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Linear structure of the weighted
holomorphic non-extendibility

L. Bernal-Gonzéalez

Abstract

In this paper, it is proved that, for any domain G of the complex plane,
there exist an infinite-dimensional closed linear submanifold M; and
a dense linear submanifold My with maximal algebraic dimension in
the space H(G) of holomorphic functions on G such that G is the
domain of holomorphy of every nonzero member of f of M; or My
and, in addition, the growth of f near each boundary point is as fast
as prescribed.
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1 Introduction and notation

Throughout this paper, the following standard terminology and notation
will be used. The symbols N, C, D, T denote, respectively, the set of positive
integers, the complex plane, the open unit disk {z € C : |z| < 1}, and the
unit circle {z € C: |z| = 1}. Ifa € C and r > 0 then B(a,r) (B(a,r), resp.)
denotes the open (closed, resp.) euclidean ball with center a and radius r;
in particular, B(0,1) = . For points a, b of C, the line segment joining a
with b is [a,b]. If A C C then A (A%, A, resp.) denotes its closure (interior,
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boundary, resp.) in C. Moreover, if zg € C then d(zp, A) := inf{|zp — 2| :
z € A}. A domain is a nonempty open subset of C. If G is a domain, then
H(G) denotes the Fréchet space (= completely metrizable locally convex
space) of holomorphic functions on GG, endowed with the topology of uniform
convergence on compacta. In particular, H(G) is a Baire space. Finally, if
a € G and f € H(G) then p(f,a) represents the radius of convergence of the
Taylor series of f with center at a. It is well known that p(f,a) > d(a,0G).

In 1884 Mittag-LefHler (see [9, Chapter 10]) discovered that for any domain
G there exists a function f € H(G) having G as its domain of holomorphy.
Recall that G is said to be a domain of holomorphy for f if f is holomorphic
exactly at G, that is, f € H(G) and f is analytically non-extendible across
OG or, more precisely, p(f,a) = d(a,0G) for all @ € G. Note that this implies
that f has no holomorphic extension on any domain containing G strictly.
Both properties are equivalent if, for instance, G is a Jordan domain, but
the equivalence is not general (for instance, consider G := C\ (—o0, 0] and
f := the principal branch of the logarithm on G). By H.(G) we denote
the subclass of functions which are holomorphic exactly at G. Hence, the
Mittag-Leffler result mentioned above says that H.(G) # () for any domain
G.

In 1933 Kierst and Szpilrajn [12] showed that at least for G = D the pro-
perty discovered by Mittag-Leffler is generic, in the sense that H.(ID) is not
only nonempty but even residual ~hence dense— in H (D), that is, its comple-
ment in H(D) is of first category. Recently, Kahane ([11, Theorem 3.1 and
following remarks|; see also [10, Proposition 1.7.6] and [4, Theorem 3.1]) has
observed that Kierst-Szpilrajn’s theorem can be extended to every domain
G and to rather general topological vector spaces X C H(G) (including the
full space X = H(G)); indeed, under suitable conditions on X, he obtains
that H.(G) N X is residual in X. In other words, H.(G) N X is topologically
large in X.

Recently, we have proved [4] for the case G = D that under adequate
hypotheses a topological vector space X C H (D) satisfies that H.(D) N X is
also algebraically large, in the sense that the last subset contains —except for
zero— some “large” (= dense, or closed infinite-dimensional) linear manifold.
Again, the case X = H(D) is covered. Note that the fact that H.(G) is not a
linear manifold increases the interest in this matter. As for a general domain
G, Aron, Garcia and Maestre [1, Theorem 8] had already proved in 2001
that H(G) contains a dense linear manifold M; as well as a closed infinite-



dimensional linear manifold M, such that M; \ {0} C H.(G) (i = 1,2). In
fact, their result extends to any domain of holomorphy in CV (see also [4,
Theorem 5.1] for an independent, different proof in the ‘dense’ case with
N = 1), and the manifolds M; (i = 1,2) are even ideals.

