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Abstract

Inspired by a statement of W. Luh asserting the existence of entire

functions having together with all their derivatives and antiderivatives

some kind of additive universality or multiplicative universality on cer-

tain compact subsets of the complex plane or of, respectively, the punc-

tured complex plane, we introduce in this paper the new concept of U-

operators, which are defined on the space of entire functions. Concrete

examples, including differential and antidifferential operators, compo-

sition, multiplication and shift operators, are studied. A result due

to Luh, Martirosian and Müller about the existence of universal entire

functions with gap power series is also strengthened.
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1 Introduction

Let us denote by N the set of positive integers, by Z the set of all integers,

by N0 the set N ∪ {0}, by C the complex plane, by H(G) the Fréchet space

of all complex holomorphic functions on a domain G ⊂ C, endowed with

the compact-open topology, and by A(K) the set of all functions which are

continuous on K and holomorphic in its interior K0, where K ⊂ C is a compact

set. Introducing the maximum norm ||f ||
K

:= maxz∈K |f(z)|, the space A(K)

becomes a Banach space.

∗The research of the authors has been partially supported by the Plan Andaluz de In-

vestigación de la Junta de Andalućıa.

1

Luis
Nota adhesiva
Journal of the Australian Mathematical Society (Series A) 78 (2005), pp. 59-89



Since Birkhoff proved in 1929 [12] the existence of an entire function f

which is universal in the sense that the sequence of its additive translates

{f(z+n) : n ∈ N} is dense in the space of entire functions E := H(C), a great

number of papers have been written dealing with this topic or similar ones,

yielding in many cases unexpected results. An excellent survey (updated till

1998) for the concepts, history and results about the subject of universality

and the related one of hypercyclicity is [20].

In 1941 Seidel and Walsh [38] extended Birkhoff’s theorem to non-Euclidean

translates on the unit disk D = {|z| < 1}. In 1988 Zappa [40] also established

an analogous result to that of Birkhoff, this time for the punctured complex

plane C∗ := C \ {0}. He proved the existence of a holomorphic function f on

C∗ with the property that for any compact set K ⊂ C∗, whose complement is

connected, the set of the multiplicative translates {f(cz) : c ∈ C∗} is dense in

A(K). In this line of research, Montes and the first author [11] (compare also

[25]) have characterized the sequences (ϕn) ⊂ Aut(G) := {automorphisms of

G} –where G ⊂ C is a domain– for which there exist functions f ∈ H(G) such

that the sequence (f ◦ ϕn) has the analogous universal property for compact

subsets of G. We recall this characterization in Theorem 1.1 below, but some

terminology is first needed. By K(G) we denote the family of all compact

subsets of G, while M(G) will stand for the family {K ∈ K(G) : C \ K is

connected} = {K ∈ K(G) : G \K is connected}. A sequence (ϕn) ⊂ Aut(G)

is said to be run-away whenever it acts properly discontinuously on G, that

is, given K ∈ K(G), there is n ∈ N such that K ∩ ϕn(K) = ∅.

Theorem 1.1. Let (ϕn) ⊂ Aut(G). Then the following conditions are equiv-

alent:

(a) The sequence (ϕn) is run-away.

(b) There exists a function f ∈ H(G) such that (f ◦ ϕn) is dense in A(K)

for all K ∈M(G).

(c) There exists a residual set of functions f ∈ H(G) such that (f ◦ ϕn) is

dense in A(K) for all K ∈M(G).

We point out that in parts (b)–(c) the density of (f ◦ ϕn) can occur in

H(G) itself whenever G is not isomorphic to C∗. Taking into account that

{z 7→ z+n : n ∈ N}, {z 7→ nz : n ∈ N} and {z 7→ (n−1−nz)/((n−1)z−n) :
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n ∈ N} are run-away sequences of automorphisms of C, C∗ and D respectively,

Theorem 1.1 extends and unifies Birkhoff–Seidel–Walsh–Zappa’s theorems. It

should be pointed out that several authors, including Luh, Duyos-Ruis, Blair,

Rubel, Grosse-Erdmann, Gethner, Shapiro and Godefroy, had earlier extended

Birkhoff’s theorem in some direction, see [20] for a complete list of references.

We now focus our attention on a recent result of Luh that improves Birkhoff–

Zappa’s theorems, but this time following another point of view. In it f (j) de-

notes as usual the derivative of f of order j if j ∈ N0, and if j ∈ N the symbol

f (−j) denotes the unique antiderivative F of order j satisfying F (k)(0) = 0 for

all k ∈ {0, 1, ..., j − 1}. His statement (see [26, Theorem]) is proved construc-

tively and, after adapting notations, reads as follows.

Theorem 1.2. Let be (an) ⊂ C a given sequence with an → ∞. Then there

exists an entire function f with the following properties:

(a) For any fixed j ∈ Z, the sequence of ‘additive translates’ {f (j)(z + an) :

n ∈ N} is dense in A(K) for all K ∈M(C).

(b) For any fixed j ∈ Z, the sequence of ‘multiplicative translates’ {f (j)(anz) :

n ∈ N} is dense in A(K) for all K ∈M(C∗).

As a matter of fact, in [26, Theorem] the sequence (an) is just assumed

to be unbounded, but the formulation is equivalent because a subsequence

tending to infinity can be taken out. Luh’s theorem also asserted a further

property for f , namely, the sequence of derivatives {f ([|an|]) : n ∈ N} is dense

in A(K) for all K ∈ M(C) ([x] denotes the integer part of x). We will not

consider this property because it is of a different nature and, in addition, it

can be derived by using Baire-category methods together with the fact that

the differentiation operator on E is densely hereditarily hypercyclic –see [20]

for concepts, results and references– which in turn is a strong generalization

of MacLane’s theorem [32] about the existence of an entire function whose

sequence of derivatives is dense in E . Theorem 1.2 provides two novelties

if it is compared to Birkhoff–Zappa’s theorem: First, the function f can be

replaced by the result of the action on f of the operators of differentiation

and antidifferentiation, and secondly, the universal function f can be chosen

to be entire, even in the case in which the domain (C∗, this time) is not

the whole plane C. In [39, Kapitel 4] some extensions of Theorem 1.2 are
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shown by replacing (z+an), (anz) to certain sequences (Sn(z)), not necessarily

holomorphic, defined on some subsets of C.

The two novelties described in the last paragraph motivate the introduction

of the new concept of ‘U–operators’, that will be developed in the subsequent

sections of this paper. Concrete examples of this new kind of operators as

well as sufficient conditions will be given, and Theorem 1.2 will be strongly

improved. It should be pointed out that, by following a different point of view,

several other kinds of operators have been recently introduced regarding the

‘wild’ behavior near the boundary that they produce when acting on certain

holomorphic functions in a domain of C. The starting point of this related

theory is, in turn, a strong result also due to Luh [24] about the existence of

holomorphic ‘monsters’, see [24, 1, 2, 27, 37, 28, 6, 7, 14, 9, 10, 8, 30, 31].

Finally, in the last part of Section 6 we will strengthen a recent deep result

due to Luh, Martirosian and Müller [29, Theorem 1], who proved constructively

the existence of an entire function with lacunary power series expansion having

dense additive and multiplicative translates. An improved version of their

result is established in [30, Theorem 2]. Such a version reads as follows.

Theorem 1.3. Let Q ⊂ N0 with upper density ∆(Q) = 1 and let (an) be

a complex sequence with an → ∞ as n → ∞. Then there exists an entire

function f with lacunary power series

f(z) =
∞∑
n=0

cnz
n with cn = 0 for n /∈ Q

satisfying the following properties:

(a) The sequence {f(z + an) : n ∈ N} is dense in A(K) for all K ∈M(C).

(b) The sequence {f(anz) : n ∈ N} is dense in A(K) for all K ∈M(C∗).

As in Theorem 1.2, the sequence (an) can be just assumed to be unbounded.

Several notions of density of a subset of N0 will be recalled in Section 6.
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2 U–operators: sufficient criteria and first

examples

Observe first that in Theorem 1.2 both sequences (z + an) and (anz) tend

to infinity uniformly on compact subsets, respectively in C and C∗. Hence, in

order that everything works well with the new kind of operators to be intro-

duced, the domains G to be considered must be unbounded, because otherwise

every entire function would be bounded on G, which would prevent the desired

density of any sequence of ‘G-translates’ of it. Specifically, we assume that the

set

ω(G) := {(ϕn) ⊂ Aut(G) : ϕn →∞ (n→∞) uniformly on compacta in G}

be nonempty, in which case we say that G is an ω-domain. It is clear that

if (ϕn) ∈ ω(G), then (ϕn) is run-away. Note that the sequences given at the

beginning of this section are respectively in ω(C) and ω(C∗), so C and C∗ are

ω-domains. In fact, it is not difficult to see that ω(C) = {(an + bnz) : bn 6=
0 for all n ∈ N and an → ∞, an/bn → ∞ as n → ∞} and ω(C∗) = {(anz) :

an 6= 0 for all n ∈ N and an → ∞ as n → ∞}. As for an essentially different

example, the upper halfplane {Im z > 0} is also an ω-domain; indeed, take

ψ(z) = (2z−1)/(2−z) (∈ Aut(D)), ψn = ψ◦· · ·◦ψ (n-fold), h(z) = (z−i)/(z+i)

and ϕn = h−1◦ψn◦h (n ∈ N); then (ϕn) ∈ ω({Im z > 0}). It should be warned

that not every unbounded domain is an ω-domain. For instance, if G has finite

connectivity ≥ 3 then by Heins’ theorem [22] the group Aut(G) is finite, hence

no equence in Aut(G) can be run-away and, consequently, ω(G) = ∅. Finally,

an unbounded infinite-connected domain may not be an ω-domain: just take

G = C\[{1/n : n ∈ N}∪{0}]; a simple application of the Casorati–Weierstrass

theorem and of the Open Mapping Theorem for holomorphic functions shows

that Aut (G) reduces to the identity on G.

