
Interpolation by hypercyclic functions
for differential operators

by L. Bernal-González∗
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Abstract

We prove that, given a sequence of points in a complex domain Ω

without accumulation points, there are functions having prescribed

values at the points of the sequence and, simultaneously, having dense

orbit in the space of holomorphic functions on Ω. The orbit is taken

with respect to any fixed non-scalar differential operator generated by

an entire function of subexponential type, thereby extending a recent

result about MacLane-hypercyclicity due to Costakis, Vlachou and

Niess.

Key words and phrases: Hypercyclic function, differential operator, interpo-

lation, mixing sequence of mappings.
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1 Introduction

In 1929, Birkhoff [6] proved the existence of an entire function f which is

universal in the sense that the sequence {f(·+ an) : n ≥ 1} of its translates

(a ∈ C \ {0}) is dense in the space H(C) of entire functions. Later, in

1952, MacLane [15] demonstrated the same density property for the sequence

{f (n) : n ≥ 1} of derivatives of some entire function f . Formally speaking,

the translation operator τa : f 7→ f(· + a) and the derivation operator D :

f 7→ f ′ acting on the space H(C) are hypercyclic, see Section 2. In 1991,

Godefroy and Shapiro [10] unified both above results by establishing the

hypercyclicity on H(C) of any nonscalar differential operator Φ(D), genera-

ted by an entire function Φ with exponential type. Birkhoff’s theorem and

MacLane’s theorem correspond, respectively, to the cases Φ(z) = exp(az),

Φ(z) = z.

In a different direction, Weierstrass’ interpolation theorem (see [18]) as-

serts the existence of holomorphic functions on a domain Ω of the complex

plane C having prescribed values at a sequence of points without accumu-

lation points. Recently, Costakis and Vlachou [9] and, independently, Niess

([16],[17]) have carried out the interesting task of combining both properties

of hypercyclicity and interpolation. To be more specific, they have proved

the existence of a holomorphic function f (in fact, of a plethora of them)

that is MacLane-universal and, simultaneously, takes prescribed values at

the points of a given set without accumulation points in Ω, whenever Ω is

simply connected (Ω = C in [16],[17]). They have also established a num-

ber of results concerning interpolation for functions enjoying either Birkhoff

universality on C ([9],[17]), or multiplicative universality in C \ {0} [17], or

universality in a domain with respect to some similarities z 7→ az + b [9],

or universality (on multiply connected domains) of their Taylor partial sums
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[9]. In [16], [17], the universality-interpolation properties are even combined

with prescribed zeros with given multiplicities. It seems that Costakis [8]

was the first analyst that dealt with the problem of existence of interpola-

ting universal functions, precisely in the setting of universal Taylor series on

simply connected domains.

Our aim in this paper is to extend the former result by Costakis–Vlachou

and Niess. Namely, we generalize their assertion to differential operators ge-

nerated by entire functions Φ with subexponential type. Section 2 is devoted

to give a number of pertinent definitions and instrumental results, while

Section 3 contains the exact statement of our theorem, together with its

proof and a result about linear hypercyclic structure in a special case.

2 Terminology and preliminary results

Let Ω be a domain in C, that is, Ω is a nonempty connected open subset

of C. The vector space H(Ω) of holomorphic functions on Ω becomes a

complete metrizable separable space when endowed with the topology of

uniform convergence on compacta. In particular, it is a second-countable

Baire space. A domain Ω is said to be simply connected provided that its

complement with respect to the extended complex plane is connected. If

S ⊂ C, then S0 denotes the interior of S.

Let Φ be an entire function. Then Φ is said to be of exponential type if

there are constant A, B ∈ (0,+∞) such that |Φ(z)| ≤ A exp(B|z|) (z ∈ C).

