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An operator T on the space H(G) of holomorphic functions on a domain
G is strongly omnipresent whenever there is a residual set of functions f ∈
H(G) such that Tf exhibits an extremely “wild” behaviour near the boundary.
The concept of strong omnipresence was recently introduced by the first two
authors. In this paper it is proved that a large class of integral operators
including Volterra operators with or without a perturbation by differential
operators has this property, completing earlier work about differential and
antidifferential operators.

1 Introduction

In a recent paper the first two authors have introduced and studied the notion of T -monsters

and the related notion of strongly omnipresent operators, see [BC1]. These concepts were

motivated by the idea of a holomorphic monster as defined by W. Luh [Lu1] and by a result

of the third author [Gr1] that, in the sense of Baire categories, almost every holomorphic

function is a monster; see also [Lu2], [Sch], [LMM] and [Gr2, Section 4b].

Let T be a (not necessarily linear) operator on the space H(G) of holomorphic

functions on a domain G in C. Then, roughly speaking, a T -monster is a holomorphic

function in G whose image under T has an extremely “wild” behaviour near every boundary

point of G. Strongly omnipresent operators may be characterized as those operators T for

which almost every holomorphic function on G is a T -monster. In another recent paper
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the authors have extended the notions of T -monsters and strong omnipresence slightly by

allowing the point of infinity as a boundary point of G, see [BCG].

Before we can give the formal definitions we need to fix some notation and ter-

minology. By D we denote the open unit ball in C. For a subset A of C, A represents the

closure of A, A0 its interior and ∂A its boundary; in addition we set ‖f‖A := sup
z∈A
|f(z)|,

where f is a complex function defined on A. An affine linear transformation τ : C→ C is a

mapping of the form τ(z) = az + b with constants a and b.

A closed ball B = {z ∈ C : |z−a| ≤ r} is always assumed to have positive radius

r > 0. For such a ball B and a point b ∈ B we denote by A(B) the space of all functions that

are continuous in B and holomorphic in B0, and by Ab(B) the subspace of A(B) consisting

of all functions with a zero at b. We endow A(B) and Ab(B) with the maximum norm

‖ · ‖∞ := ‖ · ‖B.

Let G be a domain in C. Then H(G) denotes the space of holomorphic functions

on G, endowed with the usual topology of local uniform convergence. The boundary ∂G will

be taken in the extended complex plane C∞ = C ∪ {∞}, where C∞ is topologized by the

chordal metric. We denote by O(∂G) = {V ⊂ C∞ : V is open and V ∩ ∂G 6= ∅} the set of

all open subsets of C∞ that meet the boundary of G.

In this paper, an operator always refers to a continuous (not necessarily linear)

mapping. With this we can recall the following definitions from [BCG], see also [BC1].

Definition 1.1 Let G be a domain in C and T : H(G) → H(G) an operator. Then a

function f ∈ H(G) is called a T -monster if for each g ∈ H(D) and each t ∈ ∂G there exists

a sequence (τn) of affine linear transformations τn(z) = anz + bn with

τn(D) ⊂ G for all n ∈ N, and

τn(z)→ t (n→∞) uniformly on D

such that

(Tf)
(
τn(z)

)
→ g(z) as n→∞

locally uniformly in D.



Thus, near any boundary point of G the function Tf can approximate any given holomorphic

function g ∈ H(D) on suitable open balls τ(D). For brevity, if A ⊂ C we will write LT (A)

for the set of all affine linear transformations τ with τ(D) ⊂ A.

Definition 1.2 Let G be a domain in C. Then an operator T : H(G) → H(G) is called

strongly omnipresent if for all g ∈ H(D), ε > 0, r ∈ (0, 1) and V ∈ O(∂G) the set

U(T, g, ε, r, V ) := {f ∈ H(G) : there exists some τ ∈ LT (V ∩G)

such that ‖(Tf) ◦ τ − g‖rD < ε}

is dense in H(G).