Next, we give the definition of U–operators. Observe that in it the condi-

tion on G of being an ω-domain is in fact not strictly necessary, but we keep it

because otherwise the property would become vacuous. By operator we mean

a (not necessarily linear) continuous selfmapping on some space, mainly on E .

Definition 2.1. We say that an operator T : E → E is a U–operator whenever

the following property is satisfied:
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Given an ω-domain G ⊂ C and a sequence (ϕn) ∈ ω(G), there exists a

dense subset of entire functions f such that the sequence {((Tf)◦ϕn)|
K

:

n ∈ N} is dense in A(K) for every K ∈M(G).

For the sake of convenience, we rewrite the last definition in the language

of universality. Recall that if X, Y are topological spaces then a sequence

Tn : X → Y (n ∈ N) of continuous selfmappings is said to be universal

whenever there is some element x ∈ X, also called universal (for (Tn)), whose

orbit {Tnx : n ∈ N} is dense in Y . And (Tn) is said to be densely universal if

the set U((Tn)) of universal elements for (Tn) is dense in X. If X, Y are linear

topological spaces and the mappings Tn are also linear then the word ‘universal’

is frequently replaced by ‘hypercyclic’. The condition given in Definition 2.1

tells us that, for given G, K ∈M(G) and (ϕn), the sequence

(1) Tn : f ∈ E 7→ ((Tf) ◦ ϕn)|
K
∈ A(K) (n ∈ N)

is densely universal.

We need to reformulate Definition 2.1 in a more comfortable way. This

will be done in Theorem 2.2, but for this the following topological lemma is

necessary. Its content can be found in [11, Lemma 2.9] (see [26, Lemma 3] for

the special case G = C∗).

Lemma 2.1. For every domain G ⊂ C there exists a sequence (Km) ⊂M(G)

such that for every K ∈M(G) there is a positive integer m0 with K ⊂ K
0

m0
.

We remark that while in Definition 2.1 the universal function f does not

depend on the compact set K, in part (b) of the next result it is allowed

to depend on K. As usual, B(a, r) (B(a, r)) will stand for the open (closed,

respectively) ball with center a and radius r (a ∈ C, r > 0).

Theorem 2.2. Assume that T is an operator on E. Then the following prop-

erties are equivalent:

(a) T is a U-operator.

(b) Given an ω-domain G ⊂ C, a sequence (ϕn) ∈ ω(G) and a compact set

K ∈M(G), the sequence (Tn) defined by (1) is densely universal.
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(c) Given an ω-domain G ⊂ C, σ = (ϕn) ∈ ω(G), K ∈ M(G), ε > 0 and

g ∈ A(K), the set

(2) A(T,G,K, σ, ε, g) := {f ∈ E : there exists n ∈ N with ‖(Tf)◦ϕn−g‖K < ε}

is dense in E.

(d) Given an ω-domain G ⊂ C, σ = (ϕn) ∈ ω(G), K ∈M(G), ε > 0, r > 0,

g ∈ A(K) and h ∈ E, the set

U(T,G,K, σ, ε, r, g, h) := {f ∈ E : ‖f − h‖
B(0,r)

< ε

(3) and there exists n ∈ N such that ‖(Tf) ◦ ϕn − g‖K < ε}

is nonempty.

Proof. It is straightforward that (c) and (d) are equivalent because the family

of sets D(h, ε, r) (h ∈ E , ε > 0, r > 0) given by

D(h, ε, r) = {f ∈ E : ‖f − h‖
B(0,r)

< ε}

is a basis for the topology of E , and

U(T,G,K, σ, ε, r, g, h) = A(T,G,K, σ, ε, g) ∩D(h, ε, r).

On the other hand, it is trivial that (a) implies (b). Assume now that (b)

holds. Then (c) is satisfied as soon as one realizes that

U((Tn)) =
⋂
{A(T,G,K, σ, ε, g) : ε > 0, g ∈ A(K)}.

Finally, our goal is to prove that T is a U–operator by starting from (c).

Observe first that each set defined by (2) can be written as

A(T,G,K, σ, ε, g) =
⋃
n∈N

Tn
−1(B

K
(g, ε)),

where B
K

(g, ε) is the open ball {h ∈ A(K) : ‖h − g‖
K
< ε} in A(K). There-

fore the continuity of each Tn shows that A(T,G,K, σ, ε, g) is an open subset
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of E . But note that if (gj) is any fixed denumerable dense subset of A(K)

(for instance, (gj) may be the set of restrictions to K of polynomials whose

coefficients have rational real and imaginary parts) then

U((Tn)) =
⋂
j,k∈N

A(T,G,K, σ,
1

k
, gj).

Hence U((Tn)) is a countable intersection of dense subsets in the Baire space

E . At this point it is convenient to write Tn = T
(K)
n , with the emphasis in the

fact that for given G, σ the sequence (Tn) depends on K. In order to see that

T is a U–operator it must be shown that the set

L(T,G, σ) :=
⋂
{U((T (K)

n )) : K ∈M(G)}

is dense in E . But if (Km) is the sequence of compact sets furnished by Lemma

2.1 then

(4) L(T,G, σ) =
⋂
m∈N

U((T (Km)
n )).

Indeed, given K ∈ M(G) there exists m0 ∈ N with K ⊂ Km0
. If f ∈

U((T
(Km0 )
n )) then for each fixed polynomial P (z) there is a sequence {n1 <

n2 < ... < nj < ...} ⊂ N such that

(Tf)(ϕnj
(z))→ P (z) (j →∞)

uniformly on Km0
, hence on K. Now Mergelyan’s theorem [36, Chapter 20]

implies that the set of polynomials is dense in A(K), therefore the sequence

{((Tf) ◦ ϕn)|
K

: n ∈ N} is also dense in A(K), which proves (4). Thus,

L(T,G, σ) is a countable intersection of residual subsets in E . Then L(T,G, σ)

is residual itself, so dense, and this finishes the proof.

From the proof it is clear that in parts (c)–(d) it can be supposed that g

is just a polynomial.

Our next task should be, obviously, to identify some U–operator. It hap-

pens that the simplest operator does the job.

Theorem 2.3. The identity operator I on E is a U–operator.
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Proof. Let us try to apply condition (d) in Theorem 2.2. Fix G, σ = (ϕn), K,

ε, r, g as in that theorem and consider the set U := U(T = I,G,K, σ, ε, r, g, h)

given by (3). We want to show that U 6= ∅, that is, there is an entire function

f and some n ∈ N with ‖f − h‖
B(0,r)

< ε and ‖f ◦ ϕn − g‖
K
< ε. Since

ϕn(z) → ∞ (n → ∞) uniformly on K, there exists n with |ϕn(z)| > r for

all z ∈ K. Then B(0, r) ∩ ϕn(K) = ∅. In addition, ϕn(K) is a compact

subset of G with connected complement because ϕn is an isomorphism on G.

Therefore the set L := B(0, r)∪ϕn(K) is a compact subset of C with connected

complement. Consider the function F : L→ C defined by

F (z) =

{
h(z) if |z| ≤ r

g(ϕ−1
n (z)) if z ∈ ϕn(K).

We have that F ∈ A(L), so by Mergelyan’s theorem there exists a polynomial f

with ‖f−F‖
L
< ε. This implies that ‖f−h‖

B(0,r)
< ε and ‖f−g◦ϕ−1

n ‖ϕn(K)
<

ε. But the last inequality is the same as ‖f ◦ϕn− g‖K < ε, which finishes the

proof.

We can now produce a big family of U–operators via composition of oper-

ators.

Theorem 2.4. Suppose that T, S are operators on E in such a way that T is

a U–operator and S is linear and onto. Then TS is a U–operator.

Proof. If we follow the notations in the proof of Theorem 2.2 one must demon-

strate that for fixed ω-domain G and sequence σ ∈ ω(G) the set L(TS,G, σ)

is dense in E . For this, observe that

L(TS,G, σ) = S−1(L(T,G, σ)),

hence L(TS,G, σ) is dense because L(T,G, σ) is dense and the Open Mapping

Theorem (recall that E is an F-space) guarantees that if V ⊂ E is a nonempty

open set then S(V ) is also a nonempty open set.

The last theorem carries an important consequence, namely, every differ-

entiation operator Dj (j ≥ 0) is a U–operator. Here, as usual, D0 = I and
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Djf = f (j) (j ∈ N). But much more can be obtained. Recall that an entire

function Φ(z) =
∑∞

j=0 ajz
j is called of exponential type whenever there exist

positive constants A,B such that

|Φ(z)| ≤ A exp(B|z|) (z ∈ C).

In such a case the series Φ(D) =
∑∞

j=0 ajD
j defines an operator on E . Hence,

it is a kind of infinite order differentiation operator with constant coefficients.

Consider the translation operators τa (a ∈ C) defined as τaf(z) = f(z + a)

(z ∈ C, f ∈ E). It happens that a linear operator S on E commutes with

the translation operators τa if and only if it commutes with the differentiation

operator D if and only if S = Φ(D) for some Φ ∈ E with exponential type if

and only if there is a complex Borel measure µ on C with compact support

such that Sf(z) =
∫
f(z + w) dµ(w) for all z ∈ C and all f ∈ E , see for

instance [18, Section 5].

Theorem 2.5. (a) If S is an onto linear operator on E then S is a U–

operator.

(b) If S is a linear operator on E that commutes with translations then S is

a U–operator.

Proof. As for part (a), combine Theorems 2.3–2.4. Now part (b) is a conse-

quence of the Malgrange–Ehrenpreis theorem that asserts that every differen-

tiation operator Φ(D) is surjective on E , see [16] and [33].

One might believe that having dense range and being a U–operator are

equivalent. Nevertheless, this is false. Indeed, each antidifferentiation operator

D−N (N ∈ N) given by D−N(f) = f (−N) is a U–operator (see Section 4) but

evidently it has not dense range. We want to pose here the following problem,

whose answer is unknown to us up to date, compare with Theorem 2.5(a):

Is a U–operator any operator on E with dense range?

