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Abstract. Inductive Venn-ABERS predictors (IVAPs) are a type of
probabilistic predictors with the theoretical guarantee that their predic-
tions are perfectly calibrated. We propose to exploit this calibration prop-
erty for the detection of adversarial examples in binary classification tasks.
By rejecting predictions if the uncertainty of the IVAP is too high, we
obtain an algorithm that is both accurate on the original test set and sig-
nificantly more robust to adversarial examples. The method appears to
be competitive to the state of the art in adversarial defense, both in terms
of robustness as well as scalability.

1 Introduction

The reliability of machine learning techniques in adversarial settings has been
the subject of much research for a number of years already [1]. Early work in
this field studied how a linear classifier for spam could be tricked by carefully
crafted changes in the contents of spam e-mails, without significantly altering the
readability of the messages. More recently, [2] showed that deep neural networks
also suffer from this problem: deep convolutional neural networks (CNNs) can
be fooled into returning erroneous predictions by slightly modifying a handful of
pixels in the original image. Usually, these modifications are almost impercep-
tible to humans, calling into question the generalization ability of CNNs. Since
this work, research interest in the phenomenon of so-called adversarial examples
has increased substantially and many attacks and defenses have been proposed.
Despite this, at the time of writing only one technique is generally accepted
as having any noticable effect: adversarial training, which is a form of data
augmentation with adversarial samples. However, even this method currently
has too limited success. The Madry defense [3], for instance, achieves less than
50% adversarial accuracy on the CIFAR-10 data set even though state-of-the-art
clean accuracy is over 95%.
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In this work, we propose to defend machine learning models against adversar-
ial examples using inductive Venn-ABERS predictors (IVAPs). This construc-
tion, first proposed in [4], uses a computationally efficient procedure to hedge the
predictions of an underlying binary classification model which otherwise would
provide only point predictions. Specifically, every prediction ŷ ∈ {0, 1} from the
model is augmented with two probabilities p0 and p1, with p0 ≤ p1, such that
p0 ≤ Pr[y = 1 | x] ≤ p1. That is, p0 and p1 are bounds on the true conditional
probability that the label is 1 given the input x. The size of this interval, p1−p0,
serves as a natural measure of confidence that the IVAP has in the prediction of
the model. If it is too large, we flag the model’s prediction as unreliable. This
flag can serve as actionable information for human operators, who might then
defer to other experts or more expensive classification methods. It could also
be used by automated systems: for instance, a file sharing service might refuse
an upload if it cannot ascertain with sufficient confidence that a file is free of
malware.

The effectiveness of this defense relies on the hypothesis that adversarial ex-
amples exist because the softmax probabilities commonly used in classification
models are not calibrated, that is, they do not accurately reflect the true under-
lying conditional probability distribution. This idea was also put forward, for
example, in [5]. By contrast, IVAPs enjoy provable guarantees on the calibration
of their probabilities regardless of the underlying machine learning model [4].

2 The IVAP Defense

We consider the typical supervised learning setup for classification. There is a
measurable object space X and a measurable label space Y. In this work, we
only consider the case where Y = {0, 1}, so the classification is binary. We let
Z = X ×Y. There is an unknown probability measure P on Z which we aim to
estimate. In particular, we have a class of X → Y functions H and a data set
S = {zi = (xi, yi) | i = 1, . . . ,m} of i.i.d. samples from P . Our goal is to find a
function in H which fits the data best in the sense of minimizing the empirical
risk.

Algorithm 1 shows the pseudocode of our defense. A tunable precision pa-
rameter β thresholds the width of the interval p1 − p0. Predictions are only
accepted if p1 − p0 ≤ β, otherwise a special REJECT label is returned. In case
of acceptance, the defense uses the estimate p1/(1 − p0 + p1) to correct the
prediction from the underlying model, as in [4].

