have been largely investigated along the last decades; see [5–7, 17, 18, 24],
[1, Chapter 3] and the references contained in them. This paper deals with
specific points inside both topics, which are, in a certain sense, connected.
We will use notation that is mostly standard, so that the reader who is
already acquainted with it may skip the next three paragraphs.

Throughout this paper, N, N0, Q, R, C, D, C∞ and B(z0, r) will repre-
sent, respectively, the set of positive integers, the set N∪{0}, the field of ra-
tionals, the real line, the complex plane, the open unit disc {z ∈ C : |z| < 1},
the extended complex plane C∪{∞}, and the open ball {z ∈ C : |z−z0| < r}
with center z0 and radius r. By a domain we mean a nonempty connected
open set G ⊂ C. We say that a domain G is simply connected whenever
C∞ \G is connected. For any domain G, the vector space H(G) of holomor-
phic functions G→ C is endowed with the topology of uniform convergence
on compact subsets of G. It is well known (see, e.g. [20]) that, under this
topology, H(G) becomes an F-space, that is, a complete metrizable topo-
logical vector space. Moreover, H(G) is separable. If K is a compact subset
of C, then A(K) will stand for the space of all continuous functions K → C
that are holomorphic in the interior K◦ of K. The set A(K) becomes a sep-
arable Banach space under the norm ‖f‖∞ = maxz∈K |f(z)|, that generates
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the topology of uniform convergence on K. By A we denote the closure in
a topological space X of a subset A ⊂ X.

Some additional terminology, borrowed from the theories of lineability
and of linear chaos, will be needed. For background on them, the reader
may consult [1,2,6,12,13,21,24,38]. Assume that X and Y are (Hausdorff)
topological vector spaces. Then a subset A ⊂ X is said to be dense-lineable
(spaceable, resp.) in X whenever there is a dense (a closed infinite dimen-
sional, resp.) vector subspace M of X such that M \ {0} ⊂ A.

Let us denote by L(X,Y ) the space of all continuous linear mappings
X → Y , and by L(X) the space L(X,X) of all operators on X. A sequence
(Tn)n ⊂ L(X,Y ) is said to be hypercyclic (or universal ) provided that there
is a vector x0 ∈ X –called hypercyclic or universal for (Tn)n– such that
the orbit {Tnx0 : n ∈ N} of x0 under (Tn)n is dense in Y . An operator
T ∈ L(X) is said to be hypercyclic if the sequence (Tn)n of its iterates is hy-
percyclic. The corresponding sets of hypercyclic vectors will be respectively
denoted by HC((Tn)n) and HC(T ). A sequence (Tn)n ⊂ L(X,Y ) is said
to be transitive (mixing, resp.) provided that, given two nonempty open
sets U ⊂ X,V ⊂ Y , there is n0 ∈ N such that Tn0(U) ∩ V 6= ∅ (such that
Tn(U) ∩ V 6= ∅ for all n ≥ n0, resp.). From Birkhoff transitivity theorem
(see, e.g., [24]), we have that, provided that X and Y are F-spaces and Y is
separable, a sequence (Tn)n ⊂ L(X,Y ) is transitive if and only if HC((Tn)n)
is residual (in fact, a dense Gδ subset) in X. Moreover, (Tn)n is mixing if
and only if any subsequence (Tnk

)k is transitive.

Let G ⊂ C be a domain with G 6= C, ζ ∈ G and f ∈ H(G). Then
f is said to be a universal Taylor series with center ζ provided that it
satisfies the following property: For every compact set K ⊂ C \ G with
C \ K connected, and every g ∈ A(K), there exists a (strictly increasing)
sequence (λn) ⊂ N such that

lim
n→∞

sup
z∈K
|S(λn, f, ζ)(z)− g(z)| = 0,

where S(N, f, ζ) represents the Nth partial Taylor sum of f at ζ, that is,

S(N, f, ζ)(z) =
N∑
j=0

f (j)(ζ)

j!
(z − ζ)j (z ∈ C, N ∈ N0).

This concept dates back to Nestoridis [32], who studied a kind of universality
which was slightly stronger than the one considered by Luh [25,26] and Chui
and Parnes [19] (where K is supposed not to cut G). The set of universal
Taylor series in G with center ζ is denoted by U(G, ζ). It is proved in [32]
that U(D, 0) is a dense Gδ subset of H(D), and this is generalized in [33] by
showing that U(G, ζ) is a denseGδ subset of H(G) for any simply connected
domain G and any ζ ∈ G. Now, for a domain G ⊂ C, let U(G) denote the
family of all functions f ∈ H(G) satisfying that, for every compact set
K ⊂ C \ G with C \ K connected, and every g ∈ A(K), there exists a
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sequence (λn) ⊂ N0 such that, for every compact set L ⊂ G, one has

lim
n→∞

sup
ζ∈L

sup
z∈K
|S(λn, f, ζ)(z)− g(z)| = 0.