It turns out that an operator T is strongly omnipresent if and only if the set of T -monsters

is residual, that is, its complement in H(G) is of first Baire category; in other words: if and

only if almost every holomorphic function on G is a T -monster. This can be accomplished by

expressing the set of T -monsters as a suitable countable intersection of sets U(T, g, ε, r, V ),

cf. [BC1, Theorem 2.2].

In [BCG, Section 2] the authors have derived conditions under which a general

operator is strongly omnipresent. Examples of strongly omnipresent operators have been

obtained in [BC1, Sections 3, 4] and [BCG, Sections 2, 3]. Specifically, if Φ(z) =
∞∑
j=0

ajz
j

is a non-zero entire function of subexponential type then the associated linear differential

operator Φ(D) =
∞∑
j=0

ajD
j on H(G) is strongly omnipresent. Here D is the differentiation

operator Df = f ′, D0 = I is the identity operator and Dj+1 = D ◦Dj; and Φ is said to be

of subexponential type if for every ε > 0 there is a constant M = M(ε) > 0 such that

|Φ(z)| ≤Meε|z| for all z ∈ C.

If G 6= C is a simply connected domain, a ∈ G and Ψ(z) =
∞∑
j=0

ajz
j is a non-zero function

that is holomorphic at 0 then the corresponding linear antidifferential operator Ψ(D−1a ) =
∞∑
j=0

ajD
−j
a on H(G) is strongly omnipresent. Here D0

a = I and, for j ∈ N, D−ja f denotes the

unique antiderivative F of f of order j such that F (k)(a) = 0 for k = 0, 1, ..., j − 1. In fact,

we have for j ∈ N

D−ja f(z) =

∫ z

a

f(t)
(z − t)j−1

(j − 1)!
dt (z ∈ G).



Furthermore, the strongly omnipresent (left- or right-) composition operators and multipli-

cation operators have been completely characterized. In the latter case the exact condition

is that the multiplication function ψ be non-identically zero on G.

From now on, G will be a simply connected domain, a ∈ G a fixed point and ϕ : G×G→ C

a function that is holomorphic in both variables.

Our aim in this paper is to study the strong omnipresence of operators T : H(G) → H(G)

of the form

Tf(z) = Sf(z) +

∫ z

a

f(t)ϕ(z, t)dt (z ∈ G),

where S : H(G) → H(G) is another (in general non-integral) operator. In Section 2 we

obtain a general sufficient condition for T to be strongly omnipresent. In Section 3 we apply

this result to show, among other things, that the sum of a Volterra operator and a finite

order differential operator with holomorphic coefficients is always strongly omnipresent. It

follows, in particular, that every Volterra operator of the first or second kind is strongly

omnipresent, thus generalizing earlier work in [BC1]. Let us emphasize that while in [BCG]

Runge’s theorem was sufficient for approximations, Mergelyan’s theorem will be crucial for

the results in the present paper.

2 A sufficient condition

In [BC1, Theorem 4.2] the first two authors proved that the Volterra operator of the first or

second kind on H(G) given by

Tf(z) = λf(z) +

∫ z

a

f(t)h(z − t) dt (1)

is strongly omnipresent, where λ ∈ C, h is a non-zero entire function of exponential type

and the integral is taken along any rectifiable curve in G joining a with z.

The proof of this result has two well-distinguished steps, and the restriction on

the integral kernel of T to be a convolution kernel is only necessary in one of them. If we

take this into account then a careful study of the proof enables us to obtain a sufficient

condition for the strong omnipresence of integral operators with general kernels. Moreover,

we can replace the operator of multiplication with λ by more general operators S.