2.1 Experiments

We conduct experiments on the T-shirts and trousers classes from Fashion-
MNIST [6], the cats vs dogs data set [7] and a subset of the CIFAR-10 dataset [8]
which contains only images of airplanes or automobiles. For cats vs dogs, we
resized all the samples to 64× 64 pixels as the images come in various sizes. For
all three sets, we rescaled the inputs to the [0, 1] interval and randomly split the
sets into disjoint training, calibration, validation and test data. The training
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Algorithm 1: Detecting adversarial manipulation with IVAPs.

Data: precision β ∈ [0, 1], bag of examples �z1, . . . , zn� ⊆ Z, object x ∈ X , learning
algorithm A

Result: An element of the set Y ∪ {REJECT}.
1 Use an IVAP on the hypothesis output by A to compute p0, p1 for x.
2 if p1 − p0 ≤ β then
3 Set p← p1

1−p0+p1
.

4 return 1 if p > 0.5 else 0

5 else
6 return REJECT

7 end

Task Clean Accuracy Adversarial Accuracy

Cats vs dogs 89.87% 1.8%
Airplanes vs automobiles 96.69% 3.75%
T-shirts vs trousers 99.75% 3.43%

Table 1: Summary of performance indicators for the unprotected CNNs.

data was used to train a standard CNN for 500 (cats vs dogs) and 50 (T-shirts
vs trousers, airplanes vs automobiles) epochs using the Adam optimizer [9]. The
calibration data set was used to calibrate the IVAP and the validation data was
used to tune the precision parameter β of the defense. The attacks we employed
were projected gradient descent with random restarts [3], DeepFool [10], local
search [11], the single pixel attack [12], NewtonFool [13], fast gradient sign [14]
and the momentum iterative method [15]. All of these attacks were used to
augment both the validation set as well as the test set, for tuning the precision
parameter and subsequently evaluating the performance of the models. The
training and calibration data sets contained no adversarials. The attacks were
unbounded, meaning that there was no limit imposed on the norm of the gen-
erated perturbations. We used the implementations provided by the Foolbox
library [16] and left all parameters at their default values. The implementation
of the IVAP we used was due to Toccaceli.1

Results. Table 1 shows the results for the unprotected CNNs. The cut-off for
the optimal β was determined by maximizing the difference TPR−FPR, known
as Youden’s index [17], on a data set consisting of adversarials for the underlying
model generated on the validation set along with the validation set itself. In our
setting, a sample is considered positive if it is accepted by the detector and
negative if it is flagged. The thresholds are 0.01 for cats vs dogs and airplanes vs
automobiles and 0.07 for T-shirts vs trousers. With these values of β, we obtain
the results shown in table 2. The Clean row shows results on the clean test set;
the Adversarial row shows results for the adversarials generated on the test set
for the underlying model alone and the Adapted row shows the performance of
the defense on the adversarial examples generated by our suite of attacks when

1https://github.com/ptocca/VennABERS
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Task Attack Size Accuracy TPR FPR

Cats vs dogs

Clean 3,988 72.94% 75.9% 51.15%
Adversarial 22,599 52.56% 71.25% 61.14%
Adapted 17,187 59.27% 100.0% 40.82%
Custom �∞ 3,145 1.69% 100.0% 100.0%

Airplanes vs
automobiles

Clean 1,600 74.38% 73.21% 3.7%
Adversarial 8,256 58.14% 0.0% 0.0%
Adapted 6,586 93.99% 0.0% 5.18%
Custom �∞ 1,600 0.0% 0.0% 100.0%

T-shirts vs
trousers

Clean 1,600 96.88% 96.86% 2.56%
Adversarial 7,076 50.99% 0.0% 0.03%
Adapted 5,923 77.53% 0.0% 22.01%
Custom �∞ 1,600 0.0% 0.0% 100.0%

Table 2: Summary of performance indicators for the IVAP defense on the dif-
ferent tasks.

the IVAP is taken into account. The defense suffers a reduction in clean accuracy
each time. However, its accuracy on adversarial examples is always much higher
than the accuracy of the unprotected model.