Obviously, U(G) ⊂ U(G, ζ) for all ζ ∈ G. It is shown in [33] that U(G) is a
dense Gδ subset of H(G) if G is simply connected, in [28] that U(G) = ∅ if
G is not simply connected, and in [31] that U(G, ζ) = U(G) if G is simply
connected and ζ is any point of G.

According to [40], Nestoridis posed the question of whether the universal-
ity of Taylor series is preserved if we fix the point of evaluation z (without
loss of generality, we may assume z = 0) and the center ζ of expansion is
variable. To be more specific, the question is whether the set

S(G) :=
{
f ∈ H(G) : {T̃nf}n≥0 is dense in H(G)

}
is not empty, where

(T̃nf)(ζ) :=

n∑
j=0

f (j)(ζ)

j!
(−ζ)j (ζ ∈ G, n ≥ 0). (1)

We remark the connection: S(G) = HC((T̃n)n), where we are considering

T̃n ∈ L(H(G)) (n ≥ 0). It is proved in [40, Section 4] that S(G) is always
a Gδ subset of H(G) (the proof is there given for a simply connected do-
main G, but it can be extended to any domain, just by replacing the dense
sequence (pj) of polynomials by a dense sequence in H(G), which exists
thanks to the separability of H(G)), that S(G) = ∅ if 0 ∈ G and that, if
G is simply connected, then S(G) is either empty or dense (so either empty
or residual). In [40] the broader class

St(G) :=
{
f ∈ H(G) : {T̃nf}n≥0 ⊃ {constants}

}
is also considered, and it is shown to be a Gδ subset of H(G). Once again,
St(G) = ∅ if 0 ∈ G. Moreover, if G is simply connected and 0 6∈ G,
then St(G) is dense (hence residual) in H(G). Recently, Panagiotis [34] has
answered the conjecture by Nestoridis (see [40]) in the affirmative by proving
that S(G) 6= ∅ in the special case where G is an open disc not containing
0.

In this paper, we prove –with methods that are rather different from
those in [34]– that the condition 0 6∈ G characterizes the non-vacuousness
of S(G) if G is simply connected. In fact, in Section 2, we shall study the

universality of sequences that are more general than (T̃n). Finally, in Section
3, the dynamics of the sequence of differential operators generated by a
power series with finite radius of convergence is investigated, and lineability
properties of the corresponding sets of universal functions are shown.
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2. Universality of Taylor-like series

In this section, the hypercyclicity of the sequence of operators T̃n
(n ≥ 0) given by (1) will be studied. In order to tackle the problem, we
shall adopt a slightly general point of view, by considering the following
more general families of operators.

For each (a, n, f, z) ∈ C× N0 ×H(G)×G , we set

(Ta,nf)(z) :=

n∑
j=0

f (j)(z)

j!
· (az)j . (2)

Note that T̃n = T−1,n. From the continuity of the derivative operator D
(Df := f ′), it follows that every Ta,n is a well defined continuous linear
mapping H(G) → H(G), that is, (Ta,n)n ⊂ L(H(G)) for all a ∈ C. We
start with a necessary condition for universality. As usual, ∂A represents
the boundary of a set A ⊂ C.

Proposition 2.1. Let a ∈ C. Assume that G ⊂ C is a domain, and that
the sequence of operators Ta,n : H(G) → H(G) (n ∈ N) defined by (2) is
universal. Then we have:

(a) 0 6∈ G, and

(b) |a| ≥ sup
z∈G

dist (z, ∂G)

|z|
.

Proof. (a) By hypothesis, there is f ∈ HC((Ta,n)n). Proceeding by way of
contradiction, assume that 0 ∈ G. Consider the constant function g(z) :=
1 + f(0). Then there would exist a sequence (nk) ⊂ N such that Tnk

f → g
(k →∞) uniformly on every compact setK ⊂ G. In particular, forK = {0},
we would obtain

f(0) =
f (0)(0)

0!
= (Tnk

f)(0) −→ g(0) = 1 + f(0) as k →∞,

which is clearly absurd.