We now focus our attention on the search of workable conditions under

which an operator T on E is a U–operator. For this, let us introduce two new

concepts. We say that T has ω–dense range whenever there is R > 0 such that

the restriction mapping

T
M

: f ∈ E → (Tf)|
M
∈ A(M)
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has dense range for any M ∈ M({|z| > R}). Any operator on E with dense

range has, obviously, ω–dense range. We say that T is ω-stable whenever the

following property is satisfied: For every r > 0 there is R > 0 such that for

each f ∈ E , each ε > 0 and each M ∈ M({|z| > R}) there exists δ > 0 and

S ∈M({|z| > r}) such that if g ∈ E and ‖f − g‖
S
< δ then ‖Tf − Tg‖

M
< ε.

This property has obviously an easier formulation if T is linear.

For instance, by using Malgrange–Ehrenpreis’ theorem together with Mer-

gelyan’s theorem, it is easy to see that every nonzero differential operator

Φ(D) has ω-dense range. Also the antidifferential operator D−N has ω-dense

range; indeed, an adequate application of Mergelyan’s theorem yields that

the polynomials with a zero of order ≥ N at the origin are dense in A(M)

whenever M ∈ M(C) with 0 /∈ M , and these polynomials are clearly in

the range of D−N . On the other hand, from Cauchy’s integral formula for

derivatives, it is not difficult to realize that Φ(D) is ω-stable whenever Φ is of

subexponential type. Recall that Φ is of subexponential type whenever given

ε > 0 there is a constant K = K(ε) > 0 such that |Φ(z)| ≤ Keε|z| for all

z ∈ C; equivalently, n|an|1/n → 0 (n→∞) if Φ(z) =
∑∞

n=0 anz
n. Every entire

function of subexponential type is, trivially, of exponential type.

A combination of ω-denseness and ω-stability will give a positive result.

Theorem 2.6. Assume that T is an operator on E such that for every r > 0

there is R > 0 satisfying that for each M ∈ M({|z| > R}) the following

properties hold:

(i) The restriction mapping T
M

has dense range.

(ii) For every f ∈ E and every ε > 0 there exist δ > 0 and S ∈M({|z| > r})
such that if ϕ ∈ E and ‖f − ϕ‖

S
< δ then ‖Tf − Tϕ‖

M
< ε.

Then T is a U–operator.

Proof. Fix an ω-domain G ⊂ C, σ = (ϕn) ∈ ω(G), K ∈ M(G), ε > 0, r > 0,

g ∈ A(K), h ∈ E , and the corresponding set U(T,G,K, σ, ε, r, g, h) =: U given

by (3). Our goal is to prove that U 6= ∅.
Since σ ∈ ω(G) there exists m ∈ N with ϕm(K) ⊂ {|z| > R}, where

R > 0 is the number associated to r given by hypothesis. Observe that

ϕm(K) ∈ M(G) (⊂ M(C)) because ϕn is a homeomorphism from G into
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itself. Therefore, by (i) and the fact that g ◦ϕ−1
m ∈ A(ϕm(K)), there exists an

entire function f1 such that

(5) ‖Tf1 − g ◦ ϕ−1
m ‖ϕm(K) <

ε

2
.

Now, by (ii) there exist δ > 0 and S ∈M(C) with S ⊂ {|z| > r} such that

for all ϕ ∈ E

(6) ‖ϕ− f1‖S < δ implies that ‖Tϕ− Tf1‖ϕm(K) <
ε

2
.

Note that the complement of the compact set L := B(0, r)∪S is connected

because S and B(0, r) share this property and they are disjoint. Hence Runge’s

approximation theorem together with the fact that F is holomorphic on an

open subset containing L allows to select a polynomial f (so f ∈ E) satisfying

‖f − F‖
L
< min{δ, ε},

where F : L→ C is the function belonging to A(L) given by

F (z) =

{
h(z) if z ∈ B(0, r)

f1(z) if z ∈ S.

Thus, we obtain ‖f − h‖
B(0,r)

< ε and, in addition, ‖f − f1‖S < δ. Due to

(6), the last inequality yields ‖Tf − Tf1‖ϕm(K)
< ε

2
. Now, this together with

(5) and the triangle inequality gives ‖Tf − g ◦ ϕ−1
m ‖ϕm(K)

< ε, which is clearly

equivalent to ‖(Tf) ◦ ϕm − g‖
K
< ε. Summarizing, f is an entire function

satisfying ‖f − h‖
B(0,r)

< ε and ‖(Tf) ◦ ϕm − g‖K < ε for some m ∈ N. In

other words, U 6= ∅.

Corollary 2.7. Suppose that T is an operator on E which is ω-stable and has

ω-dense range. Then T is a U–operator.

The remarks about Φ(D) just before Theorem 2.6 together with Corollary

2.7 yield again that, at least for entire functions Φ of subexponential type,

Φ(D) is a U–operator. Observe that this time the proof does not depend on

the fact that I is a U–operator, compare the proof of Theorem 2.5.
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3 Composition and multiplication operators

In this section, conditions in order that composition and multiplication op-

erators be U–operators are investigated. Recall that if ϕ ∈ E then its associ-

ated right-composition operator Cϕ, left-composition (or superposition) oper-

ator Lϕ and multiplication operator Mϕ are defined on E as Cϕ(f) = f ◦ ϕ,

Lϕ(f) = ϕ ◦ f , Mϕ(f) = fϕ. Observe that Cϕ and Mϕ are linear but Lϕ is

not, except for trivial cases.

As for right-composition operators we suspect that only the similarities

on the plane, that is, the polynomials ϕ(z) = az + b of degree one or, equiva-

lently, the automorphisms of C (which in turn are the unique one-to-one entire

functions), generate U–operators. Although we have not been able to give a

complete characterization, we have obtained the following result.

Theorem 3.1. Assume that ϕ is an entire function. We have:

(a) If Cϕ is a U–operator then ϕ is a polynomial.

(b) If ϕ is a similarity then Cϕ is a U–operator.

(c) If ϕ(z) = P ((z−α)N) for some α ∈ C, some positive integer N ≥ 2 and

some polynomial P then Cϕ is not a U–operator.

(d) If ϕ is a polynomial with degree (ϕ) = 2 then Cϕ is not a U–operator.

Proof. Fix any value a ∈ C. If ϕ were not a polynomial then the point of in-

finity would be an essential singularity for ϕ, whence by Casorati–Weierstrass’

theorem a sequence (zn) ⊂ C with zn →∞ (n→∞) could be found in such a

way that ϕ(zn) → a (n → ∞). Consider the ω-domain G := C, the sequence

σ := (ϕn(z) = z + zn) ∈ ω(C) and the compact set K := {0} ∈ M(C).

Assume that f satisfies the property of Definition 2.1 for T := Cϕ. Then for

g ≡ 0 we would get an increasing sequence (nj) ⊂ N with f(ϕ(ϕnj
(z)))→ g(z)

(j → ∞) on A(K), that is, f(ϕ(znj)) → 0 (j → ∞). But (f(ϕ(znj))) tends

to f(a), hence f(a) = 0 for all a ∈ C, i.e. f ≡ 0, which is clearly impossible.

This proves (a). On the other hand, if ϕ is a similarity then, clearly, Cϕ is

linear, onto (so it has dense range) and ω-stable. Therefore part (b) is a con-

sequence of either Theorem 2.5(a) or Corollary 2.7. As for (d), observe that

13



any polynomial ϕ(z) = az2 + bz + c of degree two can be written in the form

ϕ(z) = P ((z − α)2), where α = −b/2a and P (z) = az − c − (b2/4a). Hence

(d) follows from (c).

Finally, let us prove (c). Assume that ϕ(z) = P ((z − α)N) with α,N, P

as in the hypothesis, and consider the ω-domain G := C \ {α}, the sequence

(ϕn(z) := α + n(z − α)) ∈ ω(C \ {α}) and the circle arc K := {α + exp(it) :

0 ≤ t ≤ 2π/N}, which is inM(C \ {α}) because N ≥ 2. Suppose, by the way

of contradiction, that Cϕ is a U–operator. Then we would obtain an entire

function f such that one can associate to the function g(z) := 1/(z − α) ∈
A(K) an adequate increasing sequence (nj) ⊂ N satisfying (Cϕf)(ϕnj

(z)) →
g(z) (j →∞) uniformly on K, that is, f(P (nNj (z−α)N))→ 1/(z−α) (j →∞)

uniformly on K. Therefore, after taking N–powers,

lim
j→∞

sup
z∈K

∣∣∣∣f(P (nNj (z − α)N))N − 1

(z − α)N

∣∣∣∣ = 0.

Consider the circle arcs Kν = α + ων(K − α) (ν ∈ {0, 1, ..., N − 1}), where

ων = exp(2πν/N). Of course, K0 = K. Denote by S the circle with center

α and radius 1. Then S = K0 ∪ K1 ∪ ... ∪ KN−1. Given z ∈ S there is

ν ∈ {0, 1, .., N − 1} with z ∈ Kν , so α + ω−1
ν (z − α) ∈ K. But also∣∣∣∣f (P (nNj (α + ω−1

ν (z − α)− α)N)
)N − 1

(α + ω−1
ν (z − α)− α)N

∣∣∣∣ =

=

∣∣∣∣f (P (nNj (z − α)N)
)N − 1

(z − α)N

∣∣∣∣
because ωNν = 1. Hence the limj→∞ supz∈S of the last expression equals zero;

in other words,

f
(
P (nNj (z − α)N)

)N → 1

(z − α)N
(j →∞)

uniformly on S. Then there exists j0 ∈ N such that∣∣∣∣f (P (nNj0(z − α)N)
)N − 1

(z − α)N

∣∣∣∣ < 1 (z ∈ S),

so |[(z − α)f
(
P (nNj0(z − α)N)

)
]N − 1| < 1 for all z ∈ S. But, due to the

Maximum Modulus Principle, the last inequality holds for all z in the open
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ball of center α and radius 1, in particular for z = α, that is, 1 < 1. This is

absurd, so the theorem is proved.

Next, we show a characterization of the property of U–operator for Lϕ
in terms of existence of an ‘approximate right inverse’ for ϕ, see [9, Section 3].