Theorem 2.1 Let S : H(G)→ H(G) be an operator. Then the operator T : H(G)→ H(G)

defined by

Tf(z) = Sf(z) +

∫ z

a

f(t)ϕ(z, t)dt (z ∈ G)

is strongly omnipresent if for each V ∈ O(∂G) there are closed balls B,B′ in V ∩ G with

B′ ⊂ B and a point b ∈ ∂B such that

(a) the operator S extends continuously to an operator

S̃ : A(B)→ A(B′),

(b) the operator T̃ : Ab(B)→ A(B′) defined by

T̃ f(z) = S̃f(z) +

∫ z

b

f(t)ϕ(z, t)dt (z ∈ B′)

has dense range.

Proof. The proof is an adaptation of the first half of the proof of Theorem 4.2 in [BC1]. We

fix g ∈ H(D), ε > 0, r ∈ (0, 1) and V ∈ O(∂G), where we can assume that g is a polynomial.

We then have to show that U(T, g, ε, r, V ) is dense in H(G). To see this, fix a basic open

subset

D(h,K, ε1) := {f ∈ H(G) : ‖f − h‖K < ε1}

of H(G), where K is a compact subset of G, h ∈ H(G) and ε1 > 0. Then we can find

– a compact subset L of G with connected complement that contains a and K,

– closed balls B,B′ in V ∩G with B′ ⊂ B and a point b ∈ ∂B that satisfy the hypothesis

in the statement of the theorem; by starting with a smaller set V , if necessary, we can

assume that B ∩ L = ∅,

– an affine linear transformation τ with τ(D) = B′, and

– a rectifiable Jordan arc γ joining a and b in G such that γ ∩ B = {b} and such that

L ∪ γ ∪B has connected complement.



Let h1 be a function that is continuous on L∪ γ, agrees with h on L and satisfies h1(b) = 0.

It follows from (b) that there is function h2 ∈ Ab(B) such that∣∣∣∣(S̃h2(z)+

∫ z

b

h2(t)ϕ(z, t)dt
)
−
(
g(τ−1(z))−

∫
γ

h1(t)ϕ(z, t)dt
)∣∣∣∣ < ε (z ∈ B′). (2)

By (a) the operator S̃ : A(B) → A(B′) is continuous, and the same is obviously true for

the operators A(B)→ A(B′), ψ 7→
∫ ·
b

ψ(t)ϕ(·, t)dt and A(γ)→ A(B′), ψ 7→
∫
γ

ψ(t)ϕ(·, t)dt.

Hence, by (2), there exists a δ > 0 such that if f ∈ H(G) satisfies

|f(z)− h1(z)| < δ for z ∈ γ (3)

and

|f(z)− h2(z)| < δ for z ∈ B (4)

then ∣∣∣∣(S̃f(z)+

∫ z

b

f(t)ϕ(z, t)dt
)
−
(
g(τ−1(z))−

∫
γ

f(t)ϕ(z, t)dt
)∣∣∣∣ < ε (z ∈ B′). (5)

Now, since the function that agrees with h1 on L ∪ γ and with h2 on B is continuous on

L0 := L ∪ γ ∪ B (note that h1(b) = h2(b) = 0) and holomorphic in the interior of L0, and

since L0 has connected complement it follows from Mergelyan’s Theorem (see [Rud, Chapter

20]) that there exists a function f ∈ H(G) that satisfies (3), (4) and

|f(z)− h1(z)| < ε1 for z ∈ L. (6)

Then f also satisfies (5), which can be rewritten as∣∣Tf(z)− g(τ−1(z))
∣∣ < ε (z ∈ B′).

This shows that f ∈ U(T, g, ε, r, V ); note that τ(D) = B′. In addition it follows from (6)

that f ∈ D(h,K, ε1); recall that h1 = h on L ⊃ K. Thus we have proved that

U(T, g, ε, r, V ) ∩D(h,K, ε1) 6= ∅,

as required. ♦

Using standard arguments, condition (a) in the theorem is implied by the following stronger

condition:



(a’) for every ε > 0 there exists a δ > 0 such that for all f, g ∈ H(G) we have that

‖f − g‖B < δ implies ‖Sf − Sg‖B′ < ε.

