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DE MATEMÁTICAS. AVENIDA REINA MERCEDES. APARTADO 1160. 41080 SEVILLA,
SPAIN. E–MAIL: lbernal@us.es.
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Dense linear manifolds of monsters

L. BERNAL–GONZÁLEZ and M.C. CALDERÓN–MORENO

Abstract

In this paper the new concept of totally omnipresent operators is introduced. These
operators act on the space of holomorphic functions of a domain in the complex plane.
The concept is more restrictive than that of strongly omnipresent operators, also intro-
duced by the authors in an earlier work, and both of them are related to the existence
of functions whose images under such operators exhibit an extremely wild behaviour
near the boundary. Sufficient conditions for an operator to be totally omnipresent as
well as several outstanding examples are provided. After extending a statement of the
first author about the existence of large linear manifolds of hypercyclic vectors for a
sequence of suitable continuous linear mappings, it is shown that there is a dense linear
manifold of holomorphic monsters in the sense of Luh, so completing earlier nice results
due to Luh and Grosse–Erdmann.
Key words and phrases: Holomorphic monster, T–monster, strongly omnipresent oper-
ator, totally omnipresent operator, dense linear manifold, hypercyclic sequence, com-
position operator, infinite order linear differential operator, integral operator.

1 Introduction

In 1985 Luh [22] introduced the concept of holomorphic monsters. Roughly speaking, a
holomorphic monster in the sense of Luh is a holomorphic function on a simply connected
domain G of the complex plane such that it and all its derivatives and antiderivatives possess
an extremely wild behaviour near the boundary, see below. Luh proved the existence of
a dense subset of monsters in the space H(G) of holomorphic functions on G, endowed
with the compact–open topology. Note that H(G) is a Fréchet space, hence a Baire space.
Two years later, Grosse-Erdmann, by using techniques of functional analysis via certain
composition–differentiation–antidifferentiation operators, showed that, in fact, there exists
a residual set of monsters inH(G) [18, Kapitel 3]. In this work we will establish, among other
results, the existence of a dense linear manifold of holomorphic monsters. Consequently,
the set of Luh monsters is large not only topologically but also algebraically. The reader is
referred to [23, 24, 27] for further interesting results on this topic.
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As a matter of fact, we will state our main result (Theorem 5.1) in a much more general
form, by means of the introduction of the notion of totally omnipresent operators, see
Section 2. This notion is strictly stronger than that of strongly omnipresent operators,
which we recall shortly together with the related concept of T–monsters, both of them
introduced by the authors in [6]. In the present paper we strengthen (Theorem 3.1) a
recent statement of the first author [4] (see Theorem 1.1 below) about the existence of
large linear manifolds of hypercyclic vectors for a sequence of continuous linear mappings.
Theorem 5.1 is extracted as a consequence. Furthermore, a number of practicable sufficient
conditions for an operator to be totally omnipresent are furnished in Section 4, as well as
a large family of examples including differential, antidifferential, integral, composition and
multiplication operators.

Now, we pass to fix some notations and definitions. Throughout this paper G will stand
for a domain in the complex plane C and ∂G will denote its boundary taken in the extended
complex plane C∞ = C ∪ {∞}. N is the set of positive integers, N0 = N ∪ {0}, Z is the set
of integers, R is the real line, and B(a, r) = {z : |z− a| < r} is the euclidean open ball with
center a and radius r (a ∈ C, r > 0). The corresponding closed ball is B(a, r). An operator
always refers to a continuous (not necessarily linear) selfmapping. We denote by O(∂G) the
set of all open subsets of C∞ meeting ∂G. If A ⊂ C then A (A0) represents the closure (the
interior, respectively) of A, ‖f‖A := supz∈A |f(z)|, where f is a complex function defined
in A, and LT (A) is the set of all affine linear transformations τ , τ(z) = az + b, such that
τ(D) ⊂ A, where D := B(0, 1). As for the definition of T–monsters and of its associated
notion of strongly omnipresent operators, we fix here one which is slightly stronger than
that of [6], because there (as in [22]) the domain G was never C in order that the finite
boundary be non-empty. Nevertheless, as pointed out in [9], using chordal distances, all
proofs can be adapted to the case where the boundary point under consideration is the
point of infinity. Thus, as in [9], we establish the following definition.

Definition 1.1. (a) A function f ∈ H(G) is a holomorphic monster whenever the fol-
lowing universality property is satisfied: For each g ∈ H(D) and each t ∈ ∂G there
exists a sequence (τn) of affine linear transformations with

τn(z)→ t (n→∞) uniformly on D and τn(D) ⊂ G (n ∈ N)

such that
f(τn(z))→ g(z) (n→∞)

locally uniformly in D.

(b) Let T : H(G)→ H(G) be an operator. Then a function f ∈ H(G) is a T–monster if
Tf is a holomorphic monster. The set of T–monsters is denoted by M(T ).
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(c) An operator T : H(G) → H(G) is strongly omnipresent if for all g ∈ H(D), ε > 0,
r ∈ (0, 1) and V ∈ O(∂G) the set

U(T, g, ε, r, V ) := {f ∈ H(G) : there exists some τ ∈ LT (V ∩G)

such that ‖(Tf) ◦ τ − g‖rD < ε}
is dense in H(G).

As in [6, Theorem 2.2], it is easy to prove that T is strongly omnipresent if and only if
the set M(T ) is residual, i.e., its complement in H(G) is of first category (see also [1] for
the weaker concept of omnipresent operators and [9, Example 3.4] for a linear example of an
omnipresent operator which is not strongly omnipresent). Observe that an easy continuity
argument allows us to restrict ourselves to non-constant affine linear transformations in parts
(a) and (c) of the last definition. Note also that due to the results of [18, Kapitel 3] a function
f ∈ H(G) –where G is simply connected– is a holomorphic monster in the sense of Luh [22]
(for future references, we call such an f a Luh–monster) if and only if f is simultaneously
a Dj–monster and a D−ja –monster for all j ∈ N0. Here D is the differentiation operator
Df = f ′, D0 = I is the identity operator, Dj+1 = D ◦Dj , a is a fixed point in the simply
connected domain G, D0

a = I and, for each j ∈ N, D−ja denotes the unique antiderivative
F of f of order j such that F (k)(a) = 0 (k ∈ {0, 1, . . . , j − 1}). Since the intersection of
countably many residual sets is again residual, the existence of Luh-monsters is thus a direct
consequence of the strong omnipresence of operators Dj and D−ja , j ∈ N0. In fact, more
general differential and antidifferential operators are strongly omnipresent, see [6, Sections
3–4], [8] and Section 4. In [9] sufficient conditions are given for an operator to be strongly
omnipresent, as well as characterizations of the strong omnipresence of composition and
multiplication operators.

