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Dedicated to the memory of Professor Miguel de Guzmán, who died on April 2004

Abstract

In this note, we show that every infinite-dimensional separable Fréchet space
admitting a continuous norm supports an operator for which there is an infinite-
dimensional closed subspace consisting, except for zero, of hypercyclic vectors.
The family of such operators is even dense in the space of bounded operators
when endowed with the strong operator topology. This completes earlier work
of several authors.

1 Introduction and notation

Throughout this paper, the following standard notation will be used: N is the set

of positive integers, R is the real line, and C is the complex plane. The symbols

(mk), (nk) will stand for strictly increasing sequences in N. If X, Y are (Hausdorff)

topological vector spaces (TVSs) over the same field K = R or C, then L(X, Y ) will

denote the space of continuous linear mappings from X into Y , while L(X) is the

class of operators on X, that is, L(X) = L(X,X). The strong operator topology

(SOT) in L(X) is the one where the convergence is defined as pointwise convergence

at every x ∈ X.

A sequence (Tn) ⊂ L(X, Y ) is said to be universal or hypercyclic provided there

exists some vector x0 ∈ X –called hypercyclic for the sequence (Tn)– such that its
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orbit {Tnx0 : n ∈ N} under (Tn) is dense in Y . It is obvious that if there is a

hypercyclic sequence (Tn) ⊂ L(X, Y ) then Y must be separable. In the (perhaps

most interesting) case X = Y , an operator T ∈ L(X) is called hypercyclic if the

sequence (T n) of its iterates –that is, T 1 = T, T 2 = T ◦ T and so on– is hypercyclic.

See the excellent surveys [21] and [22] for concepts and results concerning universality.

In 1969 Rolewicz [33] proved that no finite-dimensional TVS X supports a hy-

percyclic operator, and showed that any multiple λB (|λ| > 1) of the backward shift

B : (α0, α1, α2, . . .) 7→ (α1, α2, α3, . . .) on the sequence spaces lp (1 ≤ p < ∞) or c0

possesses a dense orbit, so exhibiting the first example of a hypercyclic operator on

a Banach space. He asked in [33] whether any infinite-dimensional separable Banach

space supports a hypercyclic operator. During the late nineties, this question was

solved in the affirmative, independently, by Ansari [1] and the author [3] (the proof

of Ansari is also applicable on a wide class of TVSs). Finally, in 1998 Bonet and

Peris [13] gave the same affirmative answer for Fréchet spaces. We recall that an

F-space is a complete and metrizable TVS, while a Fréchet space is a locally convex

F-space. The proofs of [1], [3] and [13] are all based on a result of Salas [34, Theorem

3.3], who proved that when (wn)n≥0 is any bounded sequence of positive scalars then

the operator I + Bω –where I denotes the identity operator and Bω is the weighted

backward shift generated by the weights wn– is hypercyclic on lp (1 ≤ p <∞) or c0.

We point out that there exist separable complete locally convex spaces that do not

support any hypercyclic operators, see [13, Proposition 6].

A natural problem that arises in this context is that of the size and the structure of

the set HC(T ) of hypercyclic vectors for a hypercyclic operator T on a TVS X. First,

HC(T ) is dense because T has dense range and T nx ∈ HC(T ) for all x ∈ HC(T )

and all n ∈ N. Second, if X is Baire, metrizable and separable then HC(T ) is even

residual, that is, its complement in X is of first category (more generally, if X is

Baire, Y is metrizable separable and (Tn) ⊂ L(X, Y ) is a hypercyclic sequence, then

its set HC((Tn)) of hypercyclic vectors is residual in X). It is evident that HC(T ) is

not a linear space, but recently Wengenroth [36] has shown the existence of a dense

linear manifold M ⊂ X such that M \ {0} ⊂ HC(T ), so completing earlier work by

Herrero [24], Bourdon [14] and Bès [8], see also [4].