(b) We proceed, again, by way of contradiction, so that we are simul-

taneously assuming |a| < supz∈G
dist (z,∂G)
|z| and the existence of an f ∈

HC((Ta,n)n). Then there exists z0 ∈ G such that |a| < R
|z0| , where R :=

dist (z0, ∂G). Therefore B(z0, R) ⊂ G. Consequently, the Taylor expansion

f(z) =
∑∞

n=0
f (n)(z0)

n! (z − z0)n holds in B(z0, R) for our function f . Due to
the hypercyclicity of f , some subsequence of (Ta,nf)n should tend in the
compact set K = {z0} ⊂ G to any prescribed constant, in particular, to
the constant 1+f((a+1)z0): this is, indeed, a well defined number because
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|(a+ 1)z0 − z0| = |az0| < R, and so (a+ 1)z0 ∈ B(z0, R) ⊂ G. However,

(Ta,nf)(z0) =

n∑
j=0

f (j)(z0)

j!
(az0)

j =

n∑
j=0

f (j)(z0)

j!
((a+ 1)z0 − z0)j

−→
∞∑
n=0

f (n)(z0)

n!
((a+ 1)z0 − z0)n = f((a+ 1)z0)

as n→∞, which is the sought-after contradiction. �

Remarks 2.2. 1. In the case a = −1, condition (a) above was already
obtained in [40], and (b) is always satisfied as soon as 0 6∈ G, because we
would have | − 1| · |z| = |z| = |z − 0| ≥ dist (z, ∂G) for all z ∈ G.

2. From condition (a) in Proposition 2.1 one derives as in the last re-
mark that |z| = |z − 0| ≥ dist (z, ∂G) for all z ∈ G. Then we have

sup
z∈G

dist (z, ∂G)

|z|
≤ 1. Therefore, according to (b), if |a| < 1 and G is a

domain such that some sequence (zn) ⊂ G satisfies lim
n→∞

dist (zn, ∂G)

|zn|
= 1

(for instance G = B(c, |c|), where c ∈ C \ {0}), then (Ta,n) is not uni-
versal on H(G). Another example in which (Ta,n) is not universal (even

though 0 6∈ G) is obtained when G is a sector {reiθ : r > 0, 0 < θ < α}
(0 < α < 2π) and |a| < sin

α

2
.

In order to provide sufficient conditions for universality, we distinguish two
cases, namely, a 6= −1 and a = −1. The reason is that the approaches of the
proofs are rather different. Note that we obtain in fact (see Theorem 2.10
below) a characterization of universality in the case a = −1: this follows
from Proposition 2.1 and the fact that the condition G ∩ (a + 1)G = ∅
given in the next theorem means 0 6∈ G in that case. As usual, we have set
c S := {cz : z ∈ S} for c ∈ C, S ⊂ C.

The auxiliary results contained in the next lemma are needed to face the
case a 6= −1. If M ⊂ N0 is an infinite set and G ⊂ C is a domain, then we
denote by U(G,M) the family of all functions f ∈ H(G) satisfying that, for
every compact set K ⊂ C \G with C \K connected, and every g ∈ A(K),
there exists a strictly increasing sequence (λn) ⊂ M such that, for every
compact set L ⊂ G, one has

lim
n→∞

sup
ζ∈L

sup
z∈K
|S(λn, f, ζ)(z)− g(z)| = 0.

Note that U(G,N0) = U(G).

Lemma 2.3. Let G ⊂ C be a simply connected domain with G 6= C, and
M ⊂ N0 be an infinite subset. Then the following holds:

(a) U(G,M) is a dense Gδ subset of H(G).
(b) U(G) is dense-lineable in H(G).
(c) U(G) is spaceable in H(G).
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Proof. Part (a) is a refinement of an assertion of [33] given in Section 1, and
it is a consequence of Theorem 3.4 in [28] just by choosing A = the infinite
unit matrix there.

Part (b) can be derived from Theorem 6 in [5]. In fact, we only need the
conclusion (ii) of such theorem (for l = 0), together with the property that
–thanks to Mergelyan’s approximation theorem (see, e.g., [22])– the set of
entire functions is dense in A(K), provided that K is a compact subset of
C with connected complement.

Part (c) follows from the just mentioned denseness property together with
Theorem 4.2 in [29] (see also [16]). We need only the conclusion (i) (for
l = 0) of this theorem. �

Remark 2.4. In 2005, Bayart established the dense-lineability ([3]) and the
spaceability ([4]) of U(D).

Theorem 2.5. Let G ⊂ C be a simply connected domain, and consider the
sequence of operators Ta,n : H(G) → H(G) (n ∈ N) defined by (2), where
a ∈ C \ {−1}. If G ∩ (a+ 1)G = ∅ then we have:

(a) The sequence (Ta,n) is mixing (hence universal ).
(b) The set HC((Ta,n)) is dense-lineable and spaceable in H(G).

