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ON THE INDEX OF PSEUDO-DIFFERENTIAL OPERATORS

ON COMPACT LIE GROUPS

DUVÁN CARDONA

Abstract. In this note we study the analytical index of pseudo-differential
operators by using the notion of (infinite dimensional) operator-valued symbols
(in the sense of Ruzhansky and Turunen). Our main tools will be the McKean-
Singer index formula together with the operator-valued functional calculus de-
veloped here.
MSC 2010. Primary 19K56; Secondary 58J20, 43A65.

Contents

1. Introduction 1
2. Preliminaries 4
2.1. The operator-valued quantization 4
2.2. Fredholm operators 5
2.3. The matrix-valued quantization 6
3. Operator-valued functional calculus for operators on compact Lie

groups 7
4. The index of operators on compact Lie groups 9
4.1. Ellipticity in terms of the operator-valued quantization 10
4.2. Index formulae for elliptic operators 10
5. The index of operators on Tn, SU(2) and SU(3). 15
References 18

1. Introduction

In this note we investigate index formulae for pseudo-differential operators on
compact Lie groups by using the notion of operator-valued symbol.

A pseudo-differential operator A : C∞
0 (Rn) → C∞(Rn), is an integral operator

defined by

Af(x) =

∫

Rn

eixξσA(x, ξ)f̂(ξ) dξ, (1.1)

and associated to a smooth function σA(x, ξ) – called the symbol of A – sat-

isfying some bounded conditions on its derivatives (see [24]). Here f̂ denotes
the euclidean Fourier transform of the function f . For every m ∈ R and every
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2 D. CARDONA

open set U ⊂ R
n, the Hörmander class of symbols of order m, Sm(U × R

n),
(for a detailed description see [24]), is defined by functions satisfying the usual
estimates

|∂α
x∂

β
ξ σA(x, ξ)| ≤ Cα,β〈ξ〉

m−|β|, (1.2)

for all (x, ξ) ∈ T ∗U ∼= U × Rn and α, β ∈ Nn. These classes initially defined
on open sets of Rn, can be defined on smooth manifolds by using charts. On
a manifold M (orientable and without boundary), the corresponding operators
associated to the Hörmander classes of order m will be denoted by Ψm(M). In
our case we are interested when M = G is a compact Lie group.

It is well known that every elliptic pseudo-differential operator D on a closed
manifold M (i.e a compact manifold without boundary) acting in smooth func-
tions, has kernel and cokernel of finite dimension and, in terms of the L2-theory
of Fredholm operators, so it can be associated an integer number, called the index
of D and, defined by

ind(D) := dimKernel(D)− dimCokernel(D). (1.3)

Now, let G be a compact Lie group, D(G) = C∞(G) be the space of smooth
functions on G endowed with the usual Frechet structure and D ′(G) be the space
of Schwartz distributions. Let us consider a continuous operator A : C∞(G) →
C∞(G) and the right convolution operator r(f) on G (defined by r(f)(g) = g ∗ f,
where f ∈ D ′(G), g ∈ C∞(G)). If πR is the right regular representation on G
(defined by πR(x)f(y) = f(yx), x, y ∈ G, f ∈ C∞(G)) then, Ruzhansky and
Turunen in [29] showed that

Af(x) = tr(σA(x)r(f)πR(x)), (1.4)

for some unique (operator-valued) symbol σA : G → B(C∞(G)) from G into the
space of continuous linear operators on C∞(G). The pseudo-differential term is
justified because r(f), is sometimes, called the right global Fourier transform of
f.

In relation with our work, a characterization for the Hörmander classes Ψm(G)
of pseudo-differential operators on arbitrary compact Lie groups, in terms of
operator-valued symbols, was proved by M. Taylor (see Remark 10.11.22 of [29]).
If A : C∞(G) → C∞(G) extends to a Fredholm operator on L2(G) (a necessary
and sufficient condition for the Fredholmness of A is the ellipticity condition),
in this paper we compute the index of A in terms of its operator-valued symbol
σA : G → B(C∞(G)) and the operator-valued symbol of its formal adjoint A∗,
σA∗ : G → B(C∞(G)). Complete references on index theory are the books [10, 19]
and [20].