Moreover, if S is a linear operator then the conditions (a) and (a’) are in fact equivalent. This

shows that condition (a) is related to the notion of local stability introduced by the authors

in [BCG]. For the sake of completeness, we provide the corresponding definition given in

that paper. An operator T is said to be locally stable near ∂G if for each compact subset

K of G there exists a compact subset M of G such that for each closed ball B ⊂ G \M ,

each f ∈ H(G) and each ε > 0 there exist a closed ball B′ ⊂ G \ K and δ > 0 such that

if g ∈ H(G) and ||f − g||B′ < δ then ||Tf − Tg||B < ε. In addition, we say that T has

locally dense range near ∂G if there exists a compact subset M of G such that for each open

ball U ⊂ G \M , the operator f ∈ H(G) 7→ (Tf)|U ∈ H(U) has dense range. Thus, while

in [BCG, Section 2] we inferred strong omnipresence of an operator T from local stability

and local density of T itself we ask here, roughly, for local stability and local density of two

different operators that are related to T .

Based on Theorem 2.1 we can now show that several concrete operators are

strongly omnipresent.

3 Strongly omnipresent integral operators

In the first result of this section we show that the restriction on the kernel of the Volterra

operator (1) to be a convolution kernel as considered in [BC1] is not needed for strong

omnipresence. Also, we can replace multiplication with a constant λ ∈ C by multiplication

with a general holomorphic function ψ ∈ H(G). We first study the case where ψ is not

identically zero.

Theorem 3.1 Assume that ψ ∈ H(G) is non-zero. Then the operator T : H(G) → H(G)

defined by

Tf(z) = ψ(z)f(z) +

∫ z

a

f(t)ϕ(z, t) dt (z ∈ G)

is strongly omnipresent.

Proof. We will show that the following assertion holds:



(∗) For every closed ball B ⊂ G with ψ(z) 6= 0 for all z ∈ B and every point b ∈ ∂B the

operator T̃ : Ab(B)→ Ab(B) given by

T̃ f(z) = ψ(z)f(z) +

∫ z

b

f(t)ϕ(z, t) dt (z ∈ B)

is onto.

Since, as is easy to see, Ab(B) is dense in A(B′) for any closed ball B′ contained in the

interior of B it then follows from Theorem 2.1 that T is strongly omnipresent.

Now, since ψ(z) 6= 0 for all z ∈ B, we need only prove that the operator T1 :

Ab(B)→ Ab(B) defined by

T1f(z) = f(z) +

∫ z

b

f(t)ϕ1(z, t) dt (z ∈ B)

is onto, where ϕ1(z, t) =
ϕ(z, t)

ψ(z)
, and this in turn is satisfied whenever T1 is invertible. After

rotation, translation, normalization and change of sign we can suppose that B = D, b = 1

and that T1 = I −K, where K is the operator

Kf(z) =

∫ z

1

f(t)ϕ1(z, t) dt.

We have that T1 is invertible on A1(D) if and only if 0 /∈ σ (T1), the spectrum of T1. Hence,

it suffices to demonstrate that σ (T1) = {1}, which, in turn, is equivalent to σ (K) = {0}

(that is, that K is quasi-nilpotent). By Gelfand’s formula for the spectral radius we need to

show that

‖Kn‖1/n → 0 (n→∞), (7)

where ‖K‖ := sup{‖Kf‖∞ : ‖f‖∞ ≤ 1}, the norm in the space of linear operators on

A1(D).

Now, (7) follows as in the classical case of Volterra operators on the real line.

Let f ∈ A1(D) with ‖f‖∞ ≤ 1 and set M := sup{|ϕ1(z, t)| : (z, t) ∈ D ×D}. Then it is

clear that, for each z ∈ D,

|Kf(z)| ≤M |z − 1|.