In the terminology of [8], a subset S of a linear topological space F is
spaceable whenever SU{0} contains some closed infinite-dimensional subspace
in £ (see [8] and [2] for nice, recent examples of spaceable sets). Therefore,
under this convention, it has been demonstrated in [1, Theorem 8] that H.(G)
is spaceable in H(G).

Nevertheless, the approach in [1, Theorem 8| does not give any informa-
tion about how fast the functions in M; or My can grow near the boundary.
In [4, note after Theorem 5.1] it is suggested how this can be proved for the
manifold M; (‘dense’ case) in H(G), with G C C. Hence, it is natural to ask
the following:

Given any prescribed (‘weight’) function ¢ : G — (0, +00), is the set

Sy, = {f € H(G) : limsup |f(2)|/¢(2) = +o0 for all t € OG}

spaceable in H(G)?
The main aim in this paper is to furnish an affirmative answer to this ques-
tion. This will be obtained in Section 2. Finally, in Section 3 we will complete
this study by showing the existence of a dense linear submanifold M with
mazximal algebraic dimension —that is, dim (M) = x := the cardinality of the
continuum- such that M \ {0} C S,,, where ¢ is a given weight function as
above.

2 Spaceability of the weighted non-extendibility

Before establishing our main result, an auxiliary statement about basic se-
quences is needed. Let us consider the Hilbert space L?(T) of all (Lebesgue
classes of) measurable functions f : T — C with finite quadratic norm

Ifll2 == ( ;”\f(ew) 248)1/2 " Since (2")%2_., is an orthonormal basis of
L*(T), we have that (2"),>1 is a basic sequence in L*(T). Recall that two
basic sequences (Zy,)n>1, (Yn)n>1 in a Banach space (E, || - ||) are said to be

equivalent if, for every sequence (a,,),>1 of scalars, the series Y - | a,x, con-
verges if and only if the series Y| a,y, converges. This happens (see 3,



page 108]) if and only if there exist two constants m, M € (0, 4+o00) such that,
for every finite sequence (a;);=1,. s of scalars, we have

J J J
E ;x5 E a;y; E ;x5
j=1 j=1 j=1

Lemma 2.1. Assume that G is a domain with D C G and that (f;);>1 C
H(G) is a sequence such that it is a basic sequence in L*(T) that is equivalent

to (29)j>1. If {h := z;fg ciifiti>1 s a sequence in span (f;)j>1 converging

in H(G), then

m < <M

: (1)

J(1)

sup > ey < +oo. )
leN 4

Proof. Observe first that, since D is a compact subset of G, convergence
in H(G) is stronger than convergence in L?(T)-norm. Therefore (h;);>; con-
verges in L%(T), so the sequence (||#;]|2);>1 is bounded, say ||ly]|s < « (I € N).
Let xj, y;, || - || be respectively the function z — 27, the function f; and the
norm || - ||2. Then, by (1), we get for every [ € N that

2

I w 1P e
m* Y lel” =m* D> || <D kil =l < o
j=1 j=1 j=1

2 2

Hence (2) is satisfied because the supremum is not greater that a?/m?. [

Now, our main assertion about non-extendibility can be established.

Theorem 2.2. Let G C C be a domain and ¢ : G — (0,+00) be a function.
Then S, is spaceable in H(G).

Proof. We must prove the existence of an infinite-dimensional closed linear
manifold M in H(G) such that M \ {0} C S,. The case G = C being trivial,
we may assume G # C. We denote by G, the one-point compactification of
G. Recall that in G, the whole boundary 0G collapses to a unique point,
say w. Without loss of generality, it can be supposed that D C G.

We are going to choose countably many pairwise disjoint sequences {a(k,n) :
n € N} (k € N) of distinct points of G\ D such that each of them has no
accumulation point in G and every prime end (see [5, Chapter 9]) of G
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is an accumulation point of each such sequence. The last property means,
more precisely, the following: For every k € N, every a € G and every
r > d(a,0G), the intersection of {a(k,n) : n € N} with the connected com-
ponent of B(a,r) N G containing a is infinite. In particular, every point
t € 0G would be an accumulation point of each sequence {a(k,n): n € N}.