Finally, we will need in Section 3 some terminology taken from the modern theory of
universality. The reader is referred to [19] for an excellent survey about the history, results
and references on this topic. If X and Y are (Hausdorff) topological vector spaces over
the same field K (= R or C) and Tn : X → Y (n ∈ N) is a sequence of continuous linear
mappings, then (Tn) is said to be hypercyclic (or universal) whenever there is a vector x ∈ X,
called also hypercyclic for (Tn), such that the orbit {Tnx : n ∈ N} is dense in Y . Note that
this forces Y to be separable. The sequence (Tn) is called densely hypercyclic whenever the
set HC((Tn)) of hypercyclic vectors for (Tn) is dense. On the other hand, (Tn) is said to be
hereditarily hypercyclic whenever (Tnk

) is hypercyclic for each sequence n1 < n2 < n3 < · · ·
of positive integers. The sequence (Tn) is densely hereditarily hypercyclic if and only if (Tnk

)
is densely hypercyclic for every sequence n1 < n2 < n3 < · · · as above. For the sake of
convenience, we will keep all these definitions even in the case that the mappings Tn are
not linear. Finally, if M ⊂ X is a linear manifold then we say that it is hypercyclic for (Tn)
whenever M \ {0} ⊂ HC((Tn)). In [4, Theorem 2] the following result is obtained.
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Theorem 1.1. Let X and Y be two metrizable topological vector spaces such that X is
separable. Assume that Tn : X → Y (n ∈ N) is a densely hereditarily hypercyclic sequence
of continuous linear mappings. Then there is a dense linear submanifold of X all of whose
non-zero vectors are hypercyclic for (Tn).

Applications of the latter theorem can be found in [4, Theorems 3–4] and [20]. In fact,
Theorem 1.1 is an extension of the known result of Herrero–Bourdon–Bès asserting the
existence of T–invariant dense hypercyclic linear manifolds for a hypercyclic linear operator
T (i.e, the sequence of iterates (Tn) is hypercyclic) on a (real or complex) locally convex
space, see [10, 11, 21] (see also [5] to add the property “with maximal cardinality” to such
manifolds when T acts on a Banach space).

2 Totally omnipresent operators

In this section we first define in a practical way a new kind of operator. We then show how
that definition can be translated in terms of approximation of vectors in certain function
spaces.

Let us denote by N(∂G) the family of all sequences of similarities of the plane which
take the unit disk near the boundary of G, that is,

N(∂G) = {σ = (τn) ⊂ LT (G) : τn is non–constant (n ∈ N) and
supz∈D χ(τn(z), ∂G)→ 0 (n→∞)},

where χ denotes the chordal distance on C∞. Observe that since ∂G is compact in C∞ the
fact (τn) ∈ N(∂G) implies the existence of at least one boundary point t and of a sequence
{n1 < n2 < n3 < · · ·} ⊂ N with τnk

→ t (k → ∞) uniformly on D. If T is an operator on
H(G), g ∈ H(D), ε > 0, r ∈ (0, 1) and σ = (τn) ∈ N(∂G) then we set

U?(T, g, ε, r, σ) = {f ∈ H(G) : there is n ∈ N with ‖(Tf) ◦ τn − g‖rD < ε}. (1)

Definition 2.1. Let T : H(G) → H(G) be an operator. We say that T is totally om-
nipresent whenever each set U?(T, g, ε, r, σ) is dense in H(G) (g ∈ H(D), ε > 0, r ∈ (0, 1),
σ ∈ N(∂G)).

Note that each U?(T, g, ε, r, σ) is an open set of H(G). For future references, we denote
by D(h,K, δ) (h ∈ H(G), δ > 0, K a compact subset of G) the basic neighborhood

D(h,K, δ) = {f ∈ H(G) : ‖f − h‖K < δ}. (2)
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Remark 2.1. If (gi) is a dense sequence in H(D) (for instance, (gi) may be an enumeration
of polynomials with coefficients having rational real and imaginary parts) then T is totally
omnipresent if and only if for each σ ∈ N(∂G) and each (i, j) ∈ N2 the set U?(T, gi,

1
j ,

j
j+1 , σ)

is dense in H(G).

As promised, we reformulate the last definition in other language. Before this, a little
more notation: If t ∈ ∂G then N(t) will stand for the set of all sequences (τn) of non–
constant affine linear mappings with τn(D) ⊂ G (n ∈ N) and τn(z)→ t (n→∞) uniformly
on D. Trivially, N(t) ⊂ N(∂G). On the other hand, Cτ denotes composition with the
function τ (i.e., Cτ (h) = h ◦ τ) whenever it makes sense. In the next proposition, the equi-
valence (b)⇐⇒(c) is trivial, but we want to establish (c) explicitely because the implication
(a)=⇒(c) will be crucial in the proof of Theorem 5.1.

Proposition 2.2. Let T be an operator on H(G). Then the following conditions are equi-
valent:

(a) The operator T is totally omnipresent.

(b) For every t ∈ ∂G and every (τn) ∈ N(t) there exists a dense set of functions f ∈ H(G)
satisfying that for every g ∈ H(D) there exists a strictly increasing sequence (nk) ⊂ N
such that (Tf)(τnk

(z))→ g(z) (k →∞) uniformly on compact subsets of D. In other
words, the sequence Cτn ◦ T : H(G)→ H(D) (n ∈ N) is densely hypercyclic.

(c) For every t ∈ ∂G and every (τn) ∈ N(t), the sequence Cτn ◦T : H(G)→ H(D) (n ∈ N)
is densely hereditarily hypercyclic.

Proof. Let (gi) be a countable dense set in H(D). Given t ∈ ∂G and σ = (τn) ∈ N(t), the
set

M(σ) :=
⋂
i,j∈N

U?(T, gi,
1

j
,

j

j + 1
, σ)

is the set of hypercyclic vectors for {Cτn ◦ T}n≥1. So (a)⇐⇒(b) follows from the fact that
H(G) is a Baire space.

We now consider the relationship between total and strong omnipresence. If we consider
a set U(T, g, ε, r, V ) as in Definition 1.1(c) then we can associate to V a point t ∈ V ∩ (∂G)
as well as a sequence of open balls Bn ⊂ G ∩ V (n ∈ N) such that supw∈Bn

χ(w, t) → 0
(n→∞). Then

sup
z∈D

χ(τn(z), ∂G) ≤ sup
z∈D

χ(τn(z), t) = sup
w∈Bn

χ(w, t)→ 0 (n→∞),
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where τn(z) is a non-constant affine linear mapping with τn(D) = Bn. Therefore σ :=
(τn) ∈ N(∂G). If T is totally omnipresent then U?(T, g, ε, r, σ) is dense in H(G). If
f ∈ U?(T, g, ε, r, σ) then there exists N ∈ N such that ‖(Tf) ◦ τN − g‖rD < ε, so f ∈
U(T, g, ε, r, V ) because τN ∈ LT (V ) since τN (D) = BN ⊂ G ∩ V . Summarizing,
U?(T, g, ε, r, σ) ⊂ U(T, g, ε, r, V ). Thus, the last set is dense. Hence we have proved that
every totally omnipresent operator is strongly omnipresent.

In Section 4 we will see several examples of (linear) strongly omnipresent operators (in
fact, composition operators) which are not totally omnipresent. Further examples will be
provided at the end of Section 5 and after Theorem 6.1.

3 Common hypercyclic linear manifolds

In this section we are going to improve Theorem 1.1 in order to use that improvement in
Section 5. Observe that the next result asserts the existence of common large hypercyclic
manifolds for a countable family of sequences of linear mappings. It should be pointed out
that the unique additional hypothesis with respect to Theorem 1.1 is that X is Baire, which
takes place, for instance, if X is complete.

Theorem 3.1. Let X and Y be two metrizable topological vector spaces such that X is

Baire and separable. Assume that, for each k ∈ N, T
(k)
n : X → Y (n ∈ N) is a densely

hereditarily hypercyclic sequence of continuous linear mappings. Then there is a dense linear
submanifold M ⊂ X such that

M \ {0} ⊂
⋂
k∈N

HC((T (k)
n )).