In a complementary line, the study of the existence of hypercyclic subspaces (the

terminology is due to Chan [16]), that is, of infinite-dimensional closed subspaces

Z ⊂ X such that Z \{0} ⊂ HC(T ) (or ⊂ HC((Tn)) if (Tn) is a hypercyclic sequence)

was initiated by Montes and the author [6] in 1995. They proved that if G ⊂ C is a
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domain that is not isomorphic to C \ {0} then there is a hypercyclic subspace for the

sequence (Cϕn) of composition operators onH(G) (= the Fréchet space of holomorphic

functions on G, endowed with the compact-open topology) generated by a sequence

(ϕn) of automorphisms of G acting properly discontinuously on G. This means that,

given a compact set K ⊂ G, there is n ∈ N with ϕn(K) ∩K = ∅. In particular, this

applies on sequences of euclidean translations in C or of noneuclidean translations in

the open unit disk D. Later, Montes, León and González provided a series of papers

([29], [26], [27], [19], see also [31, Section 2]) where some conditions for an operator

on a Banach space X to have a hypercyclic subspace are established. Among other

results, they proved that if T satisfies the Hypercyclicity Criterion (see Definition

2.1) for some (nk) ⊂ N and there exists an infinite-dimensional closed subspace

X0 ⊂ X such that T nkx → 0 (k → ∞) for all x ∈ X0, then T has a hypercyclic

subspace. In [29, Theorem 3.4] it is shown that not every hypercyclic operator on

Hilbert space possesses a hypercyclic subspace. Nevertheless, every separable infinite-

dimensional Banach space supports an operator that admits a hypercyclic subspace,

see [26, Corollary 2.2].

Let us conclude the history of these recent results. Chan [15] gave an alternative

simpler proof of the mentioned result of Montes and co-workers in the Hilbert space

context. Later, Chan and Taylor [17] and, independently, Montes and Romero [30]

extended the arguments of Chan to the setting of Banach spaces. In 2002, Chan

[16] showed that hypercyclic operators on Hilbert space are SOT-dense in the space

of operators. Even more, he was able to prove that the family of operators on a

(separable, infinite-dimensional) Hilbert space X supporting a hypercyclic subspace is

still SOT-dense in L(X). Finally, Bès and Chan [9, Theorem 2] have recently noticed

that the hypercyclic operators on any separable, infinite-dimensional) Fréchet space

are SOT-dense.

In view of the aforementioned statements, the following problem arises naturally:

Given an infinite-dimensional separable Fréchet space X, is the family of operators

admitting a hypercyclic subspace SOT-dense in L(X)? The aim of this short note is

to furnish a rather general answer by showing (see Section 2) that the denseness of

such family is guaranteed whenever X admits a continuous norm. The space H(G)

is a typical example of a non-normable space admitting a continuous norm.
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2 Supporting operators with hypercyclic subspaces

Before giving the main result of the present paper (Theorem 2.5), we recall a notion

which has turned out to be extremely useful in applications, see [18] and [21].

Definition 2.1. Assume that X and Y are separable F-spaces. Assume that (Tn) ⊂
L(X, Y ), that T ∈ L(X) and that (nk) ⊂ N. We say that (Tn) satisfies the Hyper-

cyclicity Criterion (HC) (or the Universality Criterion) with respect to (nk) whenever

there exist dense subsets D1 ⊂ X, D2 ⊂ Y such that Tnk
x → 0 (k → ∞) for all

x ∈ D1, and for every y ∈ D2 there is a sequence (vk) ⊂ X such that vk → 0 and

Tnk
vk → y (k → ∞). The sequence (Tn) satisfies the HC provided that the last

property holds for some sequence (nk). Accordingly, T is said to satisfy the HC (with

respect to (nk)) if the sequence (T n) of its iterates satisfies the HC (with respect to

(nk), respectively).

If (Tn) satisfies the HC then it is hypercyclic, see [21]. The reader is referred to

[7], [11], [5] and [2] for equivalent properties to the HC.

We will make use of four auxiliary results. The first one is due to Grivaux [20,

Theorem 1.3 and Remark 1.4]. It is in fact a modification of [34, Theorem 3.3] and

reads as follows.

Lemma 2.1. Let X be one of the sequence spaces lp (1 ≤ p <∞) or c0, and (wn)n≥0

be any bounded sequence of positive scalars. Consider the operator S defined on X by

S(α0, α1, α2, α3, α4, α5, . . .) = (w0α1, w1α3, w2α5, . . .).

Then the operator I + S is hypercyclic on X. In fact, it satisfies the HC.

The second auxiliary statement is a very useful one due to Mart́ınez-Giménez and

Peris [28, Lemma 2.1]. It is a stronger version of the so-called Hypercyclic Comparison

Principle due to J.H. Shapiro [35, p. 111].

Lemma 2.2. Assume that X, Y are F-spaces, that T ∈ L(X), T̃ ∈ L(Y ), Q ∈
L(Y,X), that Q has dense range and that QT̃ = TQ. If T̃ satisfies the HC then T

also does.

