

## Olvido Delgado

Instituto Universitario de Matemática Pura y Aplicada
Universidad Politécnica de Valencia

## Introduction

In the 1920 's, Hardy proved what today is one of the classical inequalities on integration:

$$
\left(\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(s) d s\right)^{p} d x\right)^{1 / p} \leq \frac{p}{p-1}\left(\int_{0}^{\infty} f(x)^{p} d x\right)^{1 / p}
$$

for $1<p<\infty$ and $f$ any positive measurable real function. This inequality has been studied by a lot of mathematicians producing a great variety of Hardy type inequalities which apply in different areas of mathematics

$$
S f(x):=\frac{1}{x} \int_{0}^{x} f(s) d s, \quad x>0,
$$

for $f \in L_{\text {loo }}^{1}([0, \infty))$, the Hardy's inequality establishes that $S: L^{p}([0, \infty)) \rightarrow L^{p}([0, \infty))$ is well defined and continuous. This $S$ is called the Hardy operator


The general case

Let $X$ be a Banach function space (B.f.s.), i.e. a Banach space of measurable real functions on $[0, \infty)$, satisfying

$$
|f| \leq|g| \text { a.e. and } g \in X \Rightarrow f \in X \text { and }\|f\|_{X} \leq\|g\|_{X}
$$

- Is there any B.f.s. $Y$ such that $S: Y \rightarrow X$ ?
- Which is the largest B.f.s. $Y$ such that $S: Y \rightarrow X$ ?

Note that if $S: Y \rightarrow X$ is well defined is automatically continuous, since it is a positive operator between Banach lattices

## Optimal domain for $S$

The space
$[S, X]:=\{f:[0, \infty) \rightarrow \mathbb{R}$ measurable: $S|f| \in X\}$
is a B.f.s. with the norm $\|f\|_{[S, X]}=\|S \mid f\|_{X}$. Moreover

- $S:[S, X] \rightarrow X$
- $[S, X]$ is the largest B.f.s. $Y$ satisfying $S: Y \rightarrow X$

So, $[S, X]$ is the optimal domain for $S$ considered with values in $X$

Remark. For a positive kernel operator $T$ satisfying some suitable conditions, it is possible to describe $[T, X]$ in terms of interpolation spaces (see $[1]$ and $[2]$ ). Unfortunately, the Hardy operator $S$ does not satisfies these conditions. However, we can describe $[S, X]$ for some
particulars $X$.
 [2] ]. Delgado, Optimal domains for kerel operators on $[0, \infty) \times(0, \infty)$, Studia Math. $1744(2006), 131-145$.


- $\left[S, L^{1}([0, \infty))\right]=\{0\}$.
- $\left[S, L^{1, \infty}([0, \infty))\right]=L^{1}([0, \infty))$, for the quasi-B.f.s

$$
L^{1, \infty}([0, \infty))=\left\{f:[0, \infty) \rightarrow \mathbb{R} \text { measurable : } \sup _{t \geq 0}\left\{t f^{*}(t)\right\}<\infty\right\},
$$

where $f^{*}$ is the decreasing rearrangement of $f$, i.e.

$$
f^{*}(t)=\inf \{c>0: m(\{x \in[0, \infty]:|f(x)|>c\}) \leq t\}
$$

for $m$ being the Lebesgue measure.

- Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be an increasing concave function with $\varphi(0)=0$ and consider the Lorentz spac

$$
\Lambda_{\varphi}=\left\{f:[0, \infty) \rightarrow \mathbb{R} \text { measurable : } \int_{0}^{\infty} f^{*}(t) d \varphi(t)<\infty\right\} .
$$

heorem. Suppose that $\varphi$ satisfies
$\checkmark \varphi\left(0^{+}\right)=0$,
$\checkmark \theta_{\varphi}(t):=\int_{t}^{\infty} \frac{\varphi^{\prime}(s)}{s} d s<\infty$ for all $t>0$,
$\checkmark \exists C>0$ such that $\frac{\varphi(t)}{t} \leq C \theta_{\varphi}(t)$ for all $t>0$
Then,
$\left[S, \Lambda_{\varphi}\right]=L_{\theta_{\varphi}}^{1}$,
where $L_{\theta}^{1}$ denotes the space of integrable functions with respect to the Lebesgue measure with density $\theta_{\varphi}$

## In particular

$$
\left[S, L^{p, 1}([0, \infty))\right]=L_{t^{1 / p-1}}^{1}, \text { for } 1<p<\infty,
$$

since $L^{p, 1}([0, \infty))=\Lambda_{\varphi}$ for $\varphi(t)=t^{1 / p}$ and $\theta_{\varphi}(t)=\frac{1}{(p-1)} \frac{1}{t^{1-1 / p}}$


Note that every r.i. B.f.s. $X$ satisfies $L^{1} \cap L^{\infty} \subset X \subset L^{1}+L^{\infty}$. Then, the claim of the above theorem follows, since $[S, X] \nsubseteq L^{1}+L^{\infty}$. A function $g \in L^{1}+L^{\infty} \backslash[S, X]$ is given by

$$
g(t)= \begin{cases}h^{\prime}\left(t-\left(t_{k+1}-1\right)\right) & \text { if } t \in\left(t_{k+1}-1, t_{k+1}\right) \\ 0 & \text { in other case, }\end{cases}
$$

where $t_{k+1}=e^{k}, h(t)=1-\sqrt{1-t}$ for $t \in[0,1]$ and $h^{\prime}$ is the derivative of $h$
From the Hardy inequality it follows that $S: L^{p}([0, \infty)) \rightarrow L^{p}([0, \infty))$ for $1<p<\infty$. Then $\left[S, L^{p}([0, \infty))\right]$ is not r.i. and $L^{p}([0, \infty)) \nsubseteq\left[S, L^{p}([0, \infty))\right]$. This holds also for $p=\infty$,

Since $[S, X]$ may not be r.i., now a natural question is
Which is the largest r.i. B.f.s. contained in $[S, X]$ ?
The space
$[S, X]_{r . i .}:=\left\{f:[0, \infty) \rightarrow \mathbb{R}\right.$ measurable : $\left.S f^{*} \in X\right\}$
is an r.i. B.f.s. with the norm $\|f\|_{[S, X]_{r . i}}=\left\|S f^{*}\right\|_{X}$. Moreover,

- $[S, X]_{r i,} \subset[S, X]$, since $S|f| \leq S f^{*}$
- $[S, X]_{r . i}$ is the largest r.i. B.f.s. contained in $[S, X]$

So, $[S, X]$ is the r.i. optimal domain for $S$ considered with values in $X$

## Particular cases of $[S, X]_{r . i}$.

- $\left[S, L^{1}([0, \infty))\right]_{r . i .}=\{0\}$
- $\left[S, L^{1, \infty}([0, \infty))\right]_{r . i .}=L^{1}([0, \infty))$.

Consider the Lorentz space $X=\Lambda_{\varphi}$ and $\theta_{\varphi}(s)=\int_{s}^{\infty} \frac{\varphi^{\prime}(y)}{y} d y$. Then,

- $\left[S, \Lambda_{\varphi}\right]_{r . i .}=\Lambda_{\int_{0}^{t} \theta_{\varphi}(s) d s}$, whenever $\varphi\left(0^{+}\right)=0$,
- $\left[S, \Lambda_{\varphi}\right]_{r . i}=L^{\infty} \cap \Lambda_{\int_{0}^{t} \theta_{\varphi}(s) d s}$, whenever $\varphi\left(0^{+}\right)>0$
When does $X$ coincide with $[S, X]_{r . i}$ ?

| For every r.i. B.f.s. $X$, since $f^{*} \leq S f^{*}$, it follows that $[S, X]_{r . i .} \subset X$. If $X$ also satisfies |
| :--- |
| $S: X \rightarrow X$, then |
| $\quad[S, X]_{r \text { r.i. }} \subset X \subset[S, X]$. |
| So, since $[S, X]_{r . i}$. is the largest r.i. B.f.s. contained in $[S, X]$, we have that $[S, X]_{r . i .}=X$. |
| Conversely, suppose $[S, X]_{r . i .}=X$. Then $X$ is obviously r.i. and, since $\|S f\| \leq S\|f\| \leq S f^{*}$, |
| it follows that $S: X \rightarrow X$. Therefore, the following proposition holds. |
| Proposition. $X$ r.i. and $S: X \rightarrow X \Leftrightarrow[S, X]_{r . i .}=X$ |

In particular
$\left[S, L^{p}([0, \infty))\right]_{r . i}=L^{p}([0, \infty))$
for all $1<p \leq \infty$

[^0]
[^0]:    * A Joint work with Javier Soria (Dpto. Matemática Aplicada y Análisis, Universidad Barcelona), published at Journal of Functional Analysis, 244 (2007) 119-133.