Proof. Observe first that hypercyclicity forces Y to be separable, so second–countable. Let
us choose a dense sequence (zn) in X and denote by d a distance on X compatible with its
topology. We will consider later the open balls

GN = {x ∈ X : d(x, zN ) <
1

N
} (N ∈ N).

Since X is a Baire space and Y is second–countable each of the sets HC((T
(k)
n )) (k ∈ N)

is residual in X [19, Theorem 1], because they are dense. Therefore their intersection⋂
k∈NHC((T

(k)
n )) is also residual, so dense, whence we can pick a vector

x1 ∈ G1 ∩
⋂
k∈N

HC((T (k)
n )).
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Then for every k ∈ N we can find a (strictly increasing) subsequence {p(1, k, j) : j ∈ N} of
positive integers such that

T
(k)
p(1,k,j)x1 → 0 (j →∞).

But, since each (T
(k)
n ) (k ∈ N) is densely hereditarily hypercyclic, every set HC((T

(k)
p(1,k,j)))

is again residual. Thus, as above, a vector x2 can be selected in G2 ∩
⋂
k∈NHC((T

(k)
p(1,k,j))).

Now choose for every k a subsequence {p(2, k, j) : j ∈ N} of (p(1, k, j)) with

T
(k)
p(2,k,j)x2 → 0 (j →∞).

Note that also T
(k)
p(2,k,j)x1 → 0 (j → ∞) for each k ∈ N. Since the new sequences

(T
(k)
p(2,k,j)) (k ∈ N) are again densely hypercyclic, one can choose a vector x3 ∈ G3 ∩⋂
k∈NHC((T

(k)
p(2,k,j))).

It is evident that this process can be continued by induction, getting a sequence {xN :
N ∈ N} ⊂ X and a family {{p(n, k, j) : j ∈ N} : n, k ∈ N} of sequences of positive integers
satisfying

xN ∈ GN for all N ∈ N, (3)

xN ∈
⋂
k∈N

HC((T
(k)
p(N−1,k,j))) for all N ∈ N (4)

and
T

(k)
p(n,k,j)xN → 0 (j →∞) for all n ≥ N and all k ∈ N, (5)

where, in order to make the notation consistent, (p(0, k, j)) stands for the whole sequence
of positive integers for every k ∈ N. Define

M = span({xN : N ∈ N}).

Since {zn : n ∈ N} is dense in X and d(xn, zn) < 1
n → 0 (n → ∞) (by (3)), the set

{xn : n ∈ N} is also dense, hence M is a dense linear submanifold of X.

It remains to prove that each nonzero vector of M is hypercyclic for each sequence (T
(k)
n )

(k ∈ N). Fix x ∈M \{0}. Then there are finitely many scalars a1, . . . , aN with aN 6= 0 such
that x =

∑N
n=1 anxn. Since a nonzero multiple of a hypercyclic vector is still hypercyclic,

we may assume that aN = 1. Fix a positive integer k and a vector y ∈ Y . Let us show a

subsequence {T (k)
r(j) : j ∈ N} of (T

(k)
n ) such that

T
(k)
r(j)x→ y (j →∞).
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By (4), there is a subsequence (r(j)) of (p(N − 1, k, j)) such that

T
(k)
r(j)xN → y (j →∞). (6)

But, since (r(j)) is a subsequence of (p(N − 1, k, j)) we see from (5) that T
(k)
r(j)xn → 0

(j →∞) for all n ∈ {1, . . . , N − 1}, so
∑N−1

n=1 anT
(k)
r(j)xn → 0 (j →∞). Finally, by (6) and

linearity,

T
(k)
r(j)x = T

(k)
r(j)xN +

N−1∑
n=1

anT
(k)
r(j)xn → y + 0 = y (j →∞),

as required.

4 Sufficient criteria for total omnipresence and examples

The organization of this section is as follows. First we establish the total omnipresence
of differential, antidifferential and integral operators under rather general conditions, see
Theorem 4.1. This supplies a large class of examples, including the operators DN and D−Na
(N ∈ N0). In particular, the identity operator I becomes totally omnipresent. Secondly, we
will construct new totally omnipresent operators from known ones. As an application we
will see that every onto linear operator on H(G) is totally omnipresent. Next we study the
following problem: Under which conditions does the existence of a single T -wild-behaved
function associated to each boundary point and each sequence of affine transformations
coming near that point suffice to make T totally omnipresent? Afterwards, we provide with
some workable conditions under which a general operator is totally omnipresent. Finally
we apply some of these results to furnish new examples of this kind of operators. In
fact, we will be able to characterize the total omnipresence for left–composition operators
and multiplication operators. For right–composition operators, necessary conditions and
sufficient conditions are given. It happens that in many cases the criteria as well as the
examples to be given for total omnipresence are close to those of strong omnipresence.
Hence we will simplify (or even drop, as in Theorem 4.1) the proof of each result about total
omnipresence whenever it is very similar to that of the corresponding strong omnipresence
result, see [6, 8, 9].

Let us start with the definition of the operators to be handled. Let Φ(z) =
∑∞

j=0 ajz
j

be an entire function of subexponential type, that is, for every ε > 0 there is a constant
M = M(ε) > 0 such that |Φ(z)| ≤ Meε|z| for all z ∈ C. Then the associated linear
differential operator Φ(D) =

∑∞
j=0 ajD

j is well defined on H(G). This still holds if Φ is

just of exponential type (i.e., there are constants M , K > 0 such that |Φ(z)| ≤ MeK|z| for
all z ∈ C) whenever G = C. If G is a simply connected domain, a ∈ G and ϕ : G×G→ C
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is a function that is holomorphic in both variables, then the Volterra integral operator of
the first kind Vϕf(z) =

∫ z
a f(t)ϕ(z, t)dt (z ∈ G) makes sense on H(G). In particular, by

choosing ϕ(z, t) :=
∑∞

j=1 aj
(z−t)j−1

(j−1)! , we obtain that if Ψ(z) =
∑∞

j=1 ajz
j is a formal complex

power series such that

lim sup
j→∞

|aj |1/j

j
≤ 1

∆(a,G)
,

where ∆(a,G) = supz∈G inf{r > 0 : a is in the connected component of B(z, r) ∩ G
containing z}, then the associated linear antidifferential operator Ψ(D−1

a ) =
∑∞

j=1 ajD
−j
a

is well defined on H(G), see [3]. On the other hand, we recall that if ϕ ∈ H(G,G) := {f ∈
H(G) : f(G) ⊂ G}, ψ is an entire function and h ∈ H(G) then the respectively associated
right–composition operator Cϕ, left–composition operator Lψ and multiplication operator
Mh are defined on H(G) as

Cϕ(f) = f ◦ ϕ, Lψ(f) = ψ ◦ f, Mh(f) = h · f.

As for differential and integral operators, we have that under weak hypotheses all of them
and some combinations of them are strongly omnipresent (see [6, Sections 3–4] and [8,
Sections 2–3]). But observe that in many proofs a set U(T, g, ε, r, V ) as in Definition 1.1 as
well as a neighborhood as in (2) are fixed. Then a suitable τ ∈ LT (V ∩G) is found in order
to get the density of that set. A simple glance reveals that we can in fact fix a point t ∈ ∂G
and a sequence σ = (τn) ∈ N(t) in such a way that a positive integer n is available (with
τn(D) close to t enough) to make U?(T, g, ε, r, σ) dense. Consequently, we can establish the
following theorem.