The characterization in terms only of ϕ remains as an open question.

Theorem 3.2. Assume that ϕ is an entire function. Then the following prop-

erties are equivalent:

(a) The superposition operator Lϕ is a U–operator.

(b) There is a sequence (fn) ⊂ E such that (ϕ ◦ fn) tends to the identity

function locally uniformly in C.

Proof. Let us suppose that (a) holds. Then by taking T = Lϕ, G = C,

ϕn(z) = z + n (n ∈ N) in Definition 2.1 one obtains the existence of at least

one entire function f such that, for every closed ball B, (Lϕf)(ϕn(z)) → z

(n→∞) in A(B). Equivalently, ϕ(f(z + n))→ z as n→∞ uniformly on B.

Therefore (b) is satisfied if we just take fn(z) = f(z+n) (n ∈ N). Conversely,

assume that (b) holds. From the continuity of ϕ it is easy to see that Lϕ is

always ω-stable. On the other hand, if we fix a set M ∈M(C) and g ∈ E then

we have that g(M) is compact, whence supz∈g(M) |ϕ(fn(z))− z| → 0 (n→∞)

or, that is the same, supz∈M |ϕ(fn(g(z)))− g(z)| → 0 (n→∞). This tells us

that

Lϕ(fn ◦ g)→ g (n→∞) in A(M),

hence the restriction mapping (Lϕ)
M

: f ∈ E → (Lϕf)|
M
∈ A(M) has dense

range due to Mergelyan’s theorem. Consequently, Lϕ has ω-dense range and

the result is completely proved after an application of Corollary 2.7.

We point out here that, in order that (b) is satisfied, the injectivity of

ϕ is sufficient but not necessary (in fact, any entire universal function in the

sense of Birkhoff –see Section 1– satisfies (b)), and its surjectivity is necessary

but not sufficient, see [9, Section 3].

We finish this section by characterizing the multiplication U–operators.
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Theorem 3.3. Let be given an entire function ϕ. Then the following proper-

ties are equivalent:

(a) For all operator T on E that is ω-stable and has ω-dense range, MϕT is

a U–operator.

(b) The multiplication operator Mϕ is a U–operator.

(c) There exists an operator T on E such that MϕT is a U–operator.

(d) The set Z(ϕ) of zeros of ϕ is finite.

Proof. Because the identity operator is ω-stable and has ω-dense range (so it

is a U-operator), it is trivial that (a) implies (b) and that (b) implies (c).

Assume now that (c) holds, that is, MϕT is a U–operator for some operator

T on E . Let us suppose, by a way of contradiction, that (d) is false, so there

are points zn (n ∈ N) tending to infinity with ϕ(zn) = 0 for all n. If G = C and

(ϕn(z) := z + zn) ∈ ω(G) then there must be an entire function f such that

the sequence (ϕ ◦ ϕn)((Tf) ◦ ϕn) is dense in A(K := {0}) = {the constants},
which is absurd because ϕ(ϕn(0))(Tf)(ϕn(0)) = 0 for all n. Therefore the

zero set of ϕ is finite. Finally, we start from the fact that Z(ϕ) is finite.

Our aim is to prove (a), hence let us fix an ω-stable operator T on E with

ω-dense range. From the continuity of ϕ, it is immediate that MϕT is also

ω-stable. On the other hand, there is R > 0 such that the restriction mapping

T
M

: f ∈ E → (Tf)|
M
∈ A(M) has dense range for any M ∈ M({|z| > R}).

We can suppose without loss of generality that R > max{|z| : z ∈ Z(ϕ)}. Let

us fix ε > 0, M ∈M({|z| > R}) and g ∈ A(M). Then g/ϕ ∈ A(M), therefore

there exists f ∈ E with ‖Tf− (g/ϕ)‖
M
< ε/‖ϕ‖

M
. Hence ‖(MϕT )f−g‖

M
< ε

andMϕT also as ω-dense range. Now Corollary 2.7 anew finishes the proof.

4 Integral operators

In this section we are going to discover some classes of integral operators

defined on the space E , including the antidifferentiation operator D−N , which

are U–operators.

16



Along this section the symbol ϕ will denote an entire function ϕ : C×C→
C of two complex variables. The Volterra operator of the first kind associated

to ϕ is defined by

Vϕ : f ∈ E 7→ Vϕf ∈ E , (Vϕf)(z) =

∫ z

0

f(t)ϕ(z, t) dt (z ∈ C),

where the integral is taken along any rectifiable arc joining the origin to z. We

will prove in due course that, under adequate conditions on the kernel ϕ, the

Volterra operator Vϕ with or without a perturbation by a differential operator

is a U–operator. In particular, our results also include Volterra operators of the

second class λI + Vϕ. Now, we recall the notion of (generally infinite order)

antidifferential operators with constant coefficients, see [4, Section 2]. Let

Ψ(z) =
∑∞

j=0 cjz
j be a formal complex power series. By taking into account

that

D−jf(z) =

∫ z

0

f(t)
(z − t)j−1

(j − 1)!
dt (j ∈ N, f ∈ E , z ∈ C)

it is not difficult to see that if we assume in addition that limj→∞ |cj|1/j/j = 0

then the series Ψ(D−1) =
∑∞

j=0 cjD
−j defines an operator on E . Indeed, if we

set

ϕ(z, t) =
∞∑
j=1

cj
(z − t)j−1

(j − 1)!

then ϕ is entire in both variables and Ψ(D−1) = c0I + Vϕ. Of course, Volterra

operators and operators Ψ(D−1) include the operators D−N (N ∈ N).

The following lemmas will reveal useful in order to find integral U–operators.

But a little further notation is needed. By ∂A we mean the boundary of any

set A ⊂ C. If K is a compact set and a ∈ K then Aa(K) will denote the sub-

space of all functions of A(K) with a zero at a, endowed with the same norm

‖ · ‖K . In order to avoid troubles with integration along arcs we will consider

the class Π of closed Jordan regions L whose boundary ∂L is a polygonal

closed curve which consists of finitely many segments that are parallel to the

axes. Observe that each integral
∫ b
a
F (t) dt makes sense and is unambiguously

defined for each F ∈ A(L) and each pair of points a, b ∈ L whenever L ∈ Π.

Indeed, the complement of L is connected and a, b can be joined by a piecewise

continuously differentiable arc yielding in L.

Lemma 4.1. Let S be an operator on E and ϕ : C×C→ C an entire function

of two variables. Assume that there exists an R > 0 such that for each r > R
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and each M ∈ M({|z| > r}) there are L ∈ M({|z| > r}) ∩ Π with M ⊂ L

and a point a ∈ ∂L \M such that

(a) the operator S extends continuously to a mapping S1 : A(L)→ A(M),

(b) the mapping Q : Aa(L)→ A(M) defined by

Qf(z) = S1f(z) +

∫ z

a

f(t)ϕ(z, t) dt (z ∈M)

has dense range.

Then S + Vϕ is a U–operator.

Proof. Fix a set U = U(T = S + Vϕ, G,K, σ = (ϕn), ε, r, g, h) as in (3).

According Theorem 2.2, we should show that U 6= ∅. We may suppose r >

R without loss of generality. Since K is a compact subset of G and σ ∈
ω(G), there is n ∈ N such that ϕn(K) ∩ B(0, r) = ∅. Then M := ϕn(K) ∈
M({|z| > r}) because ϕn is automorphism of G. By hypothesis, there exists

L ∈ M({|z| > r}) ∩ Π with M ⊂ L and a point a ∈ ∂L such that (a)

and (b) are satisfied. It is clear that we can find a rectifiable Jordan arc

γ joining the origin to a with γ ∩ L = {a} and such that the compact set

B(0, r)∪γ∪L has connected complement. By using a suitable parametrization

of the arc γ, it is not difficult to construct a function f1 that is continuous

on B(0, r) ∪ γ, agrees with h on B(0, r) and satisfies f1(a) = 0. Consider the

mapping S2 : A(γ)→ A(M) given by

(7) S2f(z) = g(ϕ−1
n (z))−

∫
γ

f(t)ϕ(z, t) dt (z ∈M).

It is well defined because g ∈ A(K), K ⊂ G, M = ϕn(K) and ϕ−1
n ∈ H(G).

It follows from (b) that there exists a function f2 ∈ Aa(L) such that

(8) |Qf2(z)− S2f1(z)| < ε (z ∈M).

On the other hand, the mapping S1 : A(L) → A(M) is continuous (by (a)).

Also the mappings S2 and

S3 : A(L)→ A(M), S3f(z) =

∫ z

a

f(t)ϕ(z, t) dt (z ∈M)
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are obviously continuous. Therefore, by (7) and (8), there exists δ > 0 such

that if f ∈ E satisfies

(9) |f(z)− f1(z)| < δ (z ∈ γ) and |f(z)− f2(z)| < δ (z ∈ L)

then

(10) |S1f(z) + S3f(z)− S2f(z)| < ε (z ∈M).

Consider the function f3 : L0 → C defined as

f3(z) =

{
f1(z) if z ∈ B(0, r) ∪ γ
f2(z) if z ∈ L,

where L0 := B(0, r)∪ γ ∪L. From the fact f1(a) = 0 = f2(a) one obtains that

f3 ∈ A(L0). But the compact set L0 has connected complement. Consequently,

it follows from Mergelyan’s theorem that there exists a polynomial f satisfying

‖f − f3‖L0 < min{ε, δ}. Hence, ‖f − h‖
B(0,r)

< ε and (9) holds. Then f also

satisfies (10), which can be rewritten as |Tf(z)−g(ϕ−1
n (z))| < ε (z ∈M). But

this is equivalent to ||(Tf)◦ϕn−g||K < ε. Summarizing, f ∈ U , so U 6= ∅.

We remark that if the operator S is linear then, due to the density of E in

A(L), condition (a) is equivalent to the following: For every ε > 0 there is a

δ > 0 such that if f ∈ E and ‖f‖
L
< δ then ‖Sf‖

M
< ε.