Let us show how such a family of sequences can be constructed. We
begin with & = 1. Let {¢; : j € N} be a dense countable subset of G.
For each j € N choose b; € 0G such that |b; — ¢;| = d(c;,0G). For every
j € Nlet {dy;; : | € N} be a sequence of points in [c;,b;] \ D such that
\di;0 — bl <1/(1+7+1) (j,l € N). Then we choose as {a(l,n) : n € N}
a one-fold sequence (without repetitions) consisting of all distinct points of
the set {dy;; : 7,1 € N}. It is easy to check that {a(1,n) : n € N} satisfies
the required property. In a second step —that is, for k = 2— we can select for
every j € N a sequence {dy, : | € N} of points of [¢;,b;] \ (D U {a(1,n) :
n € N}) such that, in addition, |ds;; — b;| < 1/(24j +1) (j,! € N); this is
possible due to the denumerability of {a(1,n) : n € N}. Again, we define
{a(2,n) : n € N} as a sequence consisting of all distinct points of the set
{ds;, : j,1 € N}; it satisfies evidently the required prime end property. It
is now clear that this process can be repeated inductively, so yielding the
desired disjoint family {{a(k,n): n € N} : k € N}.

Secondly, let us consider the subset A := D U B C G, where B :=
{a(k,n) : k,n € N}. Recall that for each k € N the sequence {a(k,n): n €
N} is an enumeration of the distinct points of a certain subset {dy;, : j,l €
N} C G satisfying

| k.50 — byl (4,1 €N). (3)

Skrjtl
We have that A is relatively closed in GG. Indeed, the set of accumulation
points of A in G is just D (which is included in A) because the set of accu-
mulation points of B in G is empty. Let us explain why this is so. Assume,
by way of contradiction, that zy € G is an accumulation point of B. Then
there is a sequence of distinct points (di(n),jn)in))n>1 in B tending to z.
Then the set {(k(n),j(n),l(n)) : n € N} is infinite, so at least one of the
sets of positive integers {k(n) : n € N}, {j(n) : n € N}, {{(n) : n € N} is
infinite, hence unbounded. Therefore the sequence (k(n) + j(n) +1(n)),>1 is
also unbounded, whence k(n) + j(n) +1(n) > 2/d(z, 0G) for infinitely many



n € N. Consequently,

|dk(n).j(m)a(ny — 20l > 20 = bty — |dk(n) jm)im) — bim)]

1 d(z,0G)
k) + () +in) ~ 2
for infinitely many n € N, which is absurd.
Thus, A is closed in G. But note that G. \ A is connected as well as
locally connected at w, because D is compact (so it is “far” from w, and we
can suppose that the basic connected neighborhoods of w do not intersect

D), G\ D is connected and B is countable (so deleting B from G \ D makes
no influence in connectedness or local connectedness). Let us consider, for

every N € N, the function gy : A — C defined as

Z d(Z(), 3G) -

2N if z € D,
gn(z) =< n(l+¢(a(N,n))) if z=a(N,n)and n € N,
0 if z=a(k,n) and k,n € N with k£ # N.

Observe that gy is continuous on A and holomorphic on A° (= D). Then
the Arakelian approximation theorem (see 7, pages 136-144]) guarantees the
existence of a function fy € H(G) such that

1
|fn(z) —gn(2)| < 3N for all z € A.

Consequently, one obtains

Ifn(z) — 2V < 3LN for all z € D, (4)
|fnv(a(N,n)) —n(1+ p(a(N,n)))| <1 for all n € N, and (5)
Fw(alk,n))| < BiN for all n € N and all k € N\ {N}. (6)

Finally, we define the sought-after linear manifold M by
M := closurey ) (span { fy : N € N}).

It is clear that M is a closed linear manifold in H(G). On the other hand, we
have from (4) that ||fx — ¢nllo < 37V for all N € N (where oy(z) := 2V).
By using this last inequality as well as the fact > %_; 3™ < 1 together with
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the basis perturbation theorem [6, page 46, Theorem 9], we can derive that
(fn)n>1 is a basic sequence in L*(T). Indeed, let (ef),>1 be the sequence
of coefficient functionals corresponding to the basic sequence (2"),>1. Since
llex]la =1 (n € N), one obtains

D lenllallfy = enll < 1.
N=1

Therefore the perturbation theorem applies because (¢n)n>1 is a basic se-
quence.