Theorem 4.1. Assume that Φ(z),Ψ(z) are power series as above and that ϕ : G×G→ C
is a holomorphic function in both variables. Let a be a fixed point in G. Suppose also that
P is a polynomial and that, if N ∈ N0, cj(z) (j = 0, . . . , N) are holomorphic functions on
G. We have:

(a) If Φ is non–zero then the operator Φ(D) is totally omnipresent.

(b) If G is simply connected and Ψ is non–zero then Ψ(D−1
a ) is totally omnipresent.

(c) If G is simply connected and either Φ or P is non–zero then the operator Φ(D) +
P (D−1

a ) is totally omnipresent.

(d) If G is simply connected and cN (z) 6= 0 for all z ∈ G except for a finite subset of G
then the operator T on H(G) defined by

Tf(z) =

N∑
j=0

cj(z)f
(j)(z) + Vϕ(z) (f ∈ H(G), z ∈ G)

11



is totally omnipresent. In particular, if P is non–zero then the operators P (D) + Vϕ
and P (D) + Ψ(D−1

a ) are totally omnipresent.

Specifically, Part (a) ((b), (c), (d), respectively) follows after modifying suitably the
proof of [6, Theorem 3.1] ([6, Theorem 4.2 and Corollary 4.3], [8, Theorem 3.6], [8, Theorem
3.4], respectively).

As proposed in [8], the strong omnipresence (so the total omnipresence) of Φ(D) +
Ψ(D−1

a ) is unknown to us up to date. As for part (d) of the last theorem, observe that even
for ϕ non–zero the operator Vϕ may not be totally omnipresent (see Section 6), and that T
may not be totally omnipresent if cN is just supposed to be non–zero (as for an example,
see the end paragraph of Section 4, where we take N = 0, ϕ = 0). Nevertheless, they are
strongly omnipresent, see [8]. The point is that if we try to adapt the proof of [8] to the
total omnipresence of these Vϕ and T then one sees that one cannot start with a prefixed
sequence (τn) with (τn(D)) close to the boundary. We will go back to these operators in
Section 6.

Next we state a remark containing the promised assertion on onto linear operators. We
denote TS := T ◦ S. On the other hand, the product T · S is defined as (T · S)f = Tf · Sf .

Remark 4.2. Let T and S be operators on H(G), with T totally omnipresent.

(i) Suppose that each pre-image S−1(Ω) is dense in H(G) whenever Ω is. Then TS and
S are totally omnipresent. In particular, by the Open Mapping Theorem, this occurs
when S is both linear and onto.

(ii) Assume that for every t ∈ ∂G and every f ∈ H(G) there exists

lim
z→t

(Sf)(z) ∈ C (respectively, C \ {0}).

Then T + S (respectively, T · S) is totally omnipresent.

Proof. Part (ii) is easy and left as an exercise to the reader. As for (i), let t ∈ ∂G and
σ = (τn) ∈ N(t). By hypothesis,

HC((CτnTS)) = S−1(HC((CτnT )))

is dense in H(G). So TS is totally omnipresent, by Proposition 2.2(b). To see now that S
is totally omnipresent, apply the case when T = I.

For example, if G is simply connected and a is a fixed point in G, then the differentiation
operator D (and so DN ) is (linear and) onto on H(G). Therefore we derive that the operator
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RN,a on H(G) given by

RN,af(z) = f(z)−
N−1∑
j=0

f (j)(a)

j!
(z − a)j ,

that is, the value at z of Taylor’s remainder of order N of f at a, is totally omnipresent:
just take T = D−Na and S = DN in Part (i) of Remark 4.2. Note that neither D−Na nor
RN,a is onto; they do not even have dense range.

Consider again the operator RN,a acting on H(G), where G is any bounded domain (G
may be non–simply connected this time). Then we can write RN,a = T + S with T = I

and Sf(z) = −
∑N−1

j=0
f (j)(a)
j! (z − a)j , whence Part (ii) of Remark 4.2 applies, yielding RN,a

again as a total omnipresent operator in this new situation.

We now state a sufficient condition under which the existence for each boundary point of
a single wild function with respect to a linear operator yields total omnipresence, compare
[9, Theorem 2.7]. At this point it is convenient to introduce the following definition. We
say that an operator T on H(G) is ∂–hypercyclic if and only if for each t ∈ ∂G and each
σ = (τn) ∈ N(t) the sequence (CτnT ) is hypercyclic. It is evident from Proposition 2.2 that
total omnipresence implies ∂–hypercyclicity.

Proposition 4.3. Let T be a linear ∂–hypercyclic operator on H(G) such that for each
t ∈ ∂G there is a dense subset Dt ⊂ H(G) satisfying that there exists

lim
z→t

(Th)(z) ∈ C

for every h ∈ Dt. Then T is totally omnipresent.

Proof. For each boundary point t and each sequence (τn) ∈ N(t) we fix a hypercyclic
function ft for (CτnT ). Then the set ft + Dt is dense and it is contained in HC((CτnT )).
Indeed, Dt is dense and for fixed h ∈ Dt and g ∈ H(D) there exists an increasing sequence
(nk) ⊂ N for which Tft(τnk

(z)) → g(z) − α(t) (k → ∞) in H(D), where α(t) is the limit
guaranteed by the hypothesis; therefore (T (ft + h)) ◦ τnk

tends to g. Then Proposition 2.2
applies and we are done.

For instance, the condition in the above theorem is satisfied by a differential operator
Φ(D) and by a finite order antidifferential operator P (D−1

a ) (P is a polynomial and a ∈ G)
whenever G is a bounded simply connected domain. Indeed, choose Dt = {polynomials}
for all t ∈ ∂G.

If linearity is not imposed on T , different additional hypotheses about the behaviour of
T near the boundary are needed. We will say that an operator T on H(G) is locally stable
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near the boundary whenever the following property is satisfied: For each compact subset K
of G there exists a compact subset M of G such that for each closed ball B ⊂ G \M , each
f ∈ H(G) and each ε > 0 there exist a compact set S ⊂ G \K with C \ S connected and
δ > 0 such that if g ∈ H(G) and ‖f − g‖S < δ then ‖Tf − Tg‖B < ε.

It should be pointed out that our definition of local stability is less restrictive than that
given in [9, Definition 2.1]. There the set S was a closed ball, but a close look at the proofs
reveals that the connectivity of C \ S is all that is needed.

For instance, from Cauchy’s integral formula for derivatives, it is easy to verify that
each differential operator Φ(D) is locally stable near the boundary; in fact we can always
take concentric balls B, S with radius(B) < radius(S).

Due to the same considerations given just before our Theorem 4.1, we establish without
proof the following result, compare [9, Theorem 2.6].

Theorem 4.4. Let T be a ∂–hypercyclic operator on H(G) that is locally stable near the
boundary. Then T is totally omnipresent.

It happens that, at least for the nonlinear case (if T is linear the answer is unknown to
us), M(T ) may be non-empty while T is not strongly omnipresent, see [9, Example 2.8].
Unfortunately, we do not know whether the corresponding result holds in the new setting
of this paper. Accordingly, we raise the following question:

Is every ∂–hypercyclic operator totally omnipresent?