And Φ is called of subexponential type whenever, given ε > 0, there is a

constant A = A(ε) ∈ (0,+∞) such that |Φ(z)| ≤ A exp(ε|z|) (z ∈ C). In

other words, Φ is of exponential (subexponential, resp.) type if and only

if it has either growth order < 1 or growth order = 1 and type < +∞
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(either growth order < 1 or growth order = 1 and type 0, resp.). If Ω is

a domain and Φ(z) :=
∑∞

n=0 cnz
n is an entire function of subexponential

type, then the expression Φ(D) :=
∑∞

n=0 cnD
n defines a (linear, continuous)

operator Φ(D) : f ∈ H(Ω) 7→
∑∞

n=0 cnf
(n) ∈ H(Ω), see [1]. Note that

Φ(D) is a (generally, infinite order) linear differential operator with constant

coefficients. If Ω = C, then the operator Φ(D) is well-defined even if Φ is of

exponential type. In fact, an operator T on H(C) has the form T = Φ(D)

with Φ of exponential type if and only if T commutes will all translations τa

(a ∈ C), see [10].

For the following concepts and results on universality and other dynamical

properties, the reader is referred to [14], [12], [13], [7] and [11]. Assume that

Tn : X → Y (n ∈ N := {1, 2, . . . }) is a sequence of continuous mappings

between two topological spaces X, Y . Then {Tn}n≥1 is said to be:

(a) universal if there exists a point x0 ∈ X (called universal for {Tn}n≥1)

whose orbit {Tnx0 : n ∈ N} is dense in Y .

(b) topologically transitive if, given nonempty open subsets U ⊂ X, V ⊂ Y ,

there is N ∈ N such that TN(U) ∩ V 6= ∅.

(c) topologically mixing if, given nonempty open subsets U ⊂ X, V ⊂ Y ,

there is N ∈ N such that Tn(U) ∩ V 6= ∅ for n ≥ N .

If T : X → X is a continuous selfmapping, then T is called universal (topo-

logically transitive, topologically mixing, resp.) provided that the sequence

{T n}n≥1 of its iterates is universal (topologically transitive, topologically

mixing, resp.). If X, Y are topological vector spaces and the Tn (or T , if

we are dealing with selfmappings) are linear, then it is customary to say

hypercyclic instead of universal. We denote U({Tn}n≥1) = {x ∈ X : x is
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universal for {Tn}n≥1} and, if X = Y , U(T ) = {x ∈ X : x is universal for

T} = U({T n}n≥1).

Recall that a subset A of a Baire topological space X is residual when it

contains a dense Gδ subset. It can be said that a residual subset is “topo-

logically large” in X. The connection between universality and transitivity

is given by the following well-known result.

Birkhoff’s transitivity theorem. Assume that Tn : X → Y (n ∈ N)

is a sequence of continuous mappings between two topological spaces X, Y .

Suppose that X is Baire and that Y is second-countable. Then the following

are equivalent:

(i) {Tn}n≥1 is topologically transitive.

(ii) {Tn}n≥1 is densely universal, that is, U({Tn}n≥1) is dense in X.

(iii) U({Tn}n≥1) is residual in X.

One easily derives that, under the same hypotheses on X and Y , the

sequence {Tn}n≥1 is topologically mixing if and only if {Tnk
}k≥1 is densely

universal for every subsequence {n1 < n2 < · · · } ⊂ N.

Godefroy and Shapiro [10] proved the hypercyclicity of any operator Φ(D)

on H(C), with Φ a nonconstant entire function of exponential type. In fact,

they worked in CN , and their result can be extended to a Runge domain Ω

in CN (if N = 1, Runge equals simply connected) whenever Φ is of subex-

ponential type (see [2] and [5], where sequences of operators Φn(D) are also

considered). The approach followed by Godefroy and Shapiro shows that, in

fact, the operators Φ(D) are mixing.

In Section 3, we will need the next four lemmas. Lemma 2.1 is an ana-

logue to an auxiliary bounded interpolation result given in [9], except that

in ours exponentials are employed instead of polynomials. Lemma 2.2 fol-
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lows from a well-known denseness assertion whose proof can be found in [10].