Since (fn)n>1 is a basic sequence, we get that, in particular, the functions
fv (N € N) are linearly independent. Hence M has infinite dimension.

It remains to show that M \ {0} C S,. Fix f € M \ {0}. Since the
convergence in H(G) is stronger that the convergence in L*(T), we have
that (the restriction to T of) f is in M := closures>(my(span{fy : N € N}).
Therefore f has a (unique) representation f = > 72, ¢;f; in L3(T), because
(fn)n>1 is a basic sequence in this space. But f # 0, so there is N € N with
cy # 0. On the other hand, there is a sequence {h; := ng ciifihi>1 in
span{f; : j € N} (without loss of generality, we can assume that J(I) > N
for all ) that converges to f compactly in G. By Lemma 2.1,

J()
C :=sup E ;i < +o0.
leN ‘2

But (h;);>1 also converges to f in L?(T), so the continuity of each projection
> difi € M = d, € C (m € N) yields that lim,ccyy = ey, In
particular, there exists [ € N such

|CN,Z‘ Z @ for all I 2 lo. (7)

Let us fix n € N. Since the singleton {a(N,n)} is a compact subset of G, we
get the existence of a positive integer [ = [(n) > [y such that

[hu(a(N;n)) — fla(N,n))| < 1. (8)

By using (5), (6), (7), (8), the triangle inequality and the Cauchy-Schwarz
inequality, we obtain

[f(a(N,n))] = [hi(a(N,n))] =1



J()

> Jenafa(a(N,n)| =Y lesafi(a(N,n)) -1

j=1

i#N
lex| J(1) 1
2 - (1 +¢(a(N,n))) — 1) — Zl leialgy =1
i#N
len| =1 2 R "
2 —- (n(1+p(a(N,n)))~1)~ (2@) ) Z leal* | -1
j= foe

> ’C—;V|(n(1 +(a(N,n)) — 1) —C"* - 1.

Consequently, lim,, o f(a(NV,n)) = 0o = lim, o f(a(N,n))/p(a(N,n)).
The second equality shows that limsup,_,, |f(2)|/¢(z) = +oo for all ¢t € 9G,
because each boundary point is a limit point of (z, := a(NV,n))p>1.

Now, it is time to use the prime end approximation property of the
sequence (z,). Suppose, by way of contradiction, that f ¢ S,. Then
f & H.(G), so there must be a point ¢ € G such that p(f,¢) > d(c, 0G).
Choose r with d(c,0G) < r < p(f,c). By the construction of the sequences
(a(k,n))n>1 (k € N), there exists a sequence {n; < ny < ---} C N for
which z,; € G N B(c,r) (j € N). Finally, the sum S(z) of the Taylor series
of f with center ¢ is bounded on B(c¢,7). But S = f on G N B(e,r), so
S(zn;) = f(2n;) = 00 (j — 00), which is absurd. This contradiction finishes
the proof. O

3 Manifolds with maximal algebraic
dimension

We conclude this note with a theorem that completes our Theorem 2.2
as well as Theorem 5.1 in [4] and (in the one-dimensional case) Theorem
8 in [1]. Specifically, we are able to construct —for a prescribed function
¢ : G — (0,4+00)- alinear submanifold M C H(G) with M\ {0} C S, that is
not only dense, but even it satisfies dim (M) = x (notice that the dense linear
manifold M whose construction is suggested in [4, note following Theorem
5.1] was only of countably infinite dimension; in the opposite direction, the



dense manifold X provided in [1, Theorem 8| does satisfy dim(X) = x, but
the fact X \ {0} C S, does not hold). Observe that, as an easy consequence
of Baire’s category theorem and of the fact that H(G) is infinite-dimensional,
metrizable, separable and complete, we have dim (H(G)) = x. Hence y is
the maximal algebraic dimension which is permitted for the submanifolds
of H(G). For instance, the linear manifold M constructed in the proof of
Theorem 2.2 satisfies dim (M) = x (because it is a closed subspace of H(G),
so M is also infinite-dimensional, metrizable, separable and complete) but it
is not dense.