Our next goal is to get practicable conditions on an operator that guarantee its total
omnipresence. Combining the first hypothesis of Theorem 4.4 with the following notion will
give positive results. Following [9], we say that T has locally dense range near the boundary
if there exists a compact subset M of G such that for each open ball U ⊂ G \ M , the
restriction operator TU : f ∈ H(G) 7→ (Tf)|U ∈ H(U) has dense range. Every operator
with dense range has, trivially, locally dense range. For instance, every non-zero differential
operator Φ(D) has dense range whenever G is simply connected since Φ(D) is onto on the
space of entire functions H(C) [14, 25] and H(C) is dense in H(G). The same reasoning
shows that Φ(D) has locally dense range in any domain G. Also the antidifferential operator
D−Na has locally dense range near the boundary. As the linear example Tf(z) = f(z/2)
(with G = D) shows (see [9, Example 2.10]), the density of the range does not imply strong
(so total) omnipresence. On the other hand, D−Na tells us that an operator with non-dense
range may be totally omnipresent. The trick is in the fact that it possesses both “local”
properties, namely, density and stability.

Theorem 4.5. Let T be an operator on H(G) having locally dense range and local stability
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near the boundary. Then T is totally omnipresent.

Proof. Let us fix sets U?(T, g, ε, r, σ) and D(h,K, δ) as in Definition 2.1 and (2), respectively.
Our goal is to show that their intersection is not empty. Put σ = (τn) and retain in mind that
σ ∈ N(∂G). We have that τn(D) = B(zn, rn) for certain zn ∈ C, rn > 0 (n ∈ N). Denote by
Bn the closure of these balls (n ∈ N). By hypothesis, there exists a compact subset M ⊂ G
such that for each open ball U ⊂ G \M , the mapping f ∈ H(G) 7→ (Tf)|U ∈ H(U) has
dense range. Without loss of generality, it can be supposed that the compact set M is the
same as that given for K in the definition of local stability. Since the balls Bn approach
the boundary, one can select a positive integer N with BN ⊂ G \M . Thus, if one chooses
U = B(zN , rN ) then there exists a function f ∈ H(G) such that

‖Tf − g ◦ τ−1
N ‖τN (rD) <

ε

2
, (7)

because g ◦ τ−1
N ∈ H(U). Now the local stability comes in our help, yielding a compact set

S ⊂ G \K with C \ S connected and a δ1 > 0 such that for all ϕ ∈ H(G)

‖ϕ− f‖S < δ1 implies that ‖Tϕ− Tf‖BN
<
ε

2
. (8)

By Runge’s theorem, it is possible to find a function f1 ∈ H(G) (in fact, a rational one with
poles outside G, as the method of the pole-pushing shows, see for instance [15]) satisfying

‖f1 − h‖K < δ (9)

and
‖f1 − f‖S < δ1.

To achieve this, we have taken K with the property that each connected component of
C∞ \K contains at least one connected component of C∞ \ G (so K ∪ S enjoys the same
property), which carries no loss of generality. By (8),

‖Tf1 − Tf‖BN
<
ε

2
. (10)

Now, (7), (10) and the fact that τN (rD) ⊂ BN yield

‖Tf1 − g ◦ τ−1
N ‖τN (rD) ≤ ‖Tf1 − Tf‖BN

+ ‖Tf − g ◦ τ−1
N ‖τN (rD) < ε. (11)

Consequently, from (9) and (11),

f1 ∈ U?(T, g, ε, r, σ) ∩D(h,K, δ),

and we are done.
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Remark 4.6. A closer look at the last proof (a suitable subsequence of (τn) tending to some
boundary point will be needed) reveals that in order that T be totally omnipresent it suffices
that the following property holds: For each compact subset K ⊂ G and each t ∈ ∂G there is
an open set V with V 3 t such that, for every closed ball B ⊂ V ∩G,

(i) The restriction mapping TB0 has dense range and

(ii) For each f ∈ H(G) and ε > 0 there exist a compact set S ⊂ G \ K with connected
complement and δ > 0 such that for all g ∈ H(G) the fact ‖f − g‖S < δ implies
‖Tf − Tg‖B < ε.

Note that if T is linear then (ii) reduces to say

(ii’) For each ε > 0 there exist a compact set S ⊂ G \K with connected complement and
δ > 0 such that if g ∈ H(G) and ‖g‖S < δ then ‖Tg‖B < ε.

Only a piece of caution: the weaker notions of “somewhere local stability” and “some-
where local density” introduced in [9] do not work here, because they do not permit to fix
a sequence (τn) tending to a given boundary point.

As a consequence of Theorem 4.5 we obtain that, in particular, if T is an onto locally
stable operator (not necessarily linear) then it is totally omnipresent, compare with Re-
mark 4.2. In addition, we derive again, independently, that the identity operator is totally
omnipresent.

We are now passing to study the total omnipresence of the right–composition operator
Cϕ generated by a holomorphic selfmapping ϕ ∈ H(G,G). Its strong omnipresence has
been recently characterized in [9, Theorem 3.1]. Specifically, it is proved there that Cϕ is
strongly omnipresent if and only ifM(Cϕ) is non-empty if and only if for every V ∈ O(∂G)
the set ϕ(V ∩G) is not relatively compact in G. In particular, if G = C, then Cϕ is strongly
omnipresent if and only if ϕ is non–constant. Unfortunately, we have not been able this
time to isolate the exact conditions for Cϕ to be totally omnipresent, see Theorems 4.8–4.9
below. At this point it is convenient to introduce a new concept and to recall a topological
notion.

Definition 4.1. We say that a function F : G→ C is locally one–to–one near the boundary
if and only if there is a compact set K ⊂ G such that F is one–to–one on every open ball
U ⊂ G \K.

By using the compactness of ∂G in C∞, it is easy to see that F is locally one–to–one
near the boundary if and only if we can associate to each t ∈ ∂G an open set V ⊂ C∞

16



containing t satisfying that F is one–to–one on every open ball U ⊂ V ∩ G. A mapping
F : X → Y between two topological spaces X, Y is called proper if the preimage F−1(K)
of each compact subset K ⊂ Y is compact in X. In our setting, the following lemma will
reveal itself to be useful.

Lemma 4.7. A continuous selfmapping F : G→ G is proper if and only if for each t ∈ ∂G
and every compact set K ⊂ G there exists an open set V ⊂ C∞ with V 3 t such that
F (V ∩G) ∩K = ∅.

Proof. Assume that F is proper and that, by the way of contradiction, there exist a bound-
ary point t and a compact subset K ⊂ G with the property that F (Vn ∩ G) ∩ K 6= ∅ for
all n ∈ N, where Vn is the chordal ball in C∞ with center t and radius 1/n. Then we can
select a point zn ∈ Vn ∩ G such that F (zn) ∈ K. Hence F−1(K) is not compact, because
(zn) ⊂ F−1(K) ⊂ G but zn → t ∈ ∂G as n→∞. This is a contradiction.