Lemma 2.3 says that the differential operators induced by entire functions of

subexponential type are “internally controlled”. Its easy proof is sketched in

[4]. Finally, Lemma 2.4 furnishes a statement about the strong linear struc-

ture of a topologically mixing sequence of linear mappings. By ea (a ∈ C) we

denote the function ea(z) := exp(az), while spanX0 will stand for the linear

span of a subset X0 of a vector space.

Lemma 2.1. Assume that L is a compact subset of C, that a1, . . . , am are

different points in L, and that A is a nonempty open subset of C. Then

there are a constant M = M(L, a1, . . . , am, A) ∈ (0,+∞) and a finite set

of functions {α1, . . . , αm} ⊂ span{ea : a ∈ A}, depending only on A and

the points a1, . . . , am, satisfying the following property: Given a pair f, h of

complex-valued functions defined on L, there exists a function F : L → C
satisfying:

(a) supz∈L |F (z)− h(z)| ≤M supz∈L |f(z)− h(z)|.

(b) F (aj) = h(aj) (j = 1, . . . ,m).

(c) F − f =
∑m

j=1(h(aj)− f(aj))αj.

Proof. We can assume that A 6= C. Let us choose a point c ∈ A and select

a positive number d satisfying

d <
1

2m
inf{|z − c| : z ∈ C \ A} (1)

and

d < min
j,l∈{1,...,m}

j 6=l

1

|aj − al|
. (2)

We define

Πj(z) :=
∏

l∈{1,...,m}\{j}

(ed(z − al)− 1) (j = 1, . . . ,m).
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From (2), it follows that

0 < d|aj − al| < 1 < 2π

for all j, l ∈ {1, . . . ,m} with j 6= l, so Πj(aj) 6= 0 for all j ∈ {1, . . . ,m}. In

addition, Πj(al) = 0 whenever j 6= l. Now, we set

αj(z) := ec(z − aj)
Πj(z)

Πj(aj)
(j = 1, . . . ,m)

and

M := 1 +
m∑
j=1

sup
z∈L
|αj(z)|.

Observe that each function αj is a finite linear combination of functions

of the form ec+nd (0 ≤ n ≤ m). But each point c+ nd is in A because of (1).

Hence the functions αj are in span{ea : a ∈ A}.

Finally, if we fix functions f, h : L→ C and define F := f+
∑m

j=1(h(aj)−
f(aj))αj, then it is straightforward that (a), (b) and (c) are fulfilled.

Lemma 2.2. Let A ⊂ C be a subset with some finite accumulation point,

and Ω ⊂ C be a simply connected domain. Then the set span{ea : a ∈ A} is

dense in the space H(Ω). In particular, this holds if A is a nonempty open

subset of C.

Lemma 2.3. Let Ω ⊂ C be a domain and Φ be an entire function of subex-

ponential type. Assume that K,L are compact sets in Ω with L ⊂ K0. Then

there exists a constant C = C(K,L) ∈ (0,+∞) such that

sup
z∈L
|(Φ(D)f)(z)| ≤ C sup

z∈K
|f(z)| for all f ∈ H(Ω).
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Lemma 2.4. Let X, Y be two metrizable separable topological vector spaces,

such that X is Baire. If Tn : X → Y (n ∈ N) is a topologically mix-

ing sequence of continuous linear mappings, then there exists a dense linear

manifold D ⊂ X such that D \ {0} ⊂ U({Tn}n≥1).

Proof. Note that X is Baire, Y is second-countable and, by Birkhoff’s transi-

tivity theorem, each sequence {Tnk
}k≥1 with {n1 < n2 < · · · } ⊂ N is densely

hypercyclic. Then the result follows from [3, Theorem 2].

3 Φ(D)-hypercyclicity with interpolation

In this section, we establish our main result. For this, a bit of additional

notation is needed. Let Ω ⊂ C be a domain. By CN we denote, as usual,

the class of sequences of complex numbers, while ω(Ω) will stand for the set

of sequences of pairwise different points in Ω without accumulation points in

Ω. If {an}n≥1 ∈ ω(Ω) and {bn}n≥1 ∈ CN, then we denote (as in [9])

Γ = Γ({an}n≥1, {bn}n≥1) := {f ∈ H(Ω) : f(an) = bn for all n ∈ N}.