By iteration we obtain

K2f(z) =

∫ z

1

(Kf)(t)ϕ1(z, t) dt



=

∫ 1

0

(Kf)(1− u+ zu)ϕ1(z, 1− u+ zu)(z − 1) du,

so

|K2f(z)| ≤
∫ 1

0

M |1− u+ zu− 1| ·M |z − 1| du

≤M2|z − 1|2
∫ 1

0

u du =
M2|z − 1|2

2
.

An induction procedure leads us to

|Knf(z)| ≤ Mn|z − 1|n

n!
≤ (2M)n

n!
(z ∈ D, ‖f‖∞ ≤ 1, n ∈ N).

Then

‖Kn‖1/n ≤ 2M

(n!)1/n
→ 0 (n→∞).

Consequently, (7) is satisfied and the proof is finished. ♦

We next want to study the operator T given in Theorem 3.1 when ψ = 0. For this we need

the following lemma.

Lemma 3.2 Let ϕ : G × G → C, (z, t) 7→ ϕ(z, t) be a function that is holomorphic with

respect to both variables such that for each number n ∈ N0 and each w ∈ G,

∂nϕ

∂zn
(w,w) = 0.

Then ϕ is identically zero on G×G.

Proof. It follows from the hypothesis that for every w ∈ G the function

z 7→ ϕ(z, w)

is holomorphic on G and has vanishing derivatives of all orders n ≥ 0 at w. Hence it must

be identically zero on G, which implies the result since w ∈ G is arbitrary. ♦

With this we can complete Theorem 3.1 by considering the case ψ = 0. Of course, we now

have to assume that ϕ 6= 0.



Theorem 3.3 Assume that ϕ 6= 0. Then the operator T : H(G)→ H(G) defined by

Tf(z) =

∫ z

a

f(t)ϕ(z, t) dt (z ∈ G)

is strongly omnipresent.

Proof. We will show that the assumptions of Theorem 2.1 are satisfied with S = 0. Thus

let V ∈ O(∂G).

Since ϕ is non-zero it cannot be identically zero on (V ∩ G) × (V ∩ G). Hence

there is, by Lemma 3.2, a number n ∈ N0 for which there exists some w ∈ V ∩G with

∂nϕ

∂zn
(w,w) 6= 0.

Let N be the least such number n. Then there exists a closed ball B ⊂ V ∩G such that, for

all w ∈ B,
∂nϕ

∂zn
(w,w) = 0 (n = 0, 1, . . . , N − 1) (8)

and
∂Nϕ

∂zN
(w,w) 6= 0. (9)

We fix a point b ∈ ∂B and consider the operator T̃ : Ab(B)→ A(B) defined by

T̃ f(z) =

∫ z

b

f(t)ϕ(z, t) dt (z ∈ B).

Since the linear combinations of (z − b)m, m ≥ N + 2, are dense in H(B0) and hence in

A(B′) for any closed ball B′ ⊂ B0 we see that the assumptions of Theorem 2.1 are satisfied

if for every m ≥ N + 2 the equation

T̃ f(z) = (z − b)m (z ∈ B) (10)

has a solution in Ab(B). It will then follow that T is strongly omnipresent.

Now, it is a simple consequence of (8) that for each f ∈ Ab(B) the function T̃ f

is (N + 1)-times continuously differentiable on B with

Dn(T̃ f)(w) =

∫ w

b

f(t)
∂nϕ

∂zn
(w, t)dt (n = 0, 1, . . . , N) (11)

and

DN+1(T̃ f)(w) = f(w)
∂Nϕ

∂zN
(w,w) +

∫ w

b

f(t)
∂N+1ϕ

∂zN+1
(w, t)dt



for all w ∈ B. It follows from (9) and assertion (∗) in the proof of Theorem 3.1, taking

ψ(w) =
∂Nϕ

∂zN
(w,w), that for each m ≥ N + 2 there exists a function f ∈ Ab(B) such that

DN+1(T̃ f)(w) = DN+1((w − b)m) (w ∈ B).