Lemma 4.2. For every L ∈ Π and every a ∈ L, there exists a finite positive

constant β = β(L, a) satisfying the following property: To each z ∈ L we can

associate a piecewise continuously differentiable arc γz : [0, 1]→ L joining a to

z and a finite subset Fz ⊂ [0, 1] such that |γ′z(u)| ≤ β|z−a| for all u ∈ [0, 1]\Fz.

Proof. Let us fix L, a as in the statement. From the shape of L it is evident

that a number R ∈ (0,+∞) can be chosen in such a way that B(a,R) ∩ L
is starlike with respect to a. If z ∈ B(a,R) ∩ L then we simply define γz as

the segment joining a to z, i.e. γz(u) = a + (z − a)u (0 ≤ u ≤ 1), hence

|γ′z(u)| = |z − a| for all u ∈ (0, 1). Assume now that z ∈ L \ B(a,R). Let

N be the number of segments of ∂L. Then it is clear that one can pick a

polygonal arc γz ⊂ L joining a to z consisting of m = m(z) segments which
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are parallel to the axes, with m ≤ N . Now if we parametrize such segments

in the obvious way on [0, 1/m], [1/m, 2/m], . . . , [(m − 1)/m, 1] then |γ′z(u)| is

not greater than m diam(L) in the interior of each one. Therefore |γ′z(u)| ≤
Ndiam(L) for all u ∈ [0, 1] \ Fz, where Fz = {0, 1/m, 2/m, . . . , 1}. Hence

|γ′z(u)| ≤ Ndiam(L)|z − a|/R for such values of u whenever z ∈ L \ B(a,R).

Thus, the constant

β := max

{
1,
Ndiam(L)

R

}
does the job.

Lemma 4.3. If L ∈ Π, a ∈ L, ϕ is an entire function of two variables

and α is an entire function with α(z) 6= 0 for all z ∈ L, then the operator

Qα,ϕ : Aa(L)→ Aa(L) given by

Qα,ϕf(z) = α(z)f(z) +

∫ z

a

f(t)ϕ(z, t) dt (z ∈ L)

is onto.

Proof. Observe first that Qα,ϕf is well defined because Qα,ϕf(a) = 0 for all

f ∈ Aa(L). Since α(z) 6= 0 for all z ∈ L, the statement is derived from the

fact that the operator I −K : Aa(L) → Aa(L) is invertible (so onto), where

K is the operator

Kf(z) =

∫ z

a

f(t)ϕ1(z, t) dt (z ∈ L)

and ϕ1(z, t) = −ϕ(z, t)/α(z). If the spectrum σ(K) reduces to {0} one would

have σ(I−K) = {1}, hence 0 /∈ σ(I−K), so obtaining the invertibility of I−K.

Therefore, according to Gelfand’s formula for the spectral radius, it must be

shown that limn→∞ ‖Kn‖1/n = 0, where ‖K‖ = sup{‖Kf‖
L

: ‖f‖
L
≤ 1}, the

norm in the space L(Aa(L)) of linear operators on Aa(L). Take a constant

β ∈ (0,+∞) and the family of arcs {γz : z ∈ L} joining a to z as Lemma 4.2

asserts. Therefore, the length of each partial arc γz|[0,u] from a up to γ(u) is

not greater that βu|z−a| and, in particular, |γz(u)−a| ≤ βu|z−a| (u ∈ [0, 1]).
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Let us fix f ∈ Aa(L) with ‖f‖
L
≤ 1 and denote C = sup{|ϕ1(z, t)| : z, t ∈

L}. From the definition of the operator K we obtain, for all z ∈ L,

|Kf(z)| =
∣∣∣∣∫ 1

0

f(γz(u))ϕ1(z, γz(t))γ
′
z(u) du

∣∣∣∣ ≤
≤
∫ 1

0

|f(γz(u))||ϕ1(z, γz(t))||γ′z(u)| du ≤ Cβ|z − a|.

Then∣∣K2f(z)
∣∣ =

∣∣∣∣∫
γz

(Kf)(t)ϕ1(z, t) dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

(Kf)(γz(u))ϕ1(z, γz(u))γ′z(u) du

∣∣∣∣ ≤
≤
∫ 1

0

|Kf(γz(u))|C|γ′z(u)| du ≤ C2β

∫ 1

0

|γz(u)− a|β|z − a| du ≤

≤ C2β3|z − a|2
∫ 1

0

u du =
C2β3|z − a|2

2!
.

By induction we are led to the following inequality, which holds for every

n ∈ N:

|Knf(z)| ≤ Cnβn+1|z − a|n

n!
≤ Cnβn+1diam(L)n

n!
(z ∈ L).

Whence

‖Kn‖1/n ≤ Cβ
diam(L)β1/n

(n!)1/n
→ 0 (n→∞)

and we are done.

Recall that Z(f) denotes the subset ofG consisting of the zeros of a function

f : G→ C. We are now ready to establish our theorem.

Theorem 4.4. Assume that N ∈ N0 and that an(z) (n = 0, ..., N) are entire

functions, in such a way that aN(z) has finitely many zeros. Assume also that

P is a polynomial and that Φ is an entire function of subexponential type. Let

Ψ(z) =
∑∞

j=0 cjz
j be a formal power series with limj→∞(|cj|1/j/j) = 0. We

have:

(A) The operator T on E defined by

Tf(z) =
N∑
j=0

aj(z)f (j)(z) + Vϕ(z) (f ∈ E , z ∈ G)

is a U–operator.
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(B) If P is non-zero then P (D) + Vϕ is a U–operator. If P is nonconstant

then P (D) + Ψ(D−1) is a U–operator. If λ ∈ C \ {0} then the Volterra

operator of the second kind λI + Vϕ is a U–operator.

(C) If for some N ∈ N0 the entire function w 7→ (∂Nϕ/∂zN)(w,w) has

finitely many zeros and each function w 7→ (∂nϕ/∂zn)(w,w) (n =

0, ..., N − 1) vanishes identically then Vϕ is a U–operator.

(D) If Ψ is non-zero then Ψ(D−1) is a U–operator. In particular, if P is

non-zero then P (D−1) is a U–operator.

(E) If Φ is nonconstant then Φ(D) + P (D−1) is a U–operator.

Proof. It is evident that (B) is a consequence of (A). Furthermore, (D) is

derived from (C). Indeed, for the case c0 = 0, let N = min{j ∈ N0 :

cj+1 6= 0}. Then Ψ(D−1) = Vϕ with ϕ(z, t) =
∑∞

j=N cj+1(z − t)j/j!, hence

(∂Nϕ/∂zN)(w,w) = cN+1 6= 0 = (∂nϕ/∂zn)(w,w) (n = 0, ..., N − 1) for all

w ∈ C and (C) applies. The case c0 6= 0 follows in a similar way from (B).

Thus, our goal is to prove (A), (C) and (E). As for (A), let us check

that the hypotheses (a)–(b) of Lemma 4.1 are fulfilled when S is defined as

Sf =
∑N

j=0 aj(·)Djf .

Clearly, (a) holds for every pair of sets M,L ∈ M(C) with M ⊂ L. On

the other hand, choose R = 1 + max{|z| : z ∈ Z(aN)} and fix r > R and

M ∈ M({|z| > r}). It is not difficult to realize that a connected compact

set L ⊂ {|z| > r} can be constructed in such a way that M ⊂ L0, C \ L is

connected, and ∂L consists of finitely many segments which are parallel to the

axes, that is, L ∈ M({|z| > r}) ∩ Π. Hence, condition (b) of Lemma 4.1 will

be satisfied as soon as we show that the operator Q : ANa (L)→ A(M) defined

by

Qf(z) =
N∑
j=0

aj(z)f (j)(z) +

∫ z

a

f(t)ϕ(z, t) dt (z ∈M)

has dense range, where a is any fixed point in ∂L (so a ∈ L \M) and ANa (L)

is the subspace of Aa(L) consisting of all functions f ∈ A(L) that are N -times

continuously differentiable in L with f (n)(a) = 0 for n = 0, ..., N .
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For this, consider any entire function ψ(z, t) of two complex variables such

that for each z ∈ C the function t ∈ C 7→ ψ(z, t) ∈ C is an N -antiderivative

of ϕ(z, ·) (of course, ψ = ϕ if N = 0) in such a way that (∂jψ/∂tj)(z, a) = 0

for j = 0, ..., N − 1. After integration by parts (N times) we obtain, for

f ∈ ANa (L), ∫ z

a

f(u)ϕ(z, u) du =

∫ z

a

f(u)
∂Nψ

∂tN
(z, u) du =

=
N−1∑
n=0

(−1)n
[
f (n)(z)

∂N−n−1ψ

∂tN−n−1
(z, z)− f (n)(a)

∂N−n−1ψ

∂tN−n−1
(z, a)

]
+

+(−1)N
∫ z

a

f (N)(u)ψ(z, u) du =

=
N−1∑
n=0

(−1)nf (n)(z)
∂N−n−1ψ

∂tN−n−1
(z, z) + (−1)N

∫ z

a

f (N)(u)ψ(z, u) du.

Hence

Qf(z) = aN(z)f (N)(z) +
N−1∑
n=0

bn(z)f (n)(z) + (−1)N
∫ z

a

f (N)(t)ψ(z, t) dt

for certain entire functions bn (n = 0, ..., N − 1).

But f (n) = D−N+n
a f (N) (n = 0, ..., N − 1) for f ∈ ANa (L), where D−ja h

denotes the unique j-antiderivative H of order j of h such that H(k)(a) =

0 (k = 0, ..., j − 1). Therefore

N−1∑
n=0

bn(z)f (n)(z) =
N−1∑
n=0

bn(z)D−N+n
a f (N).

Then our mapping Q can be written as

Qf(z) = aN(z)DNf(z) +

∫ z

a

(DNf(t))ψ1(z, t) dt,

where ψ1 is an entire function of two variables; specifically,

ψ1(z, t) = (−1)Nψ(z, t) +
N−1∑
n=0

bn(z)
(z − t)N−n−1

(N − n− 1)!
.