Proof. (a) To show that (Ta,n) is mixing, we are going to prove that, for
every fixed sequence M = {n1 < n2 < n3 < · · · } ⊂ N0, the set HC((Sk)k≥1)
is residual in H(G), where we have set Sk := Ta,nk

. According to Lemma
2.3(a), it is enough to prove that U(G,M) ⊂ HC((Sk)k≥1) or, equivalently,
that for each f ∈ U(G,M) the orbit {Skf : k ∈ N} is dense in H(G). Since
G is simply connected, the set of polynomials is dense in H(G). Therefore it
is sufficient to exhibit, for every fixed polynomial P , a sequence (k(l))l ⊂M
such that Sk(l)f −→ P (l → ∞) uniformly on compacta in G. Choose an
increasing sequence of compact sets {Ll}l≥1 such that G =

⋃
l≥1 Ll and every

set C \ Ll is connected; this is possible due to the simple connectedness of
G (see, e.g., [37, Chapter 13]). Then every compact set L ⊂ G is contained
in some Ll(L).

Fix f and P as above. Since a + 1 6= 0, the set (a + 1)G is a simply
connected domain contained in C\G. Moreover, each set Kl := (a+1)Ll is
compact, C \Kl is connected and Kl ⊂ C \G. In addition, every mapping
z ∈ Kl 7−→ P ( z

a+1) ∈ C belongs to A(Kl). Thus, there is ml = nk(l) ∈ M
such that

sup
ζ∈Ll

sup
z∈Kl

∣∣S(ml, f, ζ)(z)− P
( z

a+ 1

)∣∣ < 1

l
.

It is evident that (ml) can be selected so as to be strictly increasing. Notice
that we have, in particular, that |S(ml, f, z)((a+ 1)z)− P (z)| < 1/l for all
z ∈ Ll. But

S(ml, f, z)((a+ 1)z) =

ml∑
j=0

f (j)(z)

j!
((a+ 1)z − z)j = (Sk(l)f)(z).
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On the other hand, given a compact set L ⊂ G, there is l0 ∈ N such that
L ⊂ Ll for all l ≥ l0. This yields supz∈L |(Sk(l)f)(z) − P (z)| < 1/l for
all l ≥ l0 and, consequently, liml→∞ supz∈L |(Sk(l)f)(z) − P (z)| = 0, which
proves the desired uniform convergence.

(b) This follows from Lemma 2.3(b,c) together with the fact U(G) ⊂
HC((Ta,n)) proved in the preceding paragraph (with M = N0). �

For instance, if Π is one of the two open half-planes determined by a
straight line passing through the origin and G is any simply connected
domain contained in Π, then G ∩ (−G) = ∅, and so the sequence (T−2,n)
is universal on H(G).

Remark 2.6. Contrary to the case a = −1 (Theorem 2.10), we do not
know whether or not the condition G ∩ (a + 1)G = ∅ in Theorem 2.5 is
necessary for the universality of (Ta,n).

For any meromorphic function R we will consider the set PR of its poles
in the extended plane, that is, PR = {z ∈ C∞ : R(z) = ∞}. The following
three lemmas will be used in the proof of our main result, with which we
conclude this section.

Lemma 2.7. Let G ⊂ C be a simply connected domain such that 0 6∈ G.
Then the family R0 of rational functions R with PR ⊂ {0} is a dense
subset of H(G).

Proof. As a consequence of the Runge approximation theorem, if A is a
subset of C∞ containing exactly one point in each connected component of
C∞ \ G, then the family of rational functions R with PR ⊂ A is a dense
subset of H(G) (see, e.g., [37, Chapter 13]). In our case, the set C∞ \G is
connected and 0 ∈ C∞ \G, so it is enough to choose A = {0}. �

Lemma 2.8. Assume that X and Y are separable F-spaces. Let (Tn) ⊂
L(X,Y ) be a mixing sequence. Then HC((Tn)) is dense-lineable.