Hence, T̃ f and (w − b)m differ on B by at most a polynomial P (w) =
N∑
n=0

an(w − b)n, and

it follows from (11) that, indeed, P = 0. This implies (10) and the proof is finished. ♦

Using the above results we can in fact show that the multiplication operator in Theorem 3.1

can be replaced, more generally, by linear combinations of operators of the form

f ∈ H(G) 7→ ψ(z)Dnf(z) ∈ H(G),

where n ∈ N0 and ψ ∈ H(G).

Theorem 3.4 Let an (n = 0, ..., N) be holomorphic functions in G, where aN is not identi-

cally zero. Then the operator T : H(G)→ H(G) defined by

Tf(z) =
N∑
n=0

an(z)(Dnf)(z) +

∫ z

a

f(t)ϕ(z, t) dt (z ∈ G)

is strongly omnipresent.

Proof. Let B and B′ be closed balls in G with B′ ⊂ B0 and b ∈ ∂B a fixed point. Since

the operator S given by Sf =
N∑
n=0

an(Dnf) clearly satisfies condition (a) of Theorem 2.1 it

suffices to show that whenever aN(z) 6= 0 for all z ∈ B the operator T̃ : ANb (B) → A(B′)

defined by

T̃ f(z) =
N∑
n=0

an(z)(Dnf)(z) +

∫ z

b

f(t)ϕ(z, t) dt (z ∈ B′)

has dense range, where ANb (B) denotes the subspace of Ab(B) consisting of all functions f ∈

A(B) that are N -times continuously differentiable in B with (Dnf)(b) = 0 for n = 0, ..., N .

First, let ψ : G × G → C be the unique holomorphic function of two variables

such that for all (z, t) ∈ G×G we have

∂Nψ

∂tN
(z, t) = ϕ(z, t)



and
∂nψ

∂tn
(z, b) = 0 for n = 0, ..., N − 1.

Indeed, ψ(z, t) =

∫ t

b

(t− ζ)N−1

(N − 1)!
ϕ(z, ζ)dζ. Now N -fold integration by parts gives∫ z

b

f(ζ)ϕ(z, ζ)dζ =

∫ z

b

f(ζ)
∂Nψ

∂tN
(z, ζ)dζ =

=
N−1∑
n=0

(−1)n(Dnf)(z)
∂N−1−nψ

∂tN−1−n
(z, z) + (−1)N

∫ z

b

(DNf)(ζ)ψ(z, ζ)dζ.

We can therefore write

T̃ f(z) = aN(z)(DNf)(z) +
N−1∑
n=0

bn(z)(Dnf)(z) + (−1)N
∫ z

b

(DNf)(t)ψ(z, t) dt (12)

with certain functions b0, ..., bN−1 that are holomorphic in G.

On the other hand, for f ∈ ANb (B) we have Dnf = D−N+n
b DNf for n = 0, ..., N−

1, where D−jb (j ∈ N) denotes the antiderivative operator of order j, cf. the Introduction.

Hence,
N−1∑
n=0

bn(z)(Dnf)(z) =
N−1∑
n=0

bn(z)(D−N+n
b DNf)(z). (13)

Since each operator D−jb can be written as an integral operator,

(D−jb f)(z) =

∫ z

b

f(t)
(z − t)j−1

(j − 1)!
dt,

we see from (12) and (13) that

T̃ f(z) = aN(z)(DNf)(z) +

∫ z

b

(DNf)(t)ψ̃(z, t) dt

with a holomorphic function of two variables ψ̃ : G×G→ C.

Let us now consider the operator T1 : Ab(B)→ A(B′) that is defined by

T1h(z) = aN(z)h(z) +

∫ z

b

h(t)ψ̃(z, t) dt.