The third auxiliary statement is a modified version of Theorem 3.5 of the very

recent paper [12] by Bonet, Mart́ınez-Giménez and Peris. In our lemma, condition
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(iii) below has replaced the more restrictive one “limk→∞ Tmk
x = 0 for each x ∈ X0”

given in [12, Theorem 3.5].

Lemma 2.3. Assume that (mk) ⊂ N, that X and Y are Fréchet spaces and that

(Sn) ⊂ L(X, Y ). Suppose that the following properties are satisfied:

(i) The space X admits a norm which is continuous.

(ii) The sequence (Sn) satisfies the HC with respect to (mk).

(iii) There exists a closed infinite-dimensional subspace X0 ⊂ X such that, for every

x ∈ X0, the sequence (Smk
x) converges in Y .

Then (Smk
) (hence (Sn)) admits a hypercyclic subspace.

Proof. Exactly as in [12, proof of Theorem 3.5], conditions (i) and (ii) allow us to

assert the existence of an operator K on X such that {Smk
Kx : k ∈ N} is dense

in Y for all x ∈ X \ {0} and, in addition, the operator I + K has closed range

and finite-dimensional kernel. Therefore X1 := (I + K)(X0) is a closed infinite-

dimensional subspace of X. If x1 ∈ X1 \ {0}, then there exists x0 ∈ X0 \ {0} such

that x1 = x0 + Kx0. Let u(x0) := limk→∞ Smk
x0 ∈ Y . Fix y ∈ Y and let (nk) be a

subsequence of (mk) satisfying Snk
Kx0 → y − u(x0) as k →∞. Hence, by linearity,

Snk
x1 = Snk

x0 + Snk
Kx0 → u(x0) + (y − u(x0)) = y (k →∞).

In other words, the sequence {Smk
x1 : k ∈ N} is dense in Y . Consequently, X1 is a

hypercyclic subspace for (Smk
).

The fourth and last auxiliary result is a nice one due to Hadwin, Nordgren, Radjavi

and Rosenthal ([23], see also [10, Theorem 1 and the note following it]), and it was

cleverly used by Bès and Chan in [10, Corollary 6] to give a new proof of [9, Theorem

2] together with some new results.

Lemma 2.4. Let X be an infinite-dimensional locally convex space, and let T in

L(X) be fixed. The following statements are equivalent:

(i) The set of conjugates {STS−1 : S invertible} of T is SOT-dense in L(X).
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(ii) For all n ∈ N, there exist h1, . . . , hn in X so that the set {h1, . . . , hn, Th1, . . . , Thn}
is linearly independent.

If X is a TVS then the linear span of a subset A of X is denoted by span(A). If A

is an absolutely convex subset of X and pA is the Minkowski functional of A, XA will

stand for span(A)/kerpA endowed with the norm induced by pA. The topological

dual of X will be denoted by X ′. We are now ready to establish our assertion, which

concludes the paper.

Theorem 2.5. Suppose that X is a separable infinite-dimensional Fréchet space ad-

mitting a continuous norm. Then X supports an operator which possesses a hyper-

cyclic subspace. Even more, the family of such operators is SOT-dense in L(X).

Proof. The second assertion of the theorem is obtained from the first one together with

Lemma 2.4: Just take into account that the family under consideration is invariant

under conjugation, and that every hypercyclic operator has at least one dense (so

linearly independent, because X is infinite-dimensional) orbit {x0, Tx0, T
2x0, . . .};

then Lemma 2.4 applies if we choose hj := T 2j−2x0 (j = 1, . . . , n; n ∈ N).

Hence it is enough to exhibit an operator T ∈ L(X) possessing a hypercyclic

subspace. Our approach takes advantage of the clever method given by Bonet and

Peris in [13, Lemmas 2–3].

It is known that the countable product of lines ω := KN, endowed with the product

topology, is a Fréchet space but it does not admit a continuous norm, so X 6= ω.

Then by [13, Lemma 2 and proof of Theorem 1] there are sequences (xn)n≥0 ⊂ X and

(fn)n≥0 ⊂ X ′ satisfying the following conditions:

(a) (xn) converges to 0 in X, and the closed absolutely convex hull B of (xn) satisfies

that XB is a Banach space which is dense in X.

(b) (fn) is X-equicontinuous in X ′.

(c) fm(xn) = 0 if m 6= n and {fn(xn) : n ≥ 0} ⊂ (0, 1).

