IIIIII UNIVERSITEIT GENT
 Environmental modelling for autonomous public transport

iMinds

Martin Dimitrievski, David Van Hamme, Dimitri Van Cauwelaert, Gianni Allebosch, Ivana Shopovska, Maarten Slembrouck, Peter Veelaert and Wilfried Philips
Ghent University - Dept. of Telecommunications and Information Processing,
TELIN-IPI St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium

mdimitri@telin.UGent.be

Introduction

Autonomous vehicles can save lives and make the world a happier place for everyone but.
they will not simply evolve from the driver's assistance systems of today
. the algorithms can not be taught for every possible traffic scenario
... they need to think by generalizing like humans do, only smarter
they rely on very accurate perception of the environment
in bad weather, current sensors simply don't work well enough
the legislation is still not well defined
However, there is hope! A lot of key automotive companies are investing in research.
Flanders is interested in implementing driverless buses for the public transport sector. *

"Chinese bus manufacturers Yutong unveils a self-driving bus prototype!"
"First autonomous Toyota to be available in 2020" "First fully autonomous Tesla by 2018, approved by 2021" "Uber fleet to be driverless by 2030"
"Ford CEO expects fully autonomous cars by 2020" "Next generation Audi A8 capable of fully autonomous driving in 2017" "Jaguar and Land-Rover to provide fully autonomous cars by 2024"
"Nissan to provide fully autonomous vehicles by 2020" "Intel CTO predicts that autonomous car will arrive by 2022" "Sergey Brin plans to have Google driverless car in the market by 2018 "
**source http://www.driverless-future.com/

What is happening around me?
Environmental

- Don't ignore the occluded regions
perception available area

The occupancy map models the probability of a grid cell in space to be occupied based on the height of each measured object.

In order to update each map cell with the correct probability, the input LIDAR point cloud needs to be accurately registered to the global position.
For computational reasons we update the log odds $l_{i, j}$ for each grid cell i, j using the current measurement and the log odds from the past.

What will happen next?
Tracking, - Apply prior k
and motion
prediction and motion

- Send steering, throttle and breaking information to the onboard computer
What will I do? - Use the vehicle model as feedback loop to predict the next EGO position and give prior to step 1
- Consider the following:

Probability of occupancy from static m
Trreat level for the free space ahead
Probability of collision with moving objects
Obey traffic regulations (lane, speed, traffic signs...)
Obey vehicle dynamics and
Compute the optimal trajectory and speed profile
Path planning

Action

- Use the current laser scans to build a probabilistic occupancy map - Classify which spaces are free of obstacles - Detect and classify the moving objects into \{pedestrins, cycists, vehicies..)

Track the object's behavior from the past samples
Predict the threat for collision with the EGO vehicle
6u!oбuo ч!м ио!!eıоqе!৷оэ
Collaboration with
project partners
 Range of perception for sensors onboard Level of threat in the currently visible space

[^0] 140647 "Environmental Modelling for automated Driving and Active Safety (EMDAS)"

[^0]: * The work was financially supported by IWT through the Flanders Make ICON project