Next, let us consider the operator QaN ,ψ1 : Aa(L) → Aa(L), where QaN ,ψ1 is

defined as in Lemma 4.3; it should be observed that aN(z) 6= 0 for all z ∈ L
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because L ⊂ {|z| > r}. Then, by Lemma 4.3, QaN ,ψ1 : Aa(L) → Aa(L) is

onto. But Aa(L) is dense in A(M); indeed, if g ∈ A(M) then the function

g(z)/(z− a) also belongs to A(M) because a /∈M , so given ε > 0 Mergelyan’s

theorem furnishes a polynomial P with |P (z) − (g(z)/(z − a))| < ε/diam(L)

(z ∈ M), hence the function P1(z) := (z − a)P (z) is in Aa(L) and satisfies

‖P1 − g‖
M
< ε. Consequently, QaN ,ψ1 : Aa(L) → A(M) has dense range.

Hence Q has also dense range because Q = QaN ,ψ1 ◦ DN and the mapping

DN : ANa (L)→ Aa(L) is, trivially, onto. This completes the proof of (A).

Let us prove (C). We will again try to apply Lemma 4.1. Condition (a)

is trivially satisfied for S = 0. Let R = max{|z| : z ∈ Z(f)} and fix r > R

and M ∈ M({|z| > r}). As before, choose any compact set L ∈ Π with

L ⊂ {|z| > r} and M ⊂ L0. Fix any a ∈ ∂L, so a ∈ L \M . We should verify

condition (b) of Lemma 4.1.

By hypothesis

(11)
∂Nϕ

∂zN
(w,w) 6= 0 =

∂nϕ

∂zn
(w,w) (w ∈ L, n = 0, . . . , N − 1).

Consider the mapping Q : Aa(L)→ A(M) given by Qf(z) =

∫ z

a

f(t)ϕ(z, t) dt.

Our goal is to show that it has dense range. By using an application of

Mergelyan’s theorem which is similar to that used in the proof of part (A)

we obtain that the linear combinations of (z − a)m (m ≥ N + 2) are dense in

A(M). Hence Q will have dense range as soon as we find for a fixed m ≥ N+2

a function f ∈ Aa(L) such that

(12) f(z) = (z − a)m (z ∈ L).

Due to (11) and to Leibniz’s rule, the function Qf is (N+1)-times continuously

differentiable on L with

(13) Dn(Qf)(w) =

∫ w

a

f(t)
∂nϕ

∂zn
(w, t) dt (n = 0, ..., N)

and

DN+1(Qf)(w) = f(w)
∂Nϕ

∂zN
(w,w) +

∫ w

a

f(t)
∂N+1ϕ

∂zN+1
(w, t) dt
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for all w ∈ L. Now, the not-equal part of (11) and Lemma 4.3 for α(w) :=

(∂Nϕ/∂zN)(w,w) and ϕ changed to ∂N+1ϕ/∂zN+1 imply that DN+1 ◦ Q :

Aa(L) → Aa(L) is onto, whence there exists a function f ∈ Aa(L) with

DN+1(Qf)(w) = m!(w−a)m−N−1/(m−N−1)! for all w ∈ L. Then DN+1[Qf−
h] = 0 on L, where h(z) := (z− a)m. But Dn[Qf −h](a) = 0 (n = 0, ..., N) by

(13), hence Qf − h = 0 on L, which proves (12) and (C).

Finally, we prove (E). Let Φ(D) =
∑∞

n=0 anz
n be an entire function of

subexponential type, M ∈ M(C), L ∈ Π with L0 ⊃ M and a ∈ ∂L. Since

(n!|an|)1/n → 0 (n→∞) we get |an| ≤ (dist(M,∂L)/2)n/n! for n large enough.

From this and from Cauchy’s inequalities one obtains easily that given ε > 0

there is a δ > 0 such that if f ∈ E and ‖f‖
L
< δ then ‖Φ(D)f‖

M
< ε.

In other words, the condition given just after Lemma 4.1 is satisfied for the

linear operator S = Φ(D), hence condition (a) in that lemma is fulfilled. The

extension of Φ(D) to a continuous mapping A(L)→ A(M) will be also denoted

by Φ(D), and similarly for related operators. Therefore, our final task is to

verify condition (b) of Lemma 4.1, that is, we should check that the mapping

Q : Aa(L) → A(M) given by Qf = Φ(D)f + P (D−1)f has dense range. By

Mergelyan’s theorem it suffices to show that given an ε > 0 and a polynomial

g there exists f ∈ Aa(L) such that ‖Qf − g‖
M
< ε.

For this, assume that P (z) = p0z
N + p1z

N−1 + ...+ pN and define the new

entire function Φ1 of subexponential type by Φ1(z) = zNΦ(z) +
∑N

n=0 pnz
n.

Then Q = Φ1(D)◦J◦D−Na , where D−Na : Aa(L)→ ANa (L), J : ANa (L)→ A(K)

and Φ1(D) : A(K)→ A(M). Here K is a member in Π that has been selected

to satisfy M ⊂ K0 ⊂ K ⊂ L0 (so a /∈ K), and J is the inclusion J(f) = f .

Note that Φ1(D) : A(K) → A(M) is well defined by the same reasoning as

that in the beginning of the proof of this part. Since Φ1 6= 0 (because Φ is

nonconstant) Malgrange–Ehrenpreis’ theorem guarantees that Φ1(D) : E → E
is onto, hence Φ1(D) : A(K) → A(M) has dense range because E is dense

in A(M) due to Mergelyan’s theorem. Again by an adequate application of

Mergelyan’s theorem (the fact a /∈ K is crucial) we have that J has dense

range. But D−Na is clearly onto, so it has dense range. Consequently, Q also

has dense range and we are done.

25



We stress here that not every Volterra operator is a U–operator. For in-

stance, set ϕ(z, t) := sin(πz), G := C, (ϕn(z) := z+ n) ∈ ω(G) and K := {0},
and fix f ∈ E . Then

((Vϕf) ◦ ϕn) (z) = 0→ 0 (n→∞) for all z ∈ K,

so ((Vϕf) ◦ ϕn) is not dense in A(K) = {constants} and Vϕ cannot be a U–

operator.

5 Large linear manifolds of entire functions

with universal translates

Before continuing our research of further classes of U–operators we take

a break in this section in order to establish the promised improvement of

Theorem 1.2, see Theorem 5.2 below. It will be shown that the family of

entire functions which are universal in the sense of the former theorem is very

large in both topological and algebraic senses.

The following statement can be found in [8] and it will be needed in The-

orem 5.2. It furnishes a sufficient condition for the existence of large linear

manifolds of vectors which are simultaneously hypercyclic with respect to each

member of a countable family of sequences of linear mappings. It is in turn an

extension of an assertion due to the first author, see [5, Theorem 2]. It should

be noted that in [8] the final spaces Yk were all the same, but a glance to the

proof reveals that they can be different.

Lemma 5.1. Let X and Yk (k ∈ N) be metrizable topological vector spaces such

that X is Baire and separable. Assume that, for each k ∈ N, T
(k)
n : X → Yk

(n ∈ N) is a sequence of continuous linear mappings satisfying that (T
(k)
nj ) is

densely hypercyclic for every sequence {n1 < n2 < ... < nj < ...} ⊂ N. Then

there is a dense linear submanifold M ⊂ X such that

M \ {0} ⊂
⋂
k∈N

U((T (k)
n )).

Theorem 5.2. Suppose that (Sj) is a countable family of U–operators on E
and that (Gk) is a countable family of ω-domains in C. For each k, assume

that {ϕn,k : n ∈ N} ∈ ω(Gk). Then we have:
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(a) There exists a residual subset of entire functions f such that each se-

quence {((Sjf) ◦ ϕk,n)|
K

: n ∈ N} is dense in A(K) for every K ∈
M(Gk), every k and every j.

(b) If every Sj is linear then there exists a dense linear manifold M ⊂ E such

that each non–zero function f ∈ M satisfies the same density property

given in (a).

Proof. With the notation of Section 2 we have that for each j, each k and each

K ∈M(Gk) the sequence of mappings

S
(K)
j,k,n : f ∈ E 7→ ((Sjf) ◦ ϕk,n)|K ∈ A(K) (n ∈ N)

is densely hypercyclic. Since E is a Baire space and A(K) is second-countable

the set U((S
(K)
j,k,n)) of hypercyclic vectors for that sequence is a dense Gδ-subset

of E , see [20, Theorem 1]. Now for given k let us select a sequence (Kk,m) ⊂
M(Gk) as that given in Lemma 2.1. Denote by A the subset of functions

f ∈ E satisfying the property stated in (a). Then

A =
⋂
j,k,K

U((S
(K)
j,k,n)) =

⋂
j,k,m

U((S
(Kk,m)

j,k,n )),

where the second equality is derived as in the proof of Theorem 2.2. Then A is

a countable intersection of dense Gδ-subsets of E , therefore A is itself a dense

Gδ-subset, hence a residual subset of E . This proves (a).

As for (b) choose X := E , Yk,m := A(Kk,m) and T
(j,k,m)
n := S

(Kk,m)

j,k,n in

Lemma 5.1 (a trivial variant of it has been used by employing double and triple

indexes) and take into account that each subsequence (T
(j,k,m)
np ) of (T

(j,k,m)
n ) is

densely hypercyclic because each Sj is a U–operator and a subsequence of a

member of ω(Gk) also belongs to ω(Gk). This concludes the proof.

Corollary 5.3. Let be given a countable family (Gk) of ω-domains in C and,

for each k ∈ N, a sequence {ϕk,n : n ∈ N} ∈ ω(Gk). Then there exists a

residual set A ⊂ E and a dense linear manifold M ⊂ E satisfying the following:

(a) For any fixed f ∈ A, j ∈ Z and k ∈ N the sequence of ‘Gk-translates’{
f (j)(ϕk,n(z)) : n ∈ N

}
is dense in A(K) for all K ∈M(Gk).
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(b) The inclusion M \ {0} ⊂ A holds.