Observe that Γ is nonempty (by Weierstrass’ interpolation theorem). In

addition, Γ is closed in H(Ω), hence completely metrizable, so a Baire space.

Costakis and Vlachou [9] have proved that, if Ω is simply connected, the

set U(D) ∩ Γ is residual in Γ. This admits an extension as follows.

Theorem 3.1. Let Ω ⊂ C be a simply connected domain and Φ be a noncon-

stant entire function of subexponential type. Assume that {an}n≥1 ∈ ω(Ω)

and {bn}n≥1 ∈ CN. Consider the corresponding set Γ = Γ({an}n≥1, {bn}n≥1).

Then the sequence of mappings

Tn := Φ(D)n|Γ : Γ −→ H(Ω) (n ≥ 1)
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is topologically mixing. In particular, there is a residual subset of functions

in Γ that are Φ(D)-hypercyclic.

Proof. The second part is a consequence of Birkhoff’s transitivity theorem.

Then our task is to prove that {Tn}n≥1 is topologically mixing.

Fix two nonempty open subsets U ⊂ Γ, V ⊂ H(Ω). We should exhibit a

number N ∈ N satisfying the following: For every n ≥ N , there is a function

f ∈ H(Ω) such that

f ∈ U and Tnf ∈ V. (3)

For prescribed open sets U, V as before, we can find functions h ∈ Γ, ϕ ∈
H(Ω), a number ε ∈ (0, 1) and a compact set L ⊂ Ω such that

U ⊃ Γ ∩ {f ∈ H(Ω) : |f(z)− h(z)| < ε for all z ∈ L}

and

V ⊃ {f ∈ H(Ω) : |f(z)− ϕ(z)| < ε for all z ∈ L}.

Since Ω is simply connected and the set {an}n≥1 has no accumulation

points in Ω, it is not difficult to find a sequence of compact sets Lk ⊂ Ω

(k ∈ N) and a sequence {m1 < m2 < · · · } ⊂ N satisfying, for each k, the

following properties:

• The set C \ Lk is connected,

• L ⊂ L0
1, Lk ⊂ L0

k+1 and Ω =
⋃
k≥1 Lk, and

• Lk ∩ {an}n≥1 = {a1, . . . , amk
}.

By hypothesis, the entire function Φ is not constant, so the open sets

A := {z ∈ C : |Φ(z)| < 1}, B := {z ∈ C : |Φ(z)| > 1} are nonempty. It

follows from Lemma 2.2 that the set span{ea : a ∈ A} is dense in H(Ω).
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In particular, we derive the existence of a function h1 ∈ span{ea : a ∈ A}
satisfying

|h(z)− h1(z)| < ε

4M1

(z ∈ L1), (4)

whereM1 = M(L1, a1, . . . , am1 , A) is the positive constant provided by Lemma

2.1.

Observe that if a ∈ A then |Φ(a)| < 1. Since Φ(D)ec = Φ(c)ec for all

c ∈ C, we have Φ(D)nec = Φ(c)nec for every n ∈ N. Hence Φ(D)nea → 0

(n→∞) compactly in C whenever a ∈ A and, consequently,

Φ(D)nα→ 0 (n→∞) compactly for every α ∈ span{ea : a ∈ A}. (5)

In particular, there is N1 ∈ N such that

|(Φ(D)nh1)(z)| < ε

6
(z ∈ L1, n ≥ N1). (6)

Again by Lemma 2.2, we can find a function ψ ∈ span{eb : b ∈ B} such

that

|ψ(z)− ϕ(z)| < ε

6
(z ∈ L1). (7)

The function ψ has the form ψ =
∑p

i=1 ciebi , where p ∈ N, c1, . . . , cp are

constants and {b1, . . . , bp} ⊂ B. Then |Φ(bi)| > 1 (i = 1, . . . , p). Therefore

the functions

ϕn :=

p∑
i=1

ci
(Φ(bi))n

ebi (n ∈ N)

satisfy

Φ(D)nϕn = ψ (n ∈ N) (8)

and

ϕn −→ 0 (n→∞) compactly in C. (9)