Custom white-box attack. The Custom �∞ row shows the results for our defense
when run on adversarial examples generated on the test set using a custom attack
we constructed specifically to fool the IVAP. This attack works by solving the
following optimization problem:

min
δ∈[−1,1]d

‖δ‖+ c(s(x+ δ)− si)
2 subject to x+ δ ∈ [0, 1]d.

Here, δ is the adversarial perturbation, ‖·‖ is the norm of choice (�∞ in this case),
x is the original clean sample, c is a parameter, d is the data dimensionality, s(x)
returns the logit score assigned to x by the CNN and si is a target score we want
our adversarial to achieve. This target score is determined from the calibration
set, where a sample is picked that belongs to the target class. The idea is that
whenever a new sample has the same score as an old sample in the calibration
set, the result of applying algorithm 1 to it will be the same as applying the
algorithm to the old sample because of the way the IVAP computes the proba-
bilities. The constant c can be determined via binary search, as in the Carlini &
Wagner attack [18]. Figure 1 shows the empirical cumulative distribution of the
adversarial distortion introduced by our custom attack. We see that, although
the attack is highly successful in circumventing our defense, the adversarials it
produces have sufficiently high �∞ distortion so as to be clearly distinguishable
from the originals. Note also that neither the IVAP nor the underlying CNN
were exposed to these adversarials during training or calibration.

Comparison to Madry et al. We also compare our defense to the one proposed
in [3], which is considered state of the art at the time of this writing.2 We trained

2Code taken from https://github.com/MadryLab/mnist_challenge
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Fig. 1: Empirical cumulative distributions of the adversarial distortion produced
by our custom �∞ white-box attack.

the same underlying CNNs for the same number of epochs with PGD adversarial
training using the parameter settings Madry et al. recommend for CIFAR-10 (on
cats vs dogs and airplanes vs automobiles) or MNIST (for T-shirts vs trousers).
On the cats vs dogs data set, we achieved 54.94% clean and 3.5% adversarial
accuracy; for airplanes vs automobiles, we have 82.06% clean and 29.19% ad-
versarial accuracy and for T-shirts vs trousers we obtain 97.12% clean accuracy
with 85% adversarial accuracy. By contrast, on the PGD adversarials that fool
the Madry models, our defense obtains 61.64% (cats vs dogs), 45.81% (airplanes
vs automobiles) and 72.75% (T-shirts vs trousers) accuracy respectively.

We conclude that our IVAP construction achieves higher robustness on cats
vs dogs and airplanes vs automobiles. On T-shirts vs trousers it appears the
Madry defense outperforms ours, which is not very surprising: the Madry defense
is known to be highly robust on MNIST-like tasks but much less so on more
difficult data sets. We believe that Madry outperforms us on “toy” data sets
such as MNIST and Fashion-MNIST but cannot scale to more difficult tasks
such as cats vs dogs or CIFAR-10. The results we present here indicate that
IVAPs are a viable defense on more realistic classification tasks where Madry
fails.

3 Conclusion

We have proposed using inductive Venn-ABERS predictors to protect machine
learning models against adversarial manipulation of input data in the case of
binary classification. Our defense uses the width of the uncertainty interval
produced by the IVAP as a measure of confidence in the prediction of the un-
derlying model, where the prediction is rejected in case this interval is too wide.
The acceptable width is a hyperparameter of the algorithm which can be esti-
mated using a validation set. The resulting algorithm is much less vulnerable
to adversarial examples and appears to be competitive to the defense proposed
by [3], which is state-of-the-art at the time of this writing. Avenues for fu-
ture work include (1) generalizing the IVAP defense to multiclass and regression
problems; (2) increasing clean and adversarial accuracy. The performance of the
IVAP defense is still not ideal at this stage since clean accuracy is noticeably
reduced. However, we believe these findings represent a significant step forward.
As such, we suggest that the community further look into methods from the field
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of conformal prediction in order to achieve adversarial robustness at scale. To
our knowledge, we are the first to apply these methods to this problem, although
the idea has been mentioned elsewhere already [19, Section 9.3, p133].
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