The main result in index theory is the Atiyah-Singer index theorem. This
theorem was conjectured by I. M. Gelfand and several of its versions or extensions
can be found in the works of M. Atiyah, I. Singer and R. Bott, [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 12] for several classes of manifolds (and non-commutative structures). It
was proved in these references that the index of an elliptic operator can be written
in topological terms depending only on the homotopy class of its principal symbol.
For a general elliptic pseudo-differential operator D, acting on smooth sections of
a closed manifoldM , the Atiyah-Singer index formula has the following structure.
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First, the principal symbol of the operator D defines a Chern character ch(σD)
which is a cohomology class with compact support in TM , the tangent bundle
on M . In addition, there exists a cohomology class td(TM ⊗C), called the Todd
class, which give rise to the following integral expression for the index of D

ind(D) = (−1)n
∫

TM

ch(σD)td(TM ⊗ C), (1.5)

where n = dim(M), see [4]. Although the general Atiyah-Singer index theorem
applies for compact Lie groups, our main goal is to write the index of elliptic
operators as an integral expression taking advantage of the Ruzhansky-Turunen
operator-valued calculus [29]. So, if δg ∈ D ′(G) is the Dirac point mass distri-
bution at g ∈ G, and D = A ∈ Ψ0(G) is an elliptic operator on G, we prove
that

ind(A) =

∫

G

µγ(g)dg, (1.6)

where

µγ(g) := exp(−γσA∗(g)σA(g))δg(g)− exp(−γσA(g)σA∗(g))δg(g), (1.7)

for all γ > 0. The right hand side of (1.6) is understood in the sense of distri-
butions. The corresponding index theorem for operators of general order will be
given in Theorem 4.6. As it will be observed, our instrumental tool will be the
McKean-Singer lemma

ind(A) = tr(e−tA∗A)− tr(e−tAA∗

), t > 0. (1.8)

In our case, the McKean-Singer lemma implies a local index formula of the form

ind(A) =

∫

G

µ0(g)dg (1.9)

for some density µ0 on G defined by certain geometrical invariants (see the clas-
sical work [2] of Atiyah, Bott and Patody). In this case, the operator-valued
symbolic calculus of Ruzhansky and Turunen simplifies the McKean-Singer for-
mula (1.8) to the expression (1.6). Certainly, the density µγ is defined by the
operator valued symbols associated to A and A∗ and consequently by the global
Fourier analysis associated to every compact Lie group. On the other hand, if

Ĝ denotes the set of equivalence classes of strongly continuous, irreducible and
unitary representations on G, we show that every elliptic operator A ∈ Ψm(G)
has Fredholm index given by

ind(A) =

∫

G

∑

[ξ]∈Ĝ

dim (ξ)Tr((µγ(x)ξ)(eG)) dx, (1.10)

where

(µγ(x)ξ)(eG) = (exp(−γσA∗(x)σA(x))ξ)(eG)− (exp(−γσA(x)σA∗(x))ξ)(eG),
(1.11)

here eG is the identity element ofG. In this case, µ̃γ(x)ξ := dim (ξ)Tr((µγ(x)ξ)(eG))

can be viewed as a density on the non-commutative phase space G × Ĝ. So,
the index of elliptic operators on compact Lie groups can be written in terms
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of the algebraic information in the representation theory of the group and the
operator-valued symbol of these operators. We refer the reader to the references
[11, 12, 23, 25, 26, 34, 36] where certain index formulae have been proved for
specific elliptic operators on homogeneous spaces G/K.

This paper is organized as follows. In Section 2 we present some basics on
the Fourier analysis used in our context and the global quantization of operators
trough of operator-valued symbols. The operator-valued functional calculus will
be developed in Section 3. In Section 4 we prove our index formulae. Finally, in
Section 5 we provide explicit index formulae for elliptic operators on the torus,
and the groups SU(2) and SU(3).