Theorem 3.1. Let G C C be a domain and ¢ : G — (0,+00) be a function.
Then there is a dense linear manifold M in H(G) such that dim (M) = x
and M\ {0} C S,.

Proof. Again, the case G = C is trivial, so we suppose G # C. First, we
consider pairwise disjoint sequences {a(k,n) : n € N} (k € N), and then we
select a sequence {fy : N € N} € H(G). This is made exactly as in the
proof of Theorem 2.2, with the sole exception that instead of (5) we have

|fnv(a(N,n)) —n'?(1 + o(a(N,n)))| <1 forallneN. 9)

In other words, with the notation of the proof of Theorem 2.2 we would
define gy (a(N,n)) := n'/2(1+p(a(N,n))) (N,n € N) before the application
of Arakelian’s theorem. The key point will be that n'/? tends to infinity as
n — 0o, but less rapidly than any power n® (N € N). Let us define

M, = closurey () (span{fy : N € N}).

Therefore we obtain as in the proof of Theorem 2.2 that M; \ {0} C S,. As
observed at the beginning of this section, we have dim (M;) = x.

Second, fix an increasing sequence {K,, : n € N} of compact subsets of G
such that each compact subset of G is contained in some K, and each com-
ponent of the complement of every K, contains some connected component
of the complement of G (see [13, Chapter 13]). Choose a dense countable
subset {¢,, : n € N} of H(G). Now consider for each N € N the set
Ay := Ky U{a(k,n) : k,n € N}. In a similar way to the proof of Theorem
5.2 in [4], we have that Ay is closed in G and that G, \ Ay is connected and
locally connected at w. The function hy : Ay — C defined as

B @Z)N(Z) if z € KN,
h(2) = { nN(1+¢(alk,n))) if z=a(k,n) (k,n € N)and 2 ¢ Ky
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is continuous on Ay and holomorphic on A% (= K%). We now use again the
Arakelian approximation theorem to obtain this time a function Fyy € H(G)
such that

1
|Fn(2) — hy(2)] < N for all z € Ay. (10)

From (10) we derive that |Fin(z) — ¥n(2)| < 1/N for all z € Ay and all
N € N. These inequalities together with the denseness of {¢)y : N € N} and
the exhaustion property of the family { Ky : N € N} yield the denseness of
the sequence {Fy : N € N} in H(G).

Finally, we define M as
M :=span (M, U{Fy: N € N}).

Since M D {Fy : N € N} and M D M, it is evident that M is a dense
linear submanifold of H(G) and dim (M) = x. It remains to show that
M\ {0} C S,. For this, fix a function f € M \ {0}. If f € M; then we
already know that f € S,. Thus, we can assume that f € M \ M;. Then
there are finitely many scalars cy,...,cy,di, ..., d, with cy # 0 such that

N H
F=Y GF+Y df; (11)
j=1 j=1

Recall that according to the proof of Theorem 2.2 the set B := {a(k,n) :
k,n € N} has no accumulation point in G. In particular, each compact set
K, may contain only finitely many points a(k,n). Therefore we can derive
from (10) the existence of a number ng € N such that

|Fj(a(N,n)) —n’(1+¢(a(N,n)))| <1 foralln>ng (j=1,...,N). (12)
On the other hand, we obtain by (6) and (9) that
|£i(a(N,n))| < n2(1 4+ p(a(N,n)))+1 (j=1,...,u; n €N), (13)

To finish, from (11), (12), (13) and the triangle inequality it is deduced for
n > ng that
[f(a(N,n))| = [ex|[n™ (1 + ¢(a(N,n))) - 1]

=Yl lln' (1 + (N ) + 1)
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- (Z !dj|> [n'2(1 + @(a(N,n))) + 1].

Consequently, lim,, f(a(N,n)) = oo = lim, e f(a(N,n))/e(a(N,n)).
Then the desired conclusion may be achieved as in the last paragraph of
the proof of Theorem 2.2. n

Final question. Do the analogues of Theorems 2.2 and 3.1 hold for a
domain of holomorphy in CV?
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