Conversely, assume F is not proper, that is, that there exists a compact subset K ⊂ G
such that F−1(K) is not compact. But, by continuity, F−1(K) is closed in G, so F−1(K)
cannot be relatively compact in G. Hence there exist a boundary point t and a sequence
(zn) ⊂ F−1(K) with zn → t as n → ∞. Given any open set V ⊂ C∞ containing t, we can
choose n0 ∈ N satisfying zn ∈ V ∩ G for all n > n0. Therefore F (zn) ∈ F (V ∩ G) ∩K for
all n > n0, which tells us that F (V ∩G) ∩K 6= ∅. This concludes the proof.

In our next theorem we will show how the latter two properties –which are rather
practicable– suffice for total omnipresence. In Theorem 4.9 we get at least that the fact
that ϕ be proper is necessary, but the local bijectivity should be changed to a kind of (not
very pleasant) “(1/3)–local bijectivity near the boundary”, see Theorem 4.9 below.

Theorem 4.8. If ϕ is proper and locally one–to–one near the boundary then the operator
Cϕ is totally omnipresent.

Proof. We will try to apply Theorem 4.5, or rather Remark 4.6 after it, with T = Cϕ.
Hence, our goal is to show that (i) and (ii’) are fulfilled. Fix t ∈ ∂G and a compact set
K ⊂ G. By hypothesis and by Lemma 4.7, there exists an open set V1 ⊂ C∞ with V1 3 t
such that

ϕ(V1 ∩G) ∩K = ∅.

Since ϕ is locally one–to–one near the boundary there is another open set V2 with t ∈ V2 ⊂ V1

satisfying that ϕ is one–to–one on every open ball U ⊂ V2 ∩G.

We show now that V = V2 satisfies (i) and (ii’). Fix a closed ball B ⊂ V2 ∩ G. Then
there is an open ball U with B ⊂ U ⊂ V2 ∩ G. If S := ϕ(B), then S ⊂ ϕ(V2 ∩ G) ⊂
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ϕ(V1 ∩G) ⊂ G \K, and C \ S is connected because ϕ : U → ϕ(U) is an isomorphism. It is
clear that given ε > 0 and g ∈ H(G) with ‖g‖S < δ := ε then

‖Cϕg‖B = ‖g ◦ ϕ‖B = ‖g‖S < ε.

On the other hand, the restriction mapping (Cϕ)B0 : f ∈ H(G) 7→ (f ◦ ϕ)|B0
∈ H(B0) has

dense range, because ϕ : B0 → ϕ(B0) is an isomorphism and H(G) is dense in H(ϕ(B0))
by Runge’s theorem (note that ϕ(B0) is a simply connected domain contained in G). Thus,
(i) and (ii’) are satisfied, and the proof is concluded.

Recall that every totally omnipresent operator is ∂–hypercyclic by Proposition 2.2.

Theorem 4.9. Assume that ϕ ∈ H(G,G) and that Cϕ is ∂–hypercyclic. Then ϕ is proper
and satisfies the following property:

For every real number s > 3 there exists a compact set K ⊂ G such that,
for every open ball B(a,R) ⊂ G \K, ϕ is one–to–one on B(a,R/s).

Proof. Suppose, by the way of contradiction, that ϕ is not proper. Therefore, by Lemma
4.7, there is a boundary point t and a compact set K ⊂ G such that for each n ∈ N we
can select a point zn ∈ Vn ∩G with ϕ(zn) ∈ K, where Vn is the chordal ball with center t
and radius 1/n. For every n we can choose rn > 0 such that B(zn, rn) ⊂ Vn ∩ G. Define
σ = (τn) as τn(z) = rnz + zn. Then τn(D) = B(zn, rn) ⊂ V ∩G and

sup
z∈D

χ(t, τn(z)) ≤ 1

n
→ 0 (n→∞),

therefore σ ∈ N(t). Consider a function f ∈ H(G) and the constant function g(z) := 1+M ,
where M = maxz∈K |f(ϕ(z))|. Then g ∈ H(D) and, for all n ∈ N and all r > 0,

‖CτnCϕf − g‖rD ≥ |f(ϕ(zn))− 1−M |
≥M + 1− |f(ϕ(zn))| ≥ 1.

Hence (CτnCϕ) cannot be hypercyclic, which is a contradiction.

Assume now, again by the way of contradiction, that ϕ does not satisfy the (1/3)–
property given in the statement. Then there are a real number s > 3 and a sequence of
balls B(an, rn) ⊂ G tending to the boundary in such a way that ϕ is not one–to–one on
B(an,

rn
s ). By taking a subsequence if necessary, we can suppose that

sup
z∈B(an,rn)

χ(t, z)→ 0 (n→∞) (11)
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for some boundary point t. For each positive integer n there exist points zn, wn ∈ B(an,
rn
s )

satisfying zn 6= wn and ϕ(zn) = ϕ(wn). Consider the following sequence σ = (τn) of affine
linear transformations:

τn(z) =
s

3
(wn − zn)z + zn (n ∈ N).

Then τn(0) = zn, τn(3
s ) = wn and τn(D) = B(zn,

s
3 |wn − zn|) ⊂ B(zn,

s
3 ·

2rn
s ) ⊂ B(an, rn).

Consequently, by (11),
sup
z∈D

χ(t, τn(z))→ 0 (n→∞),

that is, σ ∈ N(t). By hypothesis, there must be a function f ∈ HC((CτnCϕ)). Thus, for
a suitable subsequence (τnj ) of (τn), (Cτnj

Cϕf) tends to the identity function g(z) = z in

H(D). In particular, f(ϕ(τnj (0))) → 0 and f(ϕ(τnj (3/s))) → 3/s as j → ∞. But this
would yield that f(ϕ(znj )) → 0 and f(ϕ(wnj )) → 3/s (j → ∞), which is a contradiction
because both sequences are the same.

In the case G = C the following corollary is derived from the latter two theorems.

Corollary 4.10. Let ϕ be an entire function. We have:

(a) If Cϕ is ∂–hypercyclic then ϕ is a non-constant polynomial.

(b) If ϕ is a polynomial of degree one or two then Cϕ is totally omnipresent.

Proof. Due to Picard’s theorem [17, Chapter 9] and to the fact that limz→∞ P (z) =∞ if P
is a non-constant polynomial, only these polynomials are proper, hence the transcendental
entire functions are excluded from ∂–hypercyclicity by Theorem 4.9. This proves (a). As
for (b), if ϕ is a polynomial of degree one, then ϕ is bijective from C onto C, so it is locally
one–to–one near the boundary and Theorem 4.8 applies. Assume that ϕ is a polynomial
of degree two, namely, ϕ(z) = az2 + bz + c (a, b, c ∈ C; a 6= 0). Our goal is to get a
compact set K ⊂ C such that ϕ is one–to–one on every open ball U ⊂ C \ K. Choose
K = B(0, 1 + |b/a|). Then a ball U as before would lie on a half–plane H which is at a
distance greater than |b/a| from the origin. A simple calculation shows that if ϕ(z) = ϕ(w)
and z 6= w then w = − b

a − z. But if z ∈ U then z ∈ H, whence w ∈ − b
a −H. Hence w 6∈ U

because H ∩ (− b
a −H) = ∅. Thus, ϕ is one–to–one on U , as required.

By Theorem 4.9 and Corollary 4.10 we can furnish a new (even linear) example of a
strongly omnipresent operator which it is not totally omnipresent.
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Example 4.11. Choose G = D and let ϕ be the Blaschke product with zeros at the points
zn = 1− 1

n2 (n ∈ N), that is,

ϕ(z) =

∞∏
n=1

n2z − n2 + 1

(n2 − 1)z − n2
(z ∈ D).