Proof. In [10] it is proved that, if X and Y are metrizable separable topolo-
gical vector spaces and (Tn) is a sequence in L(X,Y ) such that HC((Tnk

))
is dense for every sequence {n1 < n2 < · · · } ⊂ N, then HC((Tn)) con-
tains, except for 0, a dense vector subspace of X. The conclusion of this
lemma follows from the fact that being mixing implies transitivity of each
subsequence (Tnk

), and this in turn is equivalent to the denseness of each
set HC((Tnk

)) (in fact, all that is needed is X to be, in addition, a Baire
space). �

Lemma 2.9. Let G ⊂ C be a simply connected domain with 0 6∈ G, and
M be an infinite subset of N0. Then the set

St,M (G) :=
{
f ∈ H(G) : {T̃nf}n∈M ⊃ {constants}

}
is dense in H(G).
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Proof. In [40, Theorem 4.7], the statement of the lemma is proved for the
case M = N0 by showing that U(G) ⊂ St(G) = St,N0(G). With the same
approach it can be seen that U(G,M) ⊂ St,M (G). But, by Lemma 2.3, the
set U(G,M) is dense in H(G). Thus, St,M (G) is dense too. �

Theorem 2.10. Let G ⊂ C be a simply connected domain, and consider

the sequence of operators T̃n : H(G)→ H(G) (n ∈ N) defined in (1). Then
the following properties are equivalent:

(a) 0 6∈ G.

(b) The sequence (T̃n) is universal, that is, S(G) 6= ∅.

(c) The sequence (T̃n) is mixing.
(d) The set S(G) is residual in H(G).
(e) The set S(G) is dense-lineable in H(G).

Proof. Recall that S(G) = HC((T̃n)n≥0), where

T̃nf(z) =
n∑
j=0

f (j)(z)

j!
(−z)j .

The implication (b) ⇒ (a) has been already proved in [40] (alternatively,
see Proposition 2.1), while (c) ⇒ (b) is trivial because any mixing sequence
of operators on a separable F-space is universal. On the other hand, the
implications (d) ⇒ (b) and (e) ⇒ (b) are also evident because if a set is
dense then it is, trivially, nonempty. That (c) ⇒ (d) is a consequence of the
fact that mixing implies transitive. And (c) ⇒ (e) follows from Lemma 2.8

as applied to our sequence (T̃n) and X = H(G) = Y .

Consequently, all we need to prove is that (a) implies (c). So, we assume

0 6∈ G. Our goal is to show that (T̃n)n∈N0 is mixing. This is equivalent to

show that (T̃n)n∈M is transitive for every infinite subset M ⊂ N0. With this
aim, fix such a subset M as well as two nonempty open sets U, W of H(G).

We should find n0 ∈M such that T̃n0(U)∩W 6= ∅. Recall that the family
of all sets of the form

V (f,K, ε) = {g ∈ H(G) : |g(z)− f(z)| < ε for all z ∈ K}

(f ∈ H(G), ε > 0, K a compact subset of G) is an open basis for the
topology of H(G). Now, recall that since G is simply connected, the set
P of all polynomials and the set R0 (Lemma 2.7) are dense in H(G).
Moreover, we have V (f,K, ε) ⊂ V (f, L, α) if K ⊃ L and ε < α. Then
there are ε > 0, P ∈ P, R ∈ R0 and a compact subset K ⊂ G such that
U ⊃ V (P,K, ε) and W ⊃ V (R,K, ε).

Thus, we should search for an m ∈ M enjoying the property that there

is a function f ∈ H(G) such that f ∈ V (P,K, ε) and T̃mf ∈ V (R,K, ε)
or, equivalently, such that

|f(z)− P (z)| < ε and |(T̃mf)(z)−R(z)| < ε for all z ∈ K. (3)
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Let p := degree(P ). On the one hand, if n ≥ p and z ∈ C, we obtain from
the Taylor expansion that

(T̃nP )(z) =
n∑
j=0

P (j)(z)

j!
(−z)j =

p∑
j=0

P (j)(z)

j!
(−z)j

=

p∑
j=0

P (j)(z)

j!
(0− z)j = P (0). (4)

On the other hand, there are b0, b1, . . . , bq ∈ C such that

R(z) = b0 +
b1
z

+ · · ·+ bq
zq

=: b0 +R0(z).

According to Lemma 2.9, we can find a function ϕ ∈ H(G) and an infinite
subset M0 ⊂M such that

|ϕ(z)| < ε

2
and |(T̃nϕ)(z)− (−P (0) + b0)| < ε (z ∈ K, n ∈M0). (5)

Now, since K ⊂ G is compact and 0 6∈ G, we can find CK ∈ (0, 1) such
that

|z| > CK for all z ∈ K. (6)

Since M0 is infinite, we can choose m ∈M0 (hence m ∈M) satisfying

m > p and m >
2q ·max1≤k≤q |bk|

ε · CqK
. (7)

For each k ∈ {1, . . . , q}, let us define the numbers dk and ak by

dk :=

m∑
j=0

k(k + 1) · · · (k + j − 1)

j!
and ak :=

bk
dk
, (8)

with the convention k(k+1)···(k+j−1)
j! := 1 if j = 0. Observe that dk ≥ m+ 1

for all k ∈ {1, . . . , q}. We also define the function

f := P + ϕ+ S, where S(z) :=
a1
z

+ · · ·+ aq
zq
. (9)