Consider the operator T on X defined as T := I + S, where

Sx :=
∞∑
n=0

f2n+1(x)

2n
xn (x ∈ X).
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Exactly as in [13, proof of Lemma 3], we obtain that

B =

{
∞∑
n=0

αnxn :
∞∑
n=0

|αn| ≤ 1

}
(1)

and that the mapping

Q : α = (αn)n≥0 ∈ l1 7→
∞∑
n=0

αnxn ∈ XB

is linear, continuous and surjective. By Lemma 2.1, the operator

T̃ : (αn)n≥0 ∈ l1 7→
(
α0 + f0(x0)α1, α1 +

f1(x1)

2
α3, α2 +

f2(x2)

22
α5, . . .

)
∈ l1

satisfies the HC, since the weights wn := fn(xn)
2n

are positive and form a bounded

sequence.

Let us show that T also satisfies the HC. If we consider Q as a mapping Q : l1 → X

then Q is also continuous. Indeed, such mapping is the composition of Q : l1 → XB

with the canonical inclusion XB → X. This inclusion is (linear and) continuous,

because if {uk :=
∑∞

n=0 αnkxn}k∈N ⊂ XB is a sequence tending to zero in the topology

of XB then it also tends to zero in the topology of E. Let us explain why this is so.

By (1) we have that λB = {
∑∞

n=0 αnxn :
∑∞

n=0 |αn| ≤ λ} for all λ > 0. Due to

(c), the series expansion x =
∑∞

n=0 αnxn of each x ∈ XB in terms of some sequence

(αn) ⊂ K is unique. So if λ > 0 and x ∈ λB we get
∑∞

n=0 |αn| ≤ λ. Therefore∑∞
n=0 |αn| ≤ pB(x). But limk→∞ pB(uk) = 0, whence limk→∞

∑∞
n=0 |αnk| = 0. On

the other hand, X is locally convex, so in order to show that (uk) tends to cero in

X it is enough to prove that uk → 0 in the Mackey topology of X, that is, that

limk→∞ supϕ∈A |ϕ(uk)| = 0 for every equicontinuous subset A ⊂ X ′ (see for instance

[25, Proposition 7, pages 200–201]). Since (xn) is bounded (because xn → 0) in X,

it holds that if A is equicontinuous then there is a constant K ∈ (0,+∞) such that

supϕ∈A,n≥0 |ϕ(xn)| ≤ K. Thus,

sup
ϕ∈A
|ϕ(uk)| = sup

ϕ∈A

∣∣∣∣∣ϕ
(
∞∑
n=0

αnkxn

)∣∣∣∣∣
≤

∞∑
n=0

|αnk| sup
ϕ∈A
n≥0

|ϕ(xn)| ≤ K

∞∑
n=0

|αnk| → 0 (k →∞),
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from which one derives that the left hand side tends to zero as k → ∞, as desired.

Consequently, Q : l1 → X is linear and continuous. In addition, it has dense range

(due to Q(l1) = XB and (a)) and TQ = QT̃ on l1. Recall that T ∈ L(X), T̃ ∈ L(l1)

and that T̃ satisfies the HC. This and Lemma 2.2 (with Y := l1) drive us to assert

that T satisfies the HC.

On the other hand, the restriction of the operator T̃ to the subspace Z := {α ∈
l1 : α2n+1 = 0 for all n ≥ 0} is the identity operator. Consider the linear manifold

Z0 := Q(Z) ⊂ XB ⊂ X. Since TQ = QT̃ on l1, the fact that the restriction of T̃ to

Z is the identity yields that T is the identity on Z0, i.e. Tx = x for all x ∈ Z0. By

continuity, we get Tx = x for all x ∈ X0, where

X0 := closureX(Z0). (2)

From (c) one easily derives that the sequence (xn) is linearly independent. Therefore

span({x2n : n ≥ 0}) is infinite-dimensional, hence by (2) and by the inclusions

span({x2n : n ≥ 0}) ⊂ Z0 ⊂ X0 we obtain that X0 is a closed infinite-dimensional

subspace of X.

Finally, if x ∈ X0 then Tx = x, so Snx = x for all n ∈ N and all x ∈ X0, where

we have set Sn := T n (n ∈ N). Hence, trivially, limn→∞ Snx exists (= x) for every

x ∈ X0. Therefore (Smk
x) converges in X for each x ∈ X0, where (mk) ⊂ N is a

sequence with respect to which T –or, that is the same, the sequence (Sn)– satisfies

the HC. An application of Lemma 2.3 with Y := X concludes the proof.

Acknowledgement. I am grateful to the referee for useful comments and for

letting me know that the first part of the statement of our Theorem 2.5 has been also

obtained, independently, by Henrik Petersson in his recent manuscript [32].
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