Proof. Differentiation and antidifferentiation operators Dj (j ∈ Z) are U–

operators.

6 Taylor shifts and gap series

In this final section a kind of operators is considered on E when it is regarded

as the space of complex sequences (an) with |an|1/n → 0 (n → ∞). In this

setting and in connection with universality, the weighted backward shifts have

been studied in [18, 34, 3, 21]. Recall if w = {wn : n ∈ N0} is a complex

sequence then the weighted backward shift associated to w is the mapping

defined on E as

Bw : f(z) =
∞∑
n=0

anz
n 7→ (Bwf)(z) =

∞∑
n=0

wnan+1z
n.

It is easy to see that if the sequence {|wn|1/n : n ∈ N} is bounded then Bw

defines actually an operator on E . Observe that the differentiation operator D

is the special case D = Bw with weight sequence wn = n + 1. In [3] the first

author introduced a more general notion which is closed under composition,

namely, the Taylor shifts (in [21] they are called ‘pseudo-shifts’, and they are

considered in a more general setting). An operator T : E → E it said to be a

Taylor shift if and only if there are a complex sequence w = {wn : n ∈ N0}
and a one-to-one selfmapping ϕ : N0 → N0 such that Tf(z) =

∑∞
n=0wnaϕ(n)z

n

whenever f(z) =
∑∞

n=0 anz
n (f ∈ E , z ∈ C). Equivalently, T is linear and, for

every n ∈ N0,

T (zn) =

{
wmz

m if n = ϕ(m)

0 if n /∈ ϕ(N0).

Then we will denote T = Tw,ϕ. We remark that Bw = Tw,ϕ with ϕ(n) = n+ 1.

Clearly, Tw,ϕ is not one-to-one if ϕ is not onto.

The following theorem provides with a sufficient criterium for a Taylor shift

to be a U–operator. It covers the case of differentiation operators DN (N ∈
N0), which of course are already known to be U–operators as particular in-

stances of operators Φ(D).

Theorem 6.1. Let be given a complex sequence {wn : n ∈ N0} and a one-to-

one selfmapping ϕ : N0 → N0 satisfying the following properties:
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(a) 0 < inf
n∈N
|wn|1/n ≤ sup

n∈N
|wn|1/n < +∞ and w0 6= 0,

(b) 0 < lim inf
n→∞

ϕ(n)/n ≤ sup
n∈N

ϕ(n)/n < +∞.

Then the Taylor shift Tw,ϕ is a U–operator.

Proof. As seen in [3, Theorem 3.2], the last inequality in (a) together with the

first inequality in (b) guarantees that T := Tw,ϕ is a well-defined operator on

E . Recall that T is linear. According to Corollary 2.5(a), it is enough to show

that T is onto. For this, fix an entire function g(z) =
∑∞

n=0 bnz
n. Let us define

an =


bϕ−1(n)

wϕ−1(n)
if n ∈ ϕ(N0)

0 otherwise.

Observe that wj 6= 0 for all j. Consider the power series f(z) =
∑∞

n=0 anz
n.

It is clear that, formally, Tf = g. Hence it suffices to check that f ∈ E , that

is, lim
n→∞

|an|1/n = 0. We have

∣∣∣∣ bϕ−1(n)

wϕ−1(n)

∣∣∣∣1/n =
(∣∣bϕ−1(n)

∣∣ 1
ϕ−1(n)

)ϕ−1(n)/n

·

 1∣∣wϕ−1(n)

∣∣ 1
ϕ−1(n)

ϕ−1(n)/n

.

Now observe that
∣∣wϕ−1(n)

∣∣1/ϕ−1(n)
is bounded away from zero by the first

inequality of (a), that ϕ−1(n)/n is asymptotically bounded away from zero by

the last inequality of (b) and that
∣∣bϕ−1(n)

∣∣1/ϕ−1(n) → 0 as n→∞ because g is

entire. Therefore,

lim
n→∞

|an|1/n = lim
n→∞

∣∣∣∣ bϕ−1(n)

wϕ−1(n)

∣∣∣∣1/n = 0,

as required.

It is natural to ask whether non-onto Taylor shifts U–operators can exist.

They exist indeed, even with ϕ = the identity on N0. Specifically, we next

study the Euler differential operator, see its definition below. It is related to

certain lacunary power series, which will be also dealt with in the final part of

this section.
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Assume that Φ(z) =
∑∞

n=0 cnz
n is an entire function of subexponencial

type. Consider the operator E : E → E given by Ef(z) = zf ′(z). Then the

Euler differential operator Φ(E) associated to Φ is defined as

Φ(E) : f ∈ E → Φ(E)f =
∞∑
n=0

cnE
nf ∈ E .

It happens that Φ(E) is in fact a linear well-defined operator on E , and

that Φ(E)f(z) =
∑∞

n=0 Φ(n)anz
n whenever f(z) =

∑∞
n=0 anz

n, see [23, pages

46–54]. Hence Φ(E) = Tw,ϕ with wn = Φ(n), ϕ(n) = n (n ∈ N0).

In order to establish the desired property for Φ(E) we need two auxiliary

lemmas. The first one is classic and can be found in [13, Theorem 9.1.4]. The

second one is a recent lacunary result and may be seen in [28, Lemma] and [30,

Lemma], see also [29, Lemma 2]. A little further terminology is in order. Recall

that if Q ⊂ N0 and ν(A) denotes the number of elements of a finite set A then

the upper (lower, respectively) density ∆(Q) (∆(Q), respectively) of Q and

the maximal (minimal, respectively) density ∆max(Q) (∆min(Q), respectively)

of Q in the sense of Pólya [35] are defined as

∆(Q) = lim sup
n→∞

ν(Q ∩ [0, n])

n
,

∆(Q) = lim inf
n→∞

ν(Q ∩ [0, n])

n
,

∆max(Q) = lim
α→1−

(
lim sup
r→∞

ν(Q ∩ [0, r])− ν(Q ∩ [0, αr])

(1− α)r

)
,

∆min(Q) = lim
α→1−

(
lim inf
r→∞

ν(Q ∩ [0, r])− ν(Q ∩ [0, αr])

(1− α)r

)
.

The density ∆(Q) of Q is defined as

∆(Q) = lim
n→∞

ν(Q ∩ [0, n])

n
,

if such a limit exists, that is, if ∆(Q) = ∆(Q). In addition, we denote by

EQ the subspace of E consisting of all entire functions with null Taylor nth-

coefficient at the origin for every n /∈ Q. Therefore EQ is a space of gap series.

Note that Φ(E)f ∈ EQ if Q = N0 \ Φ−1(0). Moreover, for A ⊂ C and for

α ∈ [0, π) we set

Aα := {zeiθ : z ∈ A, |θ| ≤ α}.
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Lemma 6.2. If Φ is a non-zero entire function of subexponential type then

∆ (N0 \ Φ−1(0)) = 1.

Lemma 6.3. Let K ∈ M(C) with 0 ∈ K0 and assume that Q is a subset of

N0 satisfying at least one of the following two conditions:

(a) The component of K containing the origin is starlike with respect to 0

and ∆(Q) = 1.

(b) The minimal density satisfies ∆min(Q) = δ ∈ (0, 1] and there exists a

Jordan arc γ connecting ∞ with the boundary of the maximal disk with

center 0 which is contained in K0 and having the property γπ(1−δ)∩K = ∅.

Suppose that ε > 0 and that f is holomorphic on some open set containing K

such that f has a power series representation around the origin of the form

f(z) =
∞∑
n=0

anz
n with an = 0 for n /∈ Q.

Then there exists a polynomial P ∈ EQ such that |f(z) − P (z)| < ε for all

z ∈ K.

The proof of the following result is inspired by that of [15, Theorem 4.6].

Theorem 6.4. If Φ is a non-zero entire function of subexponential type then

the Euler differential operator Φ(E) is a U–operator.

Proof. According to Corollary 2.7, we would be done as soon as we prove that

Φ(E) has ω-dense range and is ω-stable.

Fix any R > 0, any M ∈ M({|z| > R}) and any g ∈ A(M). By

Mergelyan’s theorem, there exists a polynomial P1 such that

(14) |g(z)− P1(z)| < ε

2
(z ∈M).

Consider Ω := B(0, R)∪{|z| > R}, K := B(0, R/2)∪M and Q := N0\Φ−1(0).

Then, by Lemma 6.2, ∆(Q) = 1. But K ∈M(C), 0 ∈ K0 and Ω is an open set
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containing K, therefore from Lemma 6.3 (under condition (a)) there is some

polynomial P ∈ EQ such that

(15) |f(z)− P (z)| < ε

2
(z ∈ K),

where f : Ω→ C is defined as

(16) f(z) :=

{
P1(z) if |z| > R

0 if |z| < R.

By (14), (15) and (16) we get

(17) |g(z)− P (z)| < ε (z ∈M).

Now, we define the polynomial h as follows. Assume that P (z) =
∑

n∈Q∩{0,1,...,N} anz
n.

Then h(z) :=
∑

n∈Q∩{0,1,...,N}(an/Φ(n))zn. Trivially, h ∈ E and Φ(E)h = P .

Thus, by (17),

|(Φ(E)h)(z)− g(z)| < ε for all z ∈M.

This shows that the restriction mapping Φ(E)
M

: E → A(M) has dense range,

so Φ(E) has ω-dense range. As for ω-stability, fix r > 0 and select R := r.

Given ε > 0 and M ∈M({|z| > r}) we have to find δ > 0 and S ∈M({|z| >
r}) in such way that ||Φ(E)f ||M < ε whenever f is an entire function with

‖f‖
S
< δ. We can choose a compact set S ∈ Π (see the notation just before

Lemma 4.1) such that M ⊂ S0 ⊂ S ⊂ {|z| > r}, so S ∈ M({|z| > r}).
Set α := inf{|t − z| : t ∈ Γ, z ∈ M} > 0, where Γ = ∂S. Let us denote

β := max{|t| : t ∈ Γ}, hence β ∈ (0,+∞). Since Φ(z) :=
∑∞

n=0 cnz
n has

subexponential type, there exists a constant C ∈ (0,+∞) such that

|cn| ≤
C

n!