Obviously, f ∈ H(G). Let ψk(z) := z−k for k ∈ N. An easy compu-

tation gives T̃mψk = dkψk. Hence, by linearity, T̃mS =
∑q

k=1 akdkψk =∑q
k=1 bkψk = R0. On the one hand, we have by (5), (6), (7), (8), (9) and

the triangle inequality that, for all z ∈ K,

|f(z)− P (z)| ≤ |ϕ(z)|+ |S(z)| ≤ ε

2
+

q∑
k=1

∣∣∣ak
zk

∣∣∣
=
ε

2
+

q∑
k=1

|bk|
|dkzk|

≤ ε

2
+

q∑
k=1

|bk|
mCkK

<
ε

2
+
q ·max1≤k≤q |bk|

mCqK
<
ε

2
+
ε

2
= ε.
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On the other hand, from (4), (5), (7), (9), the triangle inequality and the

linearity of T̃m we get for all z ∈ K that

|(T̃mf)(z)−R(z)| =
∣∣∣(T̃mP )(z) + (T̃mϕ)(z) + (T̃mS)(z)− b0 −

q∑
k=1

bk
zk

∣∣∣
≤ |P (0) + (T̃mϕ)(z)− b0|+

∣∣∣(T̃mS)(z)−R0(z)
∣∣∣ < ε+ 0 = ε.

Consequently, (3) holds for the chosen function f , and we are done. �

Question 2.11. Let G ⊂ C be a simply connected domain with 0 6∈ G. Is
S(G) spaceable?

3. Differential polynomials associated to power series

Let G ⊂ C be a domain. We can associate to each polynomial P (z) =∑N
k=0 akz

k with complex coefficients ak a differential operator P (D) =∑N
k=0 akD

k ∈ L(H(G)), where Dkf = f (k) for k ∈ N0. Then P (D)f =∑N
k=0 akf

(k). Therefore, any (formal) power series
∑∞

n=0 cnz
n (or, that is

the same, any sequence c = (cn) ∈ CN0) defines, in a natural way, a sequence
{Tc,n}n≥0 of operators on H(G) given by Tc,n =

∑n
j=0 cjD

j , that is,

(Tc,nf)(z) =

n∑
j=0

cjf
(j)(z) (f ∈ H(G)). (10)

Then it is natural to ask for the universality of such a sequence.

However, before going on, it is worth mentioning that there are some re-
strictions on the desired universality. For instance, if the series

∑∞
n=0 cnz

n

is “very convergent”, we should not get our hopes up too much. To be more
explicit, assume that Φ(z) =

∑∞
n=0 cnz

n is an entire function of subexpo-
nential type, that is, given ε > 0, there is a constant K = K(ε) ∈ (0,+∞)

such that |Φ(z)| ≤ K eε|z| for all z ∈ C. Then the infinite order differential
operator Φ(D) =

∑∞
n=0 cnD

n is well defined on H(G); see, e.g., [8] (in fact,
it makes sense on H(C) if Φ is just of exponential type, that is, if there are

constants A,B ∈ (0,+∞) satisfying |Φ(z)| ≤ AeB|z| for all z ∈ C). The
corresponding sequence {Tc,n}n≥0 of operators satisfies

Tc,nf −→ Φ(D)f =

∞∑
k=0

ckf
(k) (n→∞)

uniformly on compacta in G, so we have a kind of “anti-hypercyclicity” in
this case.

With this in mind, we have got a partial positive result (Theorem 3.2)
by assuming that c is not the sequence of Taylor coefficients of an entire
function (i.e., lim supn→∞ |cn|1/n > 0) as well as some “angular” behavior of
these coefficients. The remaining cases in which the series

∑∞
n=0 cnz

n does
not define an entire function of subexponential type stay –as far as we know–



UNIVERSALITY OF SEQUENCES OF OPERATORS RELATED TO TAYLOR SERIES 11

as an open problem. For the proof, we need the following lemma, which is in
the line of the eigenvalue criteria given in [11, 14, 23]. However, the lemma
cannot be deduced from those criteria. Moreover, its content might be of
some interest by itself. By span(A) we represent the linear span of a subset
A of a vector space.

Lemma 3.1. Assume that X is a separable F-space and that (Tn)n≥0 ⊂
L(X). Suppose that there are subsets D,E ⊂ X satisfying the following
conditions:

(a) D and span(E) are dense in X.
(b) For each d ∈ D, the sequence {Tn d}n≥0 converges in X.
(c) Each e ∈ E is an eigenvector of every Tn (n ≥ 0), with eigenvalue

λ(Tn, e), say.
(d) limn→∞ λ(Tn, e) =∞ for all e ∈ E.