Since aN(z) 6= 0 for all z ∈ B by assumption it follows from assertion (∗) in the proof of

Theorem 3.1 that T1 has dense range. Since DN : ANb (B)→ Ab(B) is onto we see that also

the operator T̃ = T1◦DN : ANb (B)→ A(B′) has dense range, which had to be shown. ♦

In particular, when all the holomorphic coefficients are constants we obtain the following.



Corollary 3.5 Let P be a non-zero polynomial. Then the operator T : H(G) → H(G)

defined by

Tf(z) = P (D)f(z) +

∫ z

a

f(t)ϕ(z, t) dt (z ∈ G)

is strongly omnipresent.

As an application of this result, let Ψ(z) =
∞∑
j=0

ajz
j be holomorphic at the origin. Then the

antidifferential operator Ψ(D−1a ) as defined in the Introduction is a Volterra operator, cf. (1):

just take λ = a0 and h(z) =
∞∑
j=1

aj
zj−1

(j − 1)!
. The corollary then implies that a non-zero sum

of a finite order differential operator P (D) and an infinite order antidifferential operator is

strongly omnipresent. In particular we see that Corollary 4.3 of [BC1], by which the operator

Ψ(D−1a ) is strongly omnipresent whenever Ψ 6= 0 and G 6= C, remains true for G = C.

We are now going to show that we can consider infinite order differential operators

Φ(D) instead of P (D) when the integral operator is a finite order antidifferential operator.

Theorem 3.6 Let Φ be a non-zero entire function of subexponential type and P be a poly-

nomial. Then the operator T : H(G)→ H(G) defined by

Tf(z) = Φ(D)f(z) + P (D−1a )f(z) (z ∈ G)

is strongly omnipresent.

Proof. We fix closed balls B,B′ in G with B′ ⊂ B0 and a point b ∈ ∂B. A simple application

of Cauchy’s inequalities shows that Φ(D) is a continuous linear operator on H(O) for any

open subset O ⊂ C, in particular on H(B0). Hence Φ(D) always satisfies condition (a’) at

the end of Section 2 and hence also condition (a) of Theorem 2.1. Thus we only need to

verify that condition (b) holds for the operator T̃ : Ab(B)→ A(B′), T̃ = Φ(D) + P (D−1b ).

Suppose that Φ(z) =
∞∑
n=0

anzn and P (z) =
N∑
n=0

pnzn. We then consider the entire

function Φ1 of subexponential type given by

Φ1(z) =
∞∑
n=0

cnz
n =

∞∑
n=0

anz
n+N +

N∑
n=0

pN−nz
n.

It is clear that

T̃ = Φ1(D) ◦D−Nb .



In order to show that T̃ : Ab(B) → A(B′) has dense range let h ∈ A(B′) and

ε > 0. Then there exists a polynomial Q such that

‖h−Q‖B′ < ε. (14)

Since Φ1(D) is a surjective operator on H(C) by [Ehr] or [Mal] there is an entire function

f1 with

Q = Φ1(D)f1. (15)

Now, the entire functions that have a zero of multiplicity at least N + 1 at b are dense in

H(B0) and the operator Φ1(D) : H(B0) → H(B0) is continuous. Hence, by (14) and (15),

there is an entire function f2 that has a zero of multiplicity at least N + 1 at b with

‖h− Φ1(D)f2‖B′ < ε.

Since

f2 = D−Nb f with f := DNf2

we have that f ∈ Ab(B) and

‖h− T̃ f‖B′ = ‖h− Φ1(D) ◦D−Nb f‖B′ = ‖h− Φ1(D)f2‖B′ < ε,

so that T̃ : Ab(B)→ A(B′) indeed has dense range, and the proof is finished. ♦

From the last two results we know that the sum of an infinite (resp. finite) order differential

operator and a finite (resp. infinite) order antidifferential operator is always strongly om-

nipresent. The general case where the two operators are of infinite order remains open. Up to

date, we can only say that these operators always have the weaker property of omnipresence

(see [Ber]), as was recently proved by the first two authors [BC2] following another point of

view.
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