(
α

2β

)n
(n ∈ N0).

Define δ := επα/(C length (Γ)) and fix f ∈ E with ‖f‖
S
< δ. According to

[23, pages 46–54], we have

Enf(z) =
1

2πi

∮
Γ

Pn(z, t)f(t)

(t− z)n+1
dt (n ∈ N0, z ∈M),
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where Pn(z, t) is a polynomial of two variables z, t satisfying |Pn(z, t)| < n!βn

for all z ∈ M and t ∈ Γ. In fact, Pn does not depend on f . Finally, for every

z ∈M we obtain

|Φ(E)f(z)| =

∣∣∣∣∣
∞∑
n=0

cn(Enf)(z)

∣∣∣∣∣ ≤ 1

2π

∞∑
n=0

|cn|
∣∣∣∣∮

Γ

Pn(z, t)f(t)

(t− z)n+1
dt

∣∣∣∣ ≤
≤ 1

2π

∞∑
n=0

C

n!

(
α

2β

)n
· n!βn‖f‖

S

αn+1
· length (Γ) <

Cδ length (Γ)

2πα

∞∑
n=0

1

2n
= ε,

as required.

There are other non-onto Taylor shift U–operators Tw,ϕ with ϕ(n) = n (n ∈
N) which are essentially different from Euler differential operators, but also

related to gap Taylor series. Our result is contained in Theorem 6.5 (see below)

and strengthens Theorem 1.3. On the other hand, the condition ∆(Q) = 1

is ‘essentially’ necessary in order that the property of density in A(K) (K ∈
M(C∗)) can be satisfied for some f ∈ EQ; indeed, it is shown in [29, Theorem

2] that ∆max(Q) = 1 in such case.

We now consider the ‘gap operator’ IQ : E → E given by

(IQf)(z) =
∑
n∈Q

anz
n, where f(z) =

∞∑
n=0

anz
n

and Q ⊂ N0 is fixed. Observe that IQ = Tw,ϕ with ϕ(n) = n for all n and

wn =

{
1 if n ∈ Q
0 if n /∈ Q.

Note that the next theorem is not contained in Theorem 6.4 because, given

Q ⊂ N0 with ∆(Q) = 1 and Q 6= N0, there exists no entire function Φ of

subexponential type satisfying Φ(n) = 1 for n ∈ Q and Φ(n) = 0 for n /∈ Q.

Indeed, if such a function exists then Φ1(z) := Φ(z) − 1 would also be of

subexponential type; but Φ−1
1 (0) = Q, so ∆(N0\Φ−1

1 (0)) = ∆(N0\Q) = 0 6= 1,

hence Φ1 ≡ 0 by Lemma 6.2. Therefore Φ ≡ 1, which is absurd.

Theorem 6.5. Suppose that Q is a subset of N0 with ∆(Q) = 1. We have:

(a) The gap operator IQ is a U–operator.
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(b) Let be given a countable family (Gk) of ω-domains in C. For each k,

assume that {ϕk,n : n ∈ N} ∈ ω(Gk). Then there exists an infinite-

dimensional linear manifold M ⊂ EQ such that for every F ∈M \{0} the

sequence {(F ◦ϕk,n)|
K

: n ∈ N} is dense in A(K) for every K ∈M(Gk)

and every k.

Proof. (a) Assume that a set U := U(T = IQ, , G,K, σ = (ϕn), ε, r, g, h) as in

part (d) of Theorem 2.2 is fixed. As remarked after Theorem 2.2, it can be

supposed without loss of generality that g is a polynomial. It has to be shown

that U is nonempty. Since σ ∈ ω(G), there exists n ∈ N with B(0, r)∩ϕn(K) =

∅. Consider the set L := B(0, r)∪ϕn(K). Then L ∈M(C) becauseK ∈M(C)

and ϕn is a homeomorphism from G into itself. In addition, 0 ∈ L0 and the

component of L containing 0 (= B(0, r)) is starlike with respect to 0. Let us

consider the function

F (z) =

{
(IQh)(z) if z ∈ B(0, r)

g(ϕ−1
n (z)) if z ∈ ϕn(K).

Observe that F is holomorphic on some open set containing L; indeed, IQh

is entire and g ◦ ϕ−1
n ∈ H(G). On the other hand, F has, obviously, a power

series representation around the origin with gaps at the indexes belonging to

N0 \Q. By Lemma 6.3(a), there is a polynomial P ∈ EQ such that

|F (z)− P (z)| < ε (z ∈ L).

In particular,

‖IQh− P‖B(0,r)
< ε

and

‖P ◦ ϕn − g‖K < ε.

Now define

f := P + IN0\Qh.

It is clear that f ∈ E and IQf = P . Hence

‖f − h‖
B(0,r)

= ‖P + IN0\Qh− IQh− IN0\Qh‖B(0,r)
< ε
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and

‖(IQf) ◦ ϕn − g‖K < ε.

Consequently, f ∈ U and we are done.

(b) Let us suppose that (Gk) and {ϕk,n : n ∈ N} (k ∈ N) are as in the

hypothesis. If we apply part (b) of Theorem 5.2 on the constant sequence

Sj = IQ then we obtain a dense linear manifold M̃ ⊂ E such that, for all

f ∈ M̃ \ {0}, each sequence {((IQf) ◦ ϕk,n)|
K

: n ∈ N} is dense in A(K) for

every K ∈M(Gk) and every k ∈ N. Define

M := IQ(M̃).

Then M is a linear manifold in EQ. Moreover, if F ∈ M \ {0}, then F = IQf

for some f ∈ M̃ \ {0}, so the approximation property of the statement holds.

Finally, M is dense in IQ(E) = EQ, hence M must be infinite-dimensional.

To finish, we would like to say something in the case of the weaker condition

∆min(Q) > 0 for the subset Q ⊂ N0. In such a case, Luh, Martirosian and

Müller were able to prove (see [28, Theorem 1]) that for a given sequence (an) ⊂
C tending to ∞ (again, the statement is equivalent to ‘(an) is unbounded’)

there exists a function f ∈ EQ such that the sequence of translates {f(z +

an) : n ∈ N} is dense in A(K) for all K ∈ M(C). In our next (and final)

theorem we obtain a strong improvement with a different proof. We remark

that by Mergelyan’s theorem density in E implies density in every A(K) with

K ∈M(C).

Theorem 6.6. Let be given a subset Q ⊂ N0 with ∆min(Q) > 0 and a sequence

(ϕn) ∈ ω(C). Then there exists an infinite-dimensional linear manifold M ⊂
EQ such that for every F ∈M \ {0} the sequence {F ◦ϕn : n ∈ N} is dense in

the space E.

Proof. We have that ϕn(z) = an + bnz (n ∈ N) for some complex sequences

(an), (bn) with bn 6= 0 for all n and an → ∞, an/bn → ∞ as n → ∞. For

given ε > 0, r > 0, R > 0 and polynomials g, h we can select as in the proof

of Theorem 6.5 a positive integer n with B(0, r) ∩ ϕn(B(0, R)) = ∅. Consider
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also the corresponding function F defined on L := B(0, r)∪ϕn(B(0, R)) given

by

F (z) =

{
(IQh)(z) if z ∈ B(0, r)

g(ϕ−1
n (z)) if z ∈ ϕn(B(0, R)).

Now, n can be choosen in such a way that there exists a Jordan arc γ

connecting ∞ with the boundary of B(0, r) such that

(18) γπ(1−δ) ∩ L = ∅,

where δ := ∆min(Q) (this will be shown at the end of the proof). Therefore

Lemma 6.3(b) applies, yielding a polynomial P ∈ EQ such that ||P − F ||L <
ε. Then as in the proof of Theorem 6.5 we obtain a function f ∈ E with

‖f − h‖
B(0,r)

< ε and ‖(IQf) ◦ ϕn − g‖B(0,R)
< ε. Let us define

G(g,R, ε) := {f ∈ E : ‖(CϕnIQ)f − g‖
B(0,R)

< ε for some n ∈ N}.

Then we have just proved that each G(g,R, ε) is a dense subset of E . On the

other hand, it is not difficult to realize that every G(g,R, ε) is open and that

U((CϕnIQ)) =
⋂

j,k,l∈N

G(gj, k, 1/l),

where (gj) is an enumeration of polynomials whose coefficients have rational

real and imaginary parts. By Baire’s theorem, U((CϕnIQ)) is dense. In other

words, the sequence CϕnIQ : E → E (n ∈ N) is densely hypercyclic. But the

same holds for every subsequence (Cϕnj
IQ) (n1 < n2 < n3 < ...) because,

trivially, (ϕnj
) also belongs to ω(C). From Lemma 5.1 as applied on X :=

E =: Yk for all k (or from [5, Theorem 2]), there is a dense linear manifold

M̃ ⊂ E with M̃ \ {0} ⊂ U((CϕnIQ)). If now we define M := IQ(M̃) then we

can conclude as in the proof of part (b) of Theorem 6.5.

Thus, we would be done if (18) is obtained for some suitable Jordan arc γ.

Recall that L = B(0, r)∪ϕn(B(0, R)) where n is such that the union is disjoint.

Observe that ϕn(B(0, R)) = B(an, R|bn|). If an = |an|eiθn , consider the angle

S(n) = {z ∈ C \ {0} : θn− πδ < arg z < θn + πδ}. Since limn→∞ bn/an = 0 we

can choose our integer n in such a way that |bn/an| < sin(πδ), soB(an, R|bn|) ⊂
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S(n). Let us define the Jordan arc γ := {−teiθn : t > r}. Then γ connects ∞
with the point −r of the boundary of B(0, r). In addition, γπ(1−δ)∩B(0, r) = ∅
and γπ(1−δ) ⊂ C \ S(n), whence (18) holds.
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[10] L. Bernal-González, M.C. Calderón-Moreno and K.G. Grosse-Erdmann,

‘Strongly omnipresent integral operators’, Integral Equ. Op. Theory 44

(2002), 397–409.
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