Then (Tn)n is mixing and the set HC((Tn)n) is dense-lineable in X.

Proof. The second conclusion follows from Lemma 2.8. As for the first con-
clusion, we want to prove that every subsequence (Tnk

) of (Tn) is transitive.
Let us denote Rk := Tnk

for k ∈ N.

In order to show that (Rk) is transitive, fix two nonempty open sets
U, V ⊂ X. Our goal is to exhibit an m ∈ N such that Rm(U)∩ V 6= ∅. By
the denseness of D assumed in (a), there is d ∈ D ∩ U . It follows from (b)
the existence of a vector f ∈ X such that Rk d → f as k → ∞. Now, by
the denseness of span(E) this time, there is e ∈ span(E)∩ (V −f), because
the translate V − f of V is also open and nonempty. Since e ∈ span(E),
we can find finitely many scalars µj and vectors ej ∈ E (j = 1, . . . , q) such
that e =

∑q
j=1 µjej . Thanks to (c) and (d), we have Rkej = λ(Tnk

, ej)ej
and limk→∞ λ(Tnk

, ej) = ∞ for all j ∈ {1, . . . , q}. In particular, there is
k1 ∈ N such that λ(Tnk

, ej) 6= 0 for all k ≥ k1 and all j ∈ {1, . . . , q}. Next,
for any k ≥ k1, we define

xk := d+

q∑
j=1

µj
λ(Tnk

, ej)
ej .

Since
µj

λ(Tnk
,ej)
→ 0 (k → ∞) for j ∈ {1, . . . , q}, it follows from the con-

tinuity of the multiplication by scalars in a topological vector space that
xk → d + 0 = d as k → ∞. As d ∈ U and U is open, there exists k2 ≥ k1
such that xk ∈ U for all k ≥ k2. Finally, we get

Rkxk = Rk d+Rk

( q∑
j=1

µj
λ(Tnk

, ej)
ej

)
= Rk d+

q∑
j=1

µj
λ(Tnk

, ej)
Rkej

= Rk d+

q∑
j=1

µjej = Rk d+ e −→ f + e as k →∞.
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Since f + e ∈ f + (V − f) = V and V is open, one can find k3 ≥ k2 such
that Rkxk ∈ V for all k ≥ k3. Consequently, we obtain Rm(U) ∩ V 6= ∅
as soon as we choose m := k3. This had to be shown. �

We are now ready to state our final theorem.

Theorem 3.2. Let G ⊂ C be a simply connected domain, and consider the
sequence of operators Tc,n : H(G)→ H(G) (n ∈ N0) defined in (10), where
c = (cn)n≥0 satisfies the following conditions:

(i) lim supn→∞ |cn|1/n > 0.
(ii) There exist α ∈ R and a sequence (θn)n≥0 ∈ RN0 with

min
{

lim sup
n→∞

|θn|, lim sup
n→∞

∣∣θn − π

2

∣∣, lim sup
n→∞

|θn − π|, lim sup
n→∞

∣∣θn − 3π

2

∣∣} < π

2

such that arg cn = nα+ θn whenever cn 6= 0.

Then (Tc,n) is mixing and, in particular, universal. Moreover, the set
HC((Tc,n)) is dense-lineable in H(G).

Proof. The second part of the conclusion follows from the first one and
Lemma 2.8. Hence, our goal is to prove that (Tc,n) is mixing. We will use
Lemma 3.1 with X := H(G), Tn := Tc,n (n ≥ 0), D := P = {polynomials}
and E := {eλ : λ ∈ {t e−iα : t > R}}, where ea(z) := eaz (a ∈ C)
and R is the radius of convergence of the power series

∑∞
n=0 cnz

n, that

is, R = (lim supn→∞ |cn|1/n)−1. Observe that 0 ≤ R < +∞ by (i), which
yields E 6= ∅.

On the one hand, the denseness of D in X follows from the simple con-
nectedness of G. On the other hand, it is known (see, e.g., [24, Lemma 2.34])
that if Λ ⊂ C is a set with an accumulation point, then span({eλ : λ ∈ Λ})
is dense in H(C), and hence in H(G) due to Runge’s approximation the-
orem and the simple connectedness of G. Consequently, span(E) is dense
in X and condition (a) of Lemma 3.1 is fulfilled. Now, if P ∈ P and N =

degree(P ) then P (n) = 0 for all n > N , and so TnP =
∑N

j=0 cjP
(j) := Q

for all n ≥ N . Hence TnP → Q as n→∞, which tells us that condition (b)

in Lemma 3.1 is also satisfied. As for condition (c), notice that e
(n)
λ = λneλ

for all λ ∈ C and all n ∈ N0, which entails Tneλ = λ(Tn, eλ)eλ, where
λ(Tn, eλ) =

∑n
j=0 cjλ

j , that is, each eλ ∈ E is in fact an eigenvector for all

Tn. Let us verify, finally, condition (d) in Lemma 3.1.