Property (9) yields specially the existence of a positive integer N2 such that

|ϕn(z)| < ε

4M1

(z ∈ L1, n ≥ N2). (10)
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From (4), (10) and the triangle inequality we get

|h(z)− (ϕn(z) + h1(z))| < ε

2M1

(z ∈ L1, n ≥ N2). (11)

Moreover, (10) implies that there is a constant C ∈ (0,+∞) for which

|ϕn(z)| ≤ C (z ∈ L1, n ∈ N). (12)

Consider the function αj ∈ span{ea : a ∈ A} (j = 1, . . . ,m1) furnished

by Lemma 2.1 and associated to A, a1, . . . , am1 . By (5), there exists a number

N3 ∈ N satisfying for each j ∈ {1, . . . ,m1} that

|(Φ(D)nαj)(z)| < ε

6(C + supL1
|h|+ supL1

|h1|)
(z ∈ L1, n ≥ N3). (13)

Define N := max{N1, N1, N3} ∈ N and fix a number n ≥ N . According

to Lemma 2.1 and (11), the function

g1 = g1,n := ϕn + h1 +

m1∑
j=1

[h(aj)− (ϕn(aj) + h1(aj))]αj (14)

enjoys the following properties:

sup
z∈L1

|g1(z)− h(z)| < ε

2
(15)

and

g1(aj) = h(aj) = bj (j = 1, . . . ,m1). (16)

In addition, we obtain from (6), (7), (8), (13), (14), the linearity of Φ(D)n

and the triangle inequality that

sup
z∈L1

|(Φ(D)ng1)(z)− ϕ(z)| < ε

2
. (17)

Now, we mimic the approach in [9] and follow on by constructing adequate

functions g2 = g2,n, g3 = g3,n, . . . . Since n has been fixed and we do not need
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the help of the functions ϕn in the remainder of the proof, we may dispense

with the subindex n from now on.

Let k ≥ 1 and suppose that gk has been constructed. Recall that L ⊂ L0
1.

According to Lemma 2.3, there exists a constant C0 = C0(L1, L) ∈ (0,+∞)

such that

sup
z∈L
|(Φ(D)nf)(z)| ≤ C0 sup

z∈L1

|f(z)| (f ∈ H(Ω)). (18)

Consider the constant Mk+1 = M(Kk, amk+1, . . . , amk+1
, A) ∈ (0,+∞) pro-

vided by Lemma 2.1 (at this point, the corresponding simpler lemma in [9]

may also be invoked), where Kk := Lk ∪ {amk+1, . . . , amk+1
}. Since the com-

plement of this compact set is connected and the function Fk : Kk → C given

by

Fk(z) =

{
gk(z) if z ∈ Lk
h(z) if z ∈ {amk+1, . . . , amk+1

}
is holomorphic in a neighborhood of Kk, an application of Runge’s approxi-

mation theorem (see [18]) provides a polynomial hk+1 such that

|hk+1(z)− Fk(z)| < ε

2k+1Mk+1(1 + C0)
(z ∈ Kk).

It follows from Lemma 2.1 the existence of a function gk+1 ∈ H(Ω) satisfying

|gk+1(z)− gk(z)| < ε

2k+1(1 + C0)
<

ε

2k+1
<

1

2k+1
(z ∈ Lk) (19)

and

gk+1(aj) = Fk(aj) = h(aj) = bj (j = 1, . . . ,mk+1). (20)

To conclude (20), observe that we have inductively (from (16)) that gk(aj) =

bj (j = 1, . . . ,mk).

Since the sequence {Lk}k≥1 of compact sets of Ω is exhaustive, each com-

pact set S ⊂ Ω is contained in all Lk (k ≥ k0) for some k0 ∈ N. But, by (19),
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the series

gk0 +
∞∑

k=k0

(gk+1 − gk)

converges uniformly on S. Therefore, the sequence {gk}k≥1 converges com-

pactly to a function g : Ω → C. By the Weierstrass convergence theorem,

g ∈ H(Ω). Let us prove that g is the desired function.