Since
∑

(1 − |zn|) < +∞, we have (see [16, II Theorem 6.1]) that ϕ ∈ H(D,D) and that
ϕ extends to a continuous function on D \ {1} with |ϕ(z)| = 1 on (∂D) \ {1}. Then
(∂D)∩∂ϕ(V ∩G) is not empty for all V ∈ O(∂D), hence ϕ(V ∩G) is not relatively compact
in D, so Cϕ is strongly omnipresent. However, Cϕ is not totally omnipresent because ϕ is
not proper, since, for instance, ϕ−1({0}) = {zn : n ∈ N}, which is not compact. In the case
G = C any Cϕ with ϕ transcendental is strongly omnipresent but not totally omnipresent.

As for the case when ϕ is a polynomial, we raise the following.

Conjecture 4.12. Let ϕ be a polynomial of degree 3 or larger. Then Cϕ is not totally
omnipresent.

We shall be content for now by proving that if N is a positive integer with N ≥ 10
and ϕ(z) = zN then Cϕ is not totally omnipresent. According to Theorem 4.9, this will
be achieved as soon as we can show a real number s > 3 in such a way that to each
r > 0 we can associate a ball B(a,R) ⊂ {|z| > r} with the property that ϕ is not one–
to–one on B(a,R/s). Since sin π

5 < 0.31, we have that sin 2π
N ≤ sin π

5 < 1
3 . Choose s with

sin π
N < 1

s <
1
3 , and fix r > 0. Since R/s

R+r →
1
s as R → ∞, we can select an R > 0 with

sin π
N < R/s

R+r . Consider the balls B(a := R + r,R), and B(R + r,R/s). The first one is
in {|z| > r} while the second one is tangent to two rays from the origin making an angle

of opening 2 arcsin R/s
R+r , which is greater than 2π/N . But given w0 ∈ C \ {0} the roots of

ϕ(z) = w0 are N points in the circle |z| = |w0|1/N equally distributed with angular distance
equal to 2π/N . Then for a suitable w0 there are at least two roots of ϕ(z) = w0 in the
second ball, that is, ϕ is not one–to–one on B(a,R/s).

We are now assuming that Lψ is the left–composition operator on H(G) associated to
an entire function ψ. In [9, Section 3] it is asserted that Lψ is strongly omnipresent on H(G)
if and only ifM(Lψ) 6= ∅ if and only if ψ has an approximate right inverse, that is, there is
a sequence (fn) of entire functions such that ψ(fn(z))→ z (n→∞) locally uniformly in C.
The proof is based there on the fact that locally dense range plus local stability near the
boundary imply strong omnipresence. But they also imply total omnipresence, see Theorem
4.5. Consequently, we are allowed to establish the following theorem.

Theorem 4.13. Let Lψ be the left–composition operator on H(G) defined by ψ ∈ H(C).
Then the following assertions are equivalent:
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(a) The operator Lψ is totally omnipresent.

(b) The operator Lψ is strongly omnipresent.

(c) The operator Lψ is ∂–hypercyclic.

(d) The set M(Lψ) is non–empty.

(e) The function ψ has an approximate right inverse.

In particular, ψ must be surjective in order that Lψ be totally omnipresent; but surjec-
tivity alone is not sufficient (see [9]).

We finish this section by considering the multiplication operator Mh generated by a
function h ∈ H(G). In [9] it is shown that Mh is strongly omnipresent if and only if h is
non-zero. It is easy to realize that a stronger condition is needed for total omnipresence.

Theorem 4.14. Assume that h ∈ H(G). Then the following are equivalent:

(a) The operator Mh is totally omnipresent.

(b) The operator Mh is ∂–hypercyclic.

(c) The set of zeros of h is finite.

Proof. That (a) implies (b) is due to Proposition 2.2. Suppose now that (b) holds and
that the set of zeros of h is not finite. Then the Analytic Continuation Principle allows to
assume the existence of a sequence (zn) ⊂ G tending to some boundary point t such that
h(zn) = 0 for all n. For each n, let us choose rn > 0 so small that Bn := B(zn, rn) ⊂ G and
supz∈Bn

χ(t, Bn)→ 0 (n→∞). Define the mappings τn(z) := rnz + zn. Then (τn) ∈ N(t),
whence there exists f ∈ H(G) such that the sequence {h(τn(z))f(τn(z)) : n ∈ N} is dense
in H(D), which is not possible, because h(τn(0))f(τn(0)) = 0 for all n. This contradiction
shows that (b) implies (c). Finally, assume that the hypothesis of (c) is fulfilled, that is,
h(z) 6= 0 for all z ∈ G \K, for some compact set K ⊂ G. If U ⊂ G \K is an open ball then
the operator f ∈ H(G) 7→ (h ·f)|U ∈ H(U) has dense range by Runge’s theorem. Hence Mh

has locally dense range near the boundary. Moreover, Mh is obviously locally stable near
the boundary (for any h). An application of Theorem 4.5 yields that (c) implies (a).

Observe that from the last theorem we obtain further examples of linear strongly non–
totally omnipresent operators: just take G = D and T = Mh, where h is the Blaschke
product ϕ considered in Example 4.11.
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5 Dense linear manifolds of monsters

The content of this section has been the main motivation for this paper. As indicated in
Section 1, Luh [22] and Grosse–Erdmann [18] showed that, topologically speaking, the set
of Luh–monsters is huge. We prove here that not only topologically but also algebraically
Luh “created” too many monsters. The precise formulation for this statement will be given
in Theorem 5.2. Nevertheless, a more general result can be stated.

Theorem 5.1. Assume that (Sj) is a countable family of linear totally omnipresent op-
erators on H(G). Then there exists a dense linear submanifold M ⊂ H(G) such that
M(Sj) ⊃M \ {0} for all j.

Proof. Fix a dense sequence {tk : k ∈ N} in ∂G. For each k ∈ N, fix a sequence (τ
(k)
n ) ∈

N(tk). By Proposition 2.2, the sequence T
(k,j)
n : X → Y (n ∈ N) is densely hereditarily

hypercyclic for every k ∈ N and every j, where X = Y := H(G) and T
(k,j)
n := C

τ
(k)
n
Sj .

Then the hypotheses of Theorem 3.1 are fulfilled. Hence there is a dense linear manifold
M ⊂ H(G) with

M \ {0} ⊂
⋂
k,j

HC((C
τ
(k)
n
Sj)).

But observe that the last intersection is included inM(Sj) for each j, because in order that
Sjf be a holomorphic monster it is sufficient to see its wild behaviour only near the points
of a dense boundary subset, see [6, Lemma 2.1]. This drives us to M \ {0} ⊂ M(Sj) for all
j.

The last theorem yields immediately the next corollary.

Theorem 5.2. Assume that G ⊂ C is a simply connected domain. Then there exists a
dense linear submanifold of H(G) whose non–zero members are Luh–monsters.

Proof. Fix a point a ∈ G and define the operators Sj (j ∈ Z) as Sj = Dj (j ∈ N0), Sj = Dj
a

(−j ∈ N). Now just apply Theorem 5.1 and take in mind that

{Luh–monsters} =
⋂
j∈Z
M(Sj).