For this, take any n ∈ N0 and any λ = t e−iα with t > R. From
(ii), at least one of the following inequalities is true: lim supn→∞ |θn| < π

2 ,

lim supn→∞ |θn− π
2 | <

π
2 , lim supn→∞ |θn−π| < π

2 , lim supn→∞ |θn− 3π
2 | <

π
2 .

Suppose that the first inequality holds. Then there is N ∈ N such that
supn>N |θn| < π

2 . Let γ := infn>N cos θn. Note that γ > 0. Let n > N .
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Also by (ii) and the triangle inequality, we can estimate:

|λ(Tn, eλ)| =
∣∣∣ n∑
j=0

cj λ
j
∣∣∣ =

∣∣∣ n∑
j=0

|cj | ei(jα+θj)(t e−iα)j
∣∣∣ =

∣∣∣ n∑
j=0

|cj | tj ei θj
∣∣∣

≥ Re
( n∑
j=N+1

|cj | tj ei θj
)
−

N∑
j=0

|cj | tj

=
n∑
j=0

|cj | tj cos θj −
N∑
j=0

|cj | tj

≥ γ ·
n∑
j=0

|cj | tj −
N∑
j=0

|cj | tj −→ +∞ as n→∞

because the series with positive terms
∑∞

n=0 |cn|tn diverges: indeed, t > R,
the radius of convergence. If lim supn→∞ |θn − π

2 | <
π
2 holds, the reasoning

is similar by considering γ := infn>N sin θn and taking imaginary parts
instead of real parts. The remaining third and four cases lim supn→∞ |θn −
π| < π

2 and lim supn→∞ |θn − 3π
2 | <

π
2 are analogous, just by considering

the inequalities |
∑n

j=0 |cj | tj ei θj | ≥ Re (
∑n

j=N+1−|cj | tj ei θj )−
∑N

j=0 |cj | tj

|
∑n

j=0 |cj | tj ei θj | ≥ Im (
∑n

j=N+1−|cj | tj ei θj )−
∑N

j=0 |cj | tj and letting γ :=

infn>N | cos θn|, γ := infn>N | sin θn|, respectively. Thus, (d) is satisfied and
the proof is concluded. �

Corollary 3.3. Let G ⊂ C be a simply connected domain, and assume
that c = (cn)n≥0 is a sequence satisfying cn ≥ 0 for all n ≥ 0 and

lim supn→∞ c
1/n
n > 0. Then (Tc,n) is mixing on H(G).

Remarks 3.4. 1. For instance, the sequence of operators on H(G) given
by

{∑n
k=0(k + i)(1 + i)kDk

}
n∈N0

is universal, for any simply connected

domain G ⊂ C.

2. In [23] the hypercyclicity of a nonscalar operator Φ(D) on H(C) is es-
tablished, which in particular yields Birkhoff’s theorem [15] and MacLane’s
theorem [27] on hypercyclicity of the translation operator and the derivative
operator, respectively. Note that this is equivalent to the universality of the
sequence (Φn(D)). Concerning universality of sequences of differential op-
erators not being the iterates of a single one, the reader can find a number
of results in [9, 11, 14, 36], but none of them covers Theorem 3.2. Moreover,
the set HC(Φ(D)) is spaceable, as proved by Petersson, Shkarin and Menet
[30, 35, 39] (see also [24, Section 10.1]). This fact together with the results
of this section motivates the next and final question.

Question 3.5. Let G ⊂ C be a simply connected domain. Under what
conditions is HC((Tc,n)) spaceable in H(G)?

Acknowledgments. The authors are indebted to the referee for helpful
comments and suggestions.
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neability: the search for linearity in mathematics, Monographs and Research Notes
in Mathematics, CRC Press, Boca Raton, FL, 2016.

[2] R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Lineability and spaceability
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[15] G. D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières,
C. R. Acad. Sci. Paris 189 (1929), 473–475.

[16] S. Charpentier, On the closed subspaces of universal series in Banach spaces and
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Instituto de Matemática Interdisciplinar (IMI)
Departamento de Análisis Matemático y Matemática Aplicada
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