Firstly, fix j ∈ N. Then there is k0 ∈ N such that mk > j for every k ≥ k0.

According to (20), gk(aj) = bj (k ≥ k0), so g(aj) = limk→∞ gk(aj) = bj.

Hence g ∈ Γ.

Secondly, note that, in particular,

g = g1 +
∞∑
k=1

(gk+1 − gk). (21)

Thanks to (15) and (19), we get for z ∈ L (⊂ Lk for all k) that

|g(z)− h(z)| ≤ |g1(z)− h(z)|+
∞∑
k=1

|gk+1(z)− gk(z)| < ε

2
+
ε

2
= ε,

which together with the fact g ∈ Γ yields

g ∈ U.

Finally, by joining (18) to the first inequality in (19) we are driven to

|(Φ(D)n(gk+1 − gk))(z)| < ε

2k+1
(z ∈ L), (22)

where the fact L ⊂ Lk has been used once more. Now, by (17), (21), (22),

the linearity of Φ(D)n and the triangle inequality, we derive

|(Φ(D)ng)(z)− ϕ(z)| < ε

2
+
∞∑
k=1

ε

2k+1
= ε (z ∈ L).

This allows to conclude

Tng = Φ(D)ng ∈ V.

Summarizing, the function g fulfils (3) and the proof is finished.

14



Remark 3.2. Observe that the result by Costakis–Vlachou and Niess is the

special case Φ(z) = z. Moreover, Theorem 3.1 includes, in particular, all

nonscalar differential polynomials Φ(D) = c0 + c1D+ · · ·+ cND
N . Note also

that our theorem is sharp, at least in terms of order and type of growth.

Indeed, if we allow Φ to be of exponential type then the conclusion of Theo-

rem 3.1 is no longer necessarily true, even though Φ(D) is well-defined. For

instance, take Ω = C, Φ(z) = exp z, an = n, bn = 0 (n ∈ N). Then Φ(D)

is the 1-translation operator τ1 and there is no interpolating τ1-hypercyclic

entire function f , because, if this were the case, the set {f(n)}n≥1 would

have to be dense in C, which is clearly false. This is the reason why some

condition must be imposed on the points an in order to guarantee Birkhoff-

hypercyclicity, namely, for every N ∈ N, there exist infinitely many numbers

n ∈ N with {an}n≥1 ∩ {z : |z − n| ≤ N} = ∅ (see [9] and [17]).

If the interpolation values bn are 0 (n ∈ N), we evidently have that the

set Γ0 = Γ0({an}n≥1) := {f ∈ H(Ω) : f(an) = 0 for all n ∈ N} is a vector

subspace of H(Ω). We will consider in Γ0 the topology inherited from H(Ω).

Hence Theorem 3.1 yields the following consequence, that puts the end to

this paper.

Corollary 3.3. Let Ω ⊂ C be a simply connected domain, {an}n≥1 ∈ ω(Ω)

and Φ be a nonconstant entire function with subexponential type. Then there

exists an infinite-dimensional linear submanifold D of H(Ω) such that each

function f ∈ D \ {0} is Φ(D)-hypercyclic and satisfies f(an) = 0 for all

n ∈ N.

Proof. Let Y := H(Ω). Then Y is metrizable and separable, so X := Γ0

is also a metrizable separable topological vector space. Since Y is complete

and X is closed in Y , we obtain that X is complete, so Baire. By Theorem
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3.1, the sequence Tn : Γ0 → H(Ω) (n ∈ N) defined as Tn = Φ(D)n|Γ0 is

topologically mixing. Then an application of Lemma 2.4 yields the existence

of a dense linear submanifold D of Γ0 such that D \ {0} ⊂ U({Tn}n≥1).

This is the desired submanifold. Indeed, Γ0 is infinite-dimensional (here is

an easy argument: if f ∈ Γ0, then all functions z 7→ znf(z), n ∈ N, belong

to Γ0 and are linearly independent), so its dense subspace D must also be

infinite-dimensional.
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