2. Preliminaries

In this section we present some topics on compact Lie groups, the Fourier
analysis used here, and the operator valued calculus of Ruzhansky and Turunen.
For this we follow [21] and [29]. The reference [24] includes a complete background
on the theory of pseudo-differential operators.

2.1. The operator-valued quantization. Throughout of this paper G is a
compact Lie group endowed with its normalised Haar measure dg. For f ∈ D

′(G),
the respective right-convolution operator r(f) : C∞(G) → C∞(G) is defined by

r(f)g = g ∗ f, g ∈ C∞(G). (2.1)

If f ∈ L2(G), the (right) global Fourier transform is defined by

r(f) =

∫

G

f(y)πR(y)
∗dy, (2.2)

where πR is the right regular representation on G, defined by πR(x)f(y) = f(yx)
and πR(x)

∗ = πR(x
−1), x ∈ G. In this case, the Fourier inversion formula gives

f(x) = tr(r(f)πR(x)), f ∈ C∞(G), x ∈ G. (2.3)

If ρ : G → B(C∞(G)) is a continuous operator, the pseudo-differential operator
A associated to ρ, is defined by

Af(x) = tr(ρ(x)r(f)πR(x)), f ∈ C∞(G). (2.4)

Conversely, if A : C∞(G) → C∞(G) is a continuous linear operator, then there
exists an unique σA : G → B(C∞(G)) (called the operator-valued symbol of A)
satisfying

Af(x) = tr(σA(x)r(f)πR(x)), f ∈ C∞(G). (2.5)

The symbol σA is defined as follows. Let KA ∈ C∞(G)⊗̂D ′(G) be the distribu-
tional Schwartz kernel of A and RA(x, y) = K(x, y−1x) is the right-convolution
kernel associated to A. If x ∈ G, and RA(x) ∈ D ′(G) is defined by (RA(x))(y) =
RA(x, y) for every y ∈ G, the (right) operator-valued symbol ρ = σA associated
to A is defined by σA(x) := r(RA(x)), x ∈ G. In our further analysis will be
useful the following composition theorem.
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Proposition 2.1 (Composition formula for operator valued symbols). Let us
assume that A and E are continuous linear operators on C∞(G). Then, for every
x ∈ G we have

σAE(x) = σA(x)σE(x). (2.6)

Proof. Let us note that for f ∈ C∞(G),

AEf(x) = tr(σA(x)r(Ef(·))πR(x)). (2.7)

Since

r(Ef(·)) = r((f ∗RE(·))(·)) = r(RE(·))r(f) = σE(·)r(f),

we deduce

AEf(x) = tr(σA(x)σE(x)r(f)πR(x)), (2.8)

and by uniqueness we have σAE(x) = σA(x)σE(x). So, we finish the proof. �

Remark 2.2. If A : C∞(G) → C∞(G) is a continuous linear operator, for every
k ∈ N, the operator Ak is continuous on C∞(G), and by the preceding result the
operator valued symbol of Ak satisfies σAk(x) = σA(x)

k, x ∈ G. It is easy to see
that if A is invertible on C∞(G), then σA−1(x) = σA(x)

−1, for all x ∈ G.

2.2. Fredholm operators. The index is defined for a broad class of operators
called Fredholm operators. Now, we introduce this notion in more detail. For
X, Y normed spaces B(X, Y ) is the set of bounded linear operators from X into
Y.

Definition 2.3. If H1 and H2 are Hilbert spaces, the closed and densely defined
operator A : H1 → H2 is Fredholm if only if Ker(A) is finite dimensional and
Im(A) = Rank(A) is a closed subspace of H2 with finite codimension. In this
case, the index of A is defined by ind(A) = dimKer(A) − dimCoker(A). The
index formula also can be written as

ind(A) = dimKer(A)− dimKer(A∗).

Now, we end this subsection with a result now known as McKean-Singer index
formula. We present the proof by completeness.

Lemma 2.4. Let us assume that T : H1 → H2 is a Fredholm operator, TT ∗ and
T ∗T have a discrete spectrum, and for all t > 0, e−tT ∗T and e−tTT ∗

are trace class.
Then

ind(T ) = tr(e−tT ∗T )− tr(e−tTT ∗

). (2.9)

Proof. Let λ ∈ Σ(T ∗T ), λ 6= 0, then there exists a non-zero vector φ ∈ H1 such
that T ∗T (φ) = λφ. Then, TT ∗T (φ) = λTφ so that if T (φ) is non-zero, then it is
an eigenvalue of TT ∗. It follows that the non-zero eigenvalues of TT ∗ and TT ∗

are the same. Thus

tr(e−tT ∗T )− tr(e−tTT ∗

) = dimKer(T ∗T )− dimKer(TT ∗).

Since Ker(A∗A) = Ker(A) and Ker(AA∗) = Ker(A∗) we end the proof. �
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2.3. The matrix-valued quantization. Let us consider for every compact Lie
group G its unitary dual Ĝ, that is the set of continuous, irreducible, and unitary

representations on G. If [ξ] ∈ Ĝ, and ξ : G → U(Cdξ), the following equalities
follow from the Fourier transform on G

f̂(ξ) =

∫

G

ϕ(x)ξ(x)∗dx ∈ C
dξ×dξ , f(x) =

∑

[ξ]∈Ĝ

dξTr(ξ(x)f̂(ξ)), x ∈ G, f ∈ C∞(G),

and the Peter-Weyl Theorem on G implies the Plancherel Theorem on L2(G),

‖f‖L2(G) =


∑

[ξ]∈Ĝ

dξTr(f̂(ξ)f̂(ξ)
∗)




1
2

= ‖f̂‖L2(Ĝ).

Notice that, since ‖A‖2HS = Tr(AA∗), the term within the sum is defined by the

Hilbert-Schmidt norm of the matrix f̂(ξ). Any linear operator A on G mapping
C∞(G) into D′(G) gives rise to a matrix-valued global (or full) symbol σA(x, ξ) ∈
C

dξ×dξ given by

σA(x, ξ) = ξ(x)∗(Aξ)(x), (Aξ)(x) := (Aξij)
dξ
i,j=1, x ∈ G, [ξ] ∈ Ĝ, (2.10)

which can be understood from the distributional viewpoint. Then it can be shown
that the operator A can be expressed in terms of such a symbol as [29]

Af(x) =
∑

[ξ]∈Ĝ

dξTr[ξ(x)σA(x, ξ)f̂(ξ)], x ∈ G. (2.11)

The Hilbert space L2(Ĝ) is defined by the norm

‖Γ‖2
L2(Ĝ)

=
∑

[ξ]∈Ĝ

dξ‖Γ(ξ)‖
2
HS, Γ(ξ) ∈ C

dξ×dξ .

Now, we want to introduce Sobolev spaces and, for this, we give some basic tools.

Let ξ ∈ Rep(G) := ∪Ĝ, if x ∈ G is fixed, ξ(x) : Hξ → Hξ, Hξ
∼= Cdξ , is an unitary

operator and dξ := dimHξ < ∞. There exists a non-negative real number λ[ξ]

depending only on the equivalence class [ξ] ∈ Ĝ, but not on the representation
ξ, such that −LGξ(x) = λ[ξ]ξ(x); here LG is the Laplacian on the group G (in
this case, defined as the Casimir element on G). Let 〈ξ〉 denote the function

〈ξ〉 = (1 + λ[ξ])
1
2 .

Definition 2.5. For every s ∈ R, the Sobolev space Hs(G) on the Lie group G

is defined by the condition: f ∈ Hs(G) if only if 〈ξ〉sf̂ ∈ L2(Ĝ).

The Sobolev space Hs(G) is a Hilbert space endowed with the inner prod-
uct 〈f, g〉s = 〈Λsf,Λsg〉L2(G), where, for every r ∈ R, Λs : Hr → Hr−s is the
bounded pseudo-differential operator with symbol 〈ξ〉sIξ. In this paper the notion
of Sobolev spaces Hs(G) is essential. Indeed, every elliptic operator T ∈ Ψm(G)
of order m is a bounded operator from Hs(G) into Hs−m(G) and, more impor-
tantly, its index –as an operator from C∞(G) to C∞(G)– agrees with the index
of T as operator acting from Hs(G) into Hs−m(G), for every s ∈ R.
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Definition 2.6. Let (Yj)
dim(G)
j=1 be a basis for the Lie algebra g of G, and let ∂j

be the left-invariant vector fields corresponding to Yj . We define the differential
operator associated to such a basis by DYj

= ∂j and, for every α ∈ Nn, the
differential operator ∂α

x is the one given by ∂α
x = ∂α1

1 · · ·∂αn
n . Now, if ξ0 is a fixed

irreducible representation, the matrix-valued difference operator is the given by

Dξ0 = (Dξ0,i,j)
dξ0
i,j=1 = ξ0(·)−Idξ0 . If the representation is fixed we omit the index ξ0

so that, from a sequence D1 = Dξ0,j1,i1 , · · · ,Dn = Dξ0,jn,in of operators of this type
we define Dα = D

α1
1 · · ·Dαn

n , where α ∈ Nn. Other properties on these differences
operators can be found in [33]. See also [22].

Now we introduce, for every m ∈ R, the Hörmander class Ψm(G) of pseudo-
differential operators of order m on the compact Lie group G. As a compact
manifold we consider Ψm(G) as the set of those operators which, in all local
coordinate charts, give rise to pseudo-differential operators in the Hörmander
class Ψm(U) for an open set U ⊂ Rn, characterized by symbols satisfying the
usual estimates [24]

|∂α
x∂

β
ξ σ(x, ξ)| ≤ Cα,β〈ξ〉

m−|β|, (2.12)

for all (x, ξ) ∈ T ∗U ∼= R2n and α, β ∈ Nn. This class contains, in particular,
differential operator of degree m > 0 and other well-known operators in global
analysis such as heat kernel operators.

We reserve the notation Ψm(G × Ĝ) =: Ψm(G) for pseudo-differential opera-
tors of order m on G. The Hörmander classes Ψm(G) were characterized in [29]
(see also [30]) by the condition: A ∈ Ψm(G) if only if its matrix-valued symbol
σA(x, ξ) satisfies the inequalities

‖∂α
xD

βσA(x, ξ)‖op ≤ Cα,β〈ξ〉
m−|β|, x ∈ G, [ξ] ∈ Ĝ, (2.13)

for every α, β ∈ Nn. For a rather comprehensive treatment of this quantization
process we refer to [29]. In this paper we are interested in the index of elliptic
operators in Ψm(G), where m ∈ R. Now, we present the following theorem on
elliptic pseudo-differential operators.

Theorem 2.7. An operator A ∈ Ψm(G) is elliptic if and only if its matrix-valued

symbol σA(x, ξ) is an invertible matrix for all but finitely many [ξ] ∈ Ĝ, and for
all such ξ and x ∈ G satisfies

‖σA(x, ξ)
−1‖op ≤ C〈ξ〉−m.

Thus both statements are equivalent to the existence of B ∈ Ψ−m(G) such that
R1 = I−AB and R2 = I−BA are smoothing. This means that Ri ∈ Ψ−∞(G) :=
∩mΨ

m(G), for i = 1, 2.

3. Operator-valued functional calculus for operators on

compact Lie groups

In this section we develop the operator-valued functional calculus for pseudo-
differential operators on compact Lie groups. It is important to mention that
the matrix-valued functional calculus has been developed by M. Ruzhansky and
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J. Wirth in [32]. Our starting point is the following lemma where the set ρ(T )
denotes the resolvent set of T.

Lemma 3.1. Let us assume that ω ∈ ρ(T ), and T : C∞(G) → C∞(G) extends
to a closed operator on L2(G). Then for all x ∈ G, ω ∈ ρ(σT (x)) and we have the
following identity for the resolvent operator of T.

σ(ω−T )−1(x) = (ω − σT (x))
−1. (3.1)

Proof. If ω ∈ ρ(T ), then Rω(T ) := ω−T is a bounