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Abstract. Birkhoff’s theorem tells how any doubly stochastic matrix
can be decomposed as a weighted sum of permutation matrices. Simi-
lar theorems on unitary matrices reveal a connection between quantum
circuits and linear classical reversible circuits. It triggers the question
whether a quantum computer can be regarded as a superposition of clas-
sical reversible computers.

1 Introduction

Let D be an arbitrary n × n doubly stochastic matrix. This means that all
entries Djk are real and satisfy 0 ≤ Djk ≤ 1 and that all line sums (i.e. the
n row sums and the n column sums) are equal to 1. Let P(n) be the group of
n × n permutation matrices. Birkhoff [1] has demonstrated

Theorem 1 Any n × n doubly stochastic matrix D can be written

D =
∑

j

cjPj

with all Pj ∈ P(n) and the weights cj real, satisfying both 0 ≤ cj ≤ 1 and
∑

j cj = 1.

Because unitary matrices describe quantum circuits [2] and permutation matrices
describe classical reversible circuits [3], the question arises whether a similar
theorem holds for matrices from the unitary group U(n). In a sloppy way, one
might reformulate the question as:

Is a quantum computer a quantum superposition of a finite
number of classical (reversible) computers?

It is a surprise that (to our knowledge) this problem has not been discussed in
the literature.
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It is clear that a simple positive answer to the above question is not possible.
Indeed, any sum

∑

j cjPj is a matrix with identical line sums (equal to
∑

j cj),
whereas an arbitrary unitary matrix usually does not have identical line sums.
Moreover, if all cj are real, then the matrix

∑

j cjPj has exclusively real entries,
again a property not shown by an arbitrary unitary matrix. Nevertheless, below
we will present some Birkhoff-like theorems concerning n × n unitary matrices
in general and 2w × 2w unitary matrices in peculiar.

2 The ZXZ decomposition of a unitary matrix

Each quantum circuit acting on w qubits is represented by a 2w × 2w unitary
matrix. Such matrix thus is a member of the unitary group U(n) with n = 2w.
In light of quantum circuit decomposition, the (sub)group structure of U(n) is
particularly important. We note the following two useful subgroups [4] [5]:

– XU(n), i.e. the group of U(n) matrices with all line sums equal to 1 and

– ZU(n), i.e. the group of diagonal U(n) matrices with upper-left entry equal
to 1.

Whereas U(n) is a group of dimension n2, XU(n) is a group of dimension (n−1)2

and ZU(n) is a group of dimension n − 1.

Idel and Wolf [6] proved the following theorem:

Theorem 2 Every n × n unitary matrix U can be decomposed as

U = aZ1XZ2 , (1)

where both Z1 and Z2 are ZU(n) matrices, where X is an XU(n) matrix, and
a is a unit-modulus scalar.

Proof of the theorem is based on simplectic topology and, unfortunately, is not
constructive. There exists an iterative method [7] for, given a matrix U , finding
a set (a, Z1,X, Z2) with arbitrary numerical precision. If n equals 2w, then the
matrix decomposition expresses the decomposition of a quantum circuit acting
on w qubits [8]. The 3-qubit case (n = 8) looks like

U Z2 X Z1 a=

.

3 The Birkhoff decomposition of the XU matrix

De Baerdemacker et al. [9] proved the following theorem:



Theorem 3 Every XU(n) matrix X can be decomposed as

X =

n!∑

j=1

cjPj ,

where Pj are the n× n permutation matrices and cj are complex numbers, such
that both

∑
cj = 1 and

∑ |cj |2 = 1.

De Baerdemacker et al. provide an algorithm to find any possible set of appro-
priate weights cj . This set is far from unique (except if n = 2).

De Vos and De Baerdemacker [10] [11] demonstrated, in case n equals a power
of 2 (say, n = 2w), the following theorem:

Theorem 4 Every XU( 2w) matrix X can be decomposed as

X =

N(w)
∑

j=1

cjEj ,

where j runs over all 2w × 2w epicirculant permutation matrices Ej, where cj

are complex numbers, such that both
∑

cj = 1 and
∑ |cj |2 = 1, and N(w) equals

2w(2w − 1)(2w − 2)(2w − 22)...(2w − 2w−1).

In next section will be explained what is meant with ‘epicirculant matrix’. The-
orem 4 is stronger than Theorem 3, because N(w) scales much better than (2w)!
for large w, as can be seen in the table:

w 2w (2w)! N(w)

1 2 2 2
2 4 24 24
3 8 40,320 1,344
4 16 20,922,789,888,000 322,560

One possible set of weights cj is given by

cj = δ1,j +
2w − 1

N(w)

[
Trace

(
E−1

j X
)
− Trace (Ej)

]
,

where the Kronecker delta assumes that the epicirculant matrix E1 is the 2w×2w

unit matrix.

4 Epicirculant matrices

Before giving the definition of a 2w × 2w epicirculant matrix, it is useful to
introduce some convenient conventions:



Remark 1 In the present paper, rows and columns of any 2w × 2w matrix are
numbered from 0 to 2w −1 (instead of the conventional numbering from 1 to 2w)
and each such number is represented by the w×1 matrix consisting of the w bits
of the binary notation of the row-or-column number.

E.g. the upper-left entry of the 8 × 8 matrix A is entry A0,0 = A(0,0,0)T ,(0,0,0)T ,
whereas its lower-right entry is denoted A7,7 = A(1,1,1)T ,(1,1,1)T . Further, we
choose to order bits from least significant to most significant bit. E.g., for w = 3,
the vector (1, 1, 0)T denotes the number 3.

Definition 1 A 2w × 2w epicirculant matrix M is a 2w × 2w matrix, such that
each entry Mj,k equals the entry M0,c with c = k − xj, where the multiplication
xj is a matrix multiplication performed modulo 2, and where x is some invertible
w × w matrix with entries from {0, 1}, called the pitch matrix. The subtraction
k − xj is a vector addition performed modulo 2.

E.g. the following matrix is an 8 × 8 epicirculant matrix with pitch matrix

x =
(

1 0 0

0 0 1

0 1 1

)

:














m0 m1 m2 m3 m4 m5 m6 m7

m1 m0 m3 m2 m5 m4 m7 m6

m4 m5 m6 m7 m0 m1 m2 m3

m5 m4 m7 m6 m1 m0 m3 m2

m6 m7 m4 m5 m2 m3 m0 m1

m7 m6 m5 m4 m3 m2 m1 m0

m2 m3 m0 m1 m6 m7 m4 m5

m3 m2 m1 m0 m7 m6 m5 m4















. (2)

Thanks to the fact that matrix x is invertible, not only each of the eight rows
but also each of the eight columns contains exactly one m0, one m1, ..., and
one m7. If all entries of its upper row (i.e. row 0) are equal to 0, except one
entry equal to 1 (in column s), then an epicirculant matrix is an epicirculant
permutation matrix. The vector representing position s is called the shift vector.
There exist as many different epicirculant permutation matrices as there exist
possible shift vectors (i.e. 2w) times the number of possible pitch matrices (i.e.
(2w − 1)(2w − 2)(2w − 22)...(2w − 2w−1)). Because

– the shift vectors form a group isomorphic to the direct product (C2)
w of w

cyclic groups, each of order 2, and therefore of order 2w and

– the pitch matrices form a group isomorphic to the general linear group
GL(w,2) of order (2w − 1)(2w − 2)(2w − 22)...(2w − 2w−1),

the epicirculant permutation matrices form a group [12] isomorphic to the gen-
eral affine group GA(w,2) of order N(w), isomorphic to the semidirect product
(C2)

w : GL(w,2). E.g. the following matrix is an 8× 8 epicirculant permutation



matrix with shift vector s =
(

0

1

0

)

and pitch matrix x =
(

1 0 0

0 0 1

0 1 1

)

:















0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0















. (3)

It is obtained from matrix (2) by choosing m2 = 1 and mk = 0 for k 6= 2. We
note that, if s is the w × 1 zero matrix and x is the w ×w unit matrix, then the
corresponding epicirculant permutation matrix is the 2w × 2w unit matrix E1.

We have [11]:

Lemma 1 Each epicirculant permutation matrix E can be written as the product
of a zero-shift epicirculant permutation matrix L and a unit-pitch epicirculant
permutation matrix N :

E = LN .

E.g. matrix (3) has the decomposition















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0





























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0















. (4)

The left matrix has shift equal to
(

0

0

0

)

and pitch equal to
(

1 0 0

0 0 1

0 1 1

)

, whereas the

right matrix has shift vector
(

0

1

0

)

and pitch matrix
(

1 0 0

0 1 0

0 0 1

)

.

From classical reversible computation [3] [13] [14] [15], we know the following
two lemmas:

Lemma 2 An arbitrary zero-shift epicirculant permutation matrix L represents
a linear circuit, i.e. a circuit consisting exclusively of singly controlled NOT gates
(a.k.a. FEYNMAN gates).

and

Lemma 3 An arbitrary unit-pitch epicirculant permutation matrix N represents
a circuit consisting merely of a stack of w single-qubit gates, each either an
IDENTITY gate or a NOT gate. We call such stack a NOT stack.



E.g. the product (4) represents the circuit cascade

•
•

.
︸ ︷︷ ︸

N

︸ ︷︷ ︸

L

In general, N consists of 0 to w NOTs and L consists of O(w2) or O( w2

log(w) )

controlled NOTs, depending on the synthesis method applied [13] [14].

5 The Birkhoff decomposition of the two ZU matrices

Because a member Z of the group ZU(n) is diagonal, it cannot be decomposed
as a weighted sum

∑
cjPj of permutation matrices Pj , such that the weight

sum
∑

cj equals 1. Indeed, if
∑

cj = 1, then all line sums of the matrix
∑

cjPj

are equal to 1. Except for the n × n unit matrix, no diagonal matrix has this
property. For this reason, we decompose the matrices Z1 and Z2 of (1) according
to

Z1 = GX1G
−1 and Z2 = GX2G

−1 , (5)

where G is a constant n × n (dephased) Hadamard matrix [16]. As the unitary
matrices Z1 and Z2 have unit upper-left entry, automatically, X1 and X2 (equal
to G−1Z1G and G−1Z2G, respectively) have all line sums equal to 1.

If n = 2w, we choose the following Hadamard matrix:

G = H ⊗ H ⊗ ... ⊗ H , (6)

i.e. the Kronecker product of w small (i.e. 2 × 2) Hadamard matrices

H =
1√
2

(
1 1
1 −1

)

. (7)

The matrix G has following entries:

Ga,b =
1√
2w

(−1)f(a,b) ,

where f(x, y) is the sum of the bitwise product of the binary numbers x and y

and hence the matrix product of the row vector xT and the column vector y:

f(x, y) =
∑

j

xjyj mod 2 = xT y .

With this choice of G, the two matrix decompositions (5) represent the following
circuit decomposition:

Z

H

X

H

= H H

H H .



As the unitary matrices Z1 and Z2 are diagonal, automatically, X1 and X2

are epicirculant with unit pitch matrix. Indeed, if a 2w×2w matrix D is diagonal
and G is given by (6-7), then an arbitrary entry of the product G−1DG is given
by

(G−1DG)j,k =
∑

r

∑

s

(G−1)j,rDr,sGs,k

=
∑

r

1√
2w

(−1)−rT jDr,r

1√
2w

(−1)rT k

=
1

2w

∑

r

(−1)rT (k−j) Dr,r .

We note that (G−1DG)0,k−j = 1
2w

∑

r(−1)rT (k−j) Dr,r equals (G−1DG)j,k,
which means that G−1DG is epicirculant according to Definition 1 with x equal
to the w × w unit matrix.

Any 2w × 2w epicirculant matrix M satisfies

M =

2w
−1∑

m=0

M0,m Fm ,

with Fm the epicirculant permutation matrix with shift vector equal to m and
same pitch matrix as M . Hence, X1 and X2 satisfy the (short) Birkhoff sums:

X1 =
2w

∑

j=1

ajEj and X2 =
2w

∑

j=1

bjEj ,

where the Ej are the epicirculant permutation matrices with unit pitch matrix.
Because X1 and X2 are unitary, we immediately have

∑
|aj |2 =

∑
|(X1)0,j |2 = 1

and
∑ |bj |2 =

∑ |(X2)0,j |2 = 1. Moreover, because both X1 and X2 have row
sums equal to 1, we have

∑
aj =

∑
(X1)0,j = 1 and

∑
bj =

∑
(X2)0,j = 1.

The unit-pitch epicirculant permutation matrices form a group isomorphic to
the direct product (C2)

w of order 2w. According to Lemma 3, such permutation
matrix Ej represents a NOT stack.

6 The Birkhoff decomposition of the scalar factor

The unit-modulus scalar a in (1) is to be interpreted as a 2w × 2w unitary
matrix A, i.e. a times the 2w×2w unit matrix. It thus is also a times the 2w×2w

identity permutation matrix. Therefore it is a weighted ‘sum’ of permutation
matrices:

A =
∑

j

djPj = aP1 .

We have
∑

|dj |2 = |a|2 = 1; however, the sum
∑

j dj = a usually is not equal
to 1.



The matrix A equals the Kronecker product

I ⊗ I ⊗ I ⊗ ... ⊗ I ⊗
(

a 0
0 a

)

⊗ I ⊗ I ⊗ I ⊗ ... ⊗ I ,

with w−1 appearances of the factor I =
(

1 0

0 1

)
and, within the product, arbitrary

position of the factor
(

a 0

0 a

)
. The scalar a thus represents a w-qubit quantum

circuit with merely one single-qubit gate acting on an arbitrary wire.

7 The Birkhoff decomposition of the U matrix

From the above discussion, we see that any w-qubit quantum circuit can be
constructed as the following cascade:

U

H

X2

H

X

H

X1

H

= H H H H

H H H H a ,

containing

– 4w + 1 single-qubit gates represented by U(2) matrices:
• 4w HADAMARD gates and
• one PHASE-SHIFT gate

and
– three w-qubit circuits represented by XU(2w) matrices:

• one decomposable as a weighted sum of classical reversible circuits con-
sisting of 2-bit gates (controlled NOT gates) and single-bit gates (NOT
gates) and

• two decomposable as a weighted sum of classical reversible circuits con-
sisting exclusively of single-bit gates (NOT gates).

We have

U = aZ1XZ2

= aGX1G
−1 X GX2G

−1

= aG (
2w

∑

j1=1

aj1Ej1)G−1 (

N(w)
∑

j=1

cjEj)G (
2w

∑

j2=1

bj2Ej2)G−1

= a

2w

∑

j1=1

N(w)
∑

j=1

2w

∑

j2=1

aj1cjbj2 GEj1G
−1EjGEj2G

−1 . (8)

We note that the identities

H H =



and

H H = Z

imply that each of the two compositions GEj1G
−1 and GEj2G

−1 can be replaced
by a stack of w gates, each either an IDENTITY gate, representing the unit matrix
(

1 0

0 1

)
, or a Z gate, representing the matrix

Z =

(
1 0
0 −1

)

.

Thus:

Lemma 4 A NOT stack sandwiched between two HADAMARD stacks is a Z stack.

The Z stacks form a group isomorphic to (C2)
w and are represented by diagonal

2w×2w matrices with an upper-left entry equal to 1 and all other diagonal entries
equal to ±1. Thus the matrix GEj1G

−1EjGEj2G
−1 within eqn (8) represents

an epicirculant permutation matrix sandwiched between two Z stacks and hence
is a signed epicirculant permutation matrix. We summarise the present section
by a new theorem:

Theorem 5 Every U( 2w) matrix U can be decomposed as

U = a

M(w)
∑

j=1

cjSj ,

where a is a complex (unit-modulus) scalar, where j runs over 2w × 2w signed
epicirculant permutation matrices Sj, where cj are complex numbers, such that
both

∑
cj = 1 and

∑ |cj |2 = 1, and M(w) equals 4w × 2w(2w − 1)(2w − 2)(2w −
22)...(2w − 2w−1).

8 Conclusion

We conclude that an arbitrary quantum computer can be regarded as a weighted
sum of almost-classical reversible computers. Each of these reversible computers
consists of two surprisingly simple classical parts:

– one linear circuit (composed of exclusively controlled NOTs) and
– one NOT stack

and three small quantum parts:

– one complex scalar and
– two Z stacks.

Whereas a matrix product represents a circuit cascade, a matrix sum does
not represent a simple circuit structure. Recently, there have been some attempts
[17] [18] to apply a weighted matrix sum for quantum circuit synthesis. However,
this so-called ‘reuse method’ is only efficient (in terms of gate count and ancilla
count) in very specific cases. Further research may reveal the full impact of the
unitary Birkhoff theorems on quantum computation. Future work may lead to
applications in simulation of quantum systems by means of classical computers.
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13. T. Beth and M. Rötteler, “Quantum algorithms: applicable algebra and quantum
physics”, In: G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M.
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