Of course, Theorem 5.1 holds when the sequence (Sj) is changed by just a single operator
T on H(G). One can believe that the same assertion of Theorem 5.1 would hold just by
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assuming that T is a linear strongly omnipresent operator. This is false. As a matter of
fact, it can happen that M(T ) does not contain any manifolds of dimension greater than
one. Indeed, consider the linear operator Tf(z) = f(0) ·ϕ(z) on H(D), where ϕ ∈ H(D) is a
fixed holomorphic monster (see [9, Example 2.9]). Assume that M is a linear manifold with
M \ {0} ⊂ M(T ) and dim(M) ≥ 2. Hence we can select two linearly independent functions
f , g in M . Since M(T ) = {h ∈ H(D) : h(0) 6= 0} we have α := f(0) 6= 0 6= g(0) =: β.
Define h(z) := f(z) − α

β g(z). By linear independence, h ∈ M \ {0}, whence h ∈ M(T ).
Thus, 0 6= h(0) = α − α = 0, which is a contradiction. This shows that dim(M) ≤ 1, as
required. By the way, this shows that the operator T is not totally omnipresent.

6 Relationship to the DI–operators. The Volterra operator

In this section we are considering briefly the boundary wild behaviour from another
point of view. In 1995 the first author proved [2] that for every subset A ⊂ G which is not
relatively compact in G there exists a residual set M in H(G) such that f (n)(A) is dense
in C for every n ∈ N0, and the second author showed later [12] that the same property
is shared by certain kinds of infinite order differential and antidifferential operators and
Volterra operators. This motivated us [7] to introduce the notion of dense–image operators
or, briefly, DI–operators. A DI–operator is a (not necessarily linear) continuous selfmapping
T on H(G) satisfying that the set M(T,A) := {f ∈ H(G) : Tf(A) is dense in C} is dense in
H(G) for every subset A ⊂ G which is not relatively compact in G. From the fact that any
of these subsets contains a sequence tending to some boundary point, it is easy to see that
every totally omnipresent operator is a DI–operator. The converse is not true, see below.
Let us summarize in one theorem several examples of relevant classes of DI–operators, see
[7] and [12]. The interested reader should compare the following to the results of Section 4
and note that these earlier results improve in part the content of the next theorem.

Theorem 6.1. Let G ⊂ C be a domain, Φ(z), Ψ(z) two power series as in Theorem 4.1,
and let ϕ : G × G → C be a holomorphic function with respect to both variables. Assume
also that ϕ1 ∈ H(G,G), ϕ2 ∈ H(C), ϕ3 ∈ H(G). We have:

(a) If Φ is non–zero then Φ(D) is a DI–operator.

(b) If G is simply connected, a ∈ G and Vϕ is the Volterra operator associated to a, ϕ,
then Vϕ is a DI–operator if and only if for every compact subset L ⊂ G and every
A ⊂ G which is not relatively compact there exist b ∈ A \ L and s ∈ G such that
ϕ(b, s) 6= 0. In addition, if ϕ satisfies this property then Φ(D) + Vϕ is a DI–operator.
In particular, if at least one of Φ, Ψ is non–zero then Φ(D)+Ψ(D−1

a ) is a DI–operator.

(c) Every onto linear operator is a DI–operator.
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(d) The operator Cϕ1 is DI if and only if ϕ1 is proper. In particular, if G = C, then Cϕ1

is a DI-operator if and only if ϕ1 is a non–constant polynomial.

(e) The operator Lϕ2 is DI if and only if ϕ2 is non–constant.

(f) The operator Mϕ3 is DI if and only if the set of zeros of ϕ3 is finite.

In [7] it is proved that DI property implies omnipresence, and linear examples are ex-
hibited showing that strong omnipresence (so omnipresence) does not imply DI–property.
A non–linear example of a DI–operator which is not strongly omnipresent is also furnished,
but we do not know whether every linear DI–operator is strongly omnipresent. If G = C
and ϕ(z) = z10 then by part (d) of the latter theorem the linear operator Cϕ is DI (it is also
strongly omnipresent, because ϕ is not constant), but it is not totally omnipresent, as we
saw after Conjecture 4.12. Moreover, if G = C, a = 0 and ϕ(z, t) := sin(πz) then the linear
operator Vϕ is strongly omnipresent by [8] but it is not DI (so not totally omnipresent):
choose L = ∅ and A = N in part (b) of Theorem 6.1.

Now, we focus our attention on the Volterra operator of the first kind Vϕ and conclude
this paper with the statement of two results whose contents and proofs are analogous to
the corresponding ones in [8]. Hence their proofs are left to the interested reader. In fact,
similarly to [8], the first result below can be used to prove the second one as well as some
assertions of Theorem 4.1. In the following, G is a simply connected domain of C and a is
a fixed point in G. In addition, if B is a closed ball in G, then A(B) denotes the Banach
space of all functions that are continuous in B and holomorphic in B0, endowed with the
maximum norm ‖ · ‖B. With the same norm we endow the subspace Ab(B) consisting of all
functions of A(B) with a zero at b, where b ∈ ∂B.

Theorem 6.2. Let S : H(G) → H(G) be an operator and ϕ : G × G → C a holomorphic
function with respect to both variables. Then the operator on H(G) defined by

Tf(z) = Sf(z) + Vϕ(z)

is totally omnipresent if there exists a compact set K ⊂ G such that for each closed ball
B′ ⊂ G \K there is a closed ball B with B′ ⊂ B ⊂ G \K and a point b ∈ ∂B such that

(a) the operator S extends continuously to a mapping

S̃ : A(B)→ A(B′),

(b) the mapping T̃ : Ab(B)→ A(B′) defined by

T̃ f(z) = S̃f(z) +

∫ z

b
f(t)ϕ(z, t)dt (z ∈ B′)

has dense range.
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Theorem 6.3. Assume that ϕ : G × G → C is holomorphic and that there exist N ∈ N0

and a compact set K ⊂ G such that

∂Nϕ

∂zN
(w,w) 6= 0 =

∂nϕ

∂zn
(w,w) (n = 0, 1, . . . , N − 1) for all w ∈ G \K.

Then the operator Vϕ is totally omnipresent.

We propose here the problem of characterizing the total omnipresence of Vϕ in terms of
ϕ.
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[16] J. B. Garnett, “Bounded Analytic Functions”, Academic Press, New York, 1981.

[17] B. R. Gelbaum, “Modern real and complex analysis”, Wiley, New York, 1995.

[18] K.–G. Grosse–Erdmann, Holomorphe Monster und universelle Funktionen, Mitt.
Math. Sem. Giessen 176 (1987).

[19] K.–G. Grosse–Erdmann, Universal families and hypercyclic operators, Bull. Amer.
Math. Soc. (N.S.) 36 (1999), 345–381.

[20] K.–G. Grosse–Erdmann, Rate of growth of hypercyclic entire functions, Indag. Math.
11 (2000), 561–571.

[21] D. A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99
(1991), 179–190.

[22] W. Luh, Holomorphic monsters, J. Approx. Theory 53 (1988), 128–144.

[23] W. Luh, Multiply universal holomorphic functions, J. Approx. Theory 89 (1997),
135–155.

[24] W. Luh, V.A. Martirosian and J. Müller, T–universal functions with lacunary power
series, Acta Sci. Math. (Szeged) 64 (1998), 67-79.

26



[25] B. Malgrange, Existence et approximation des solutions des équations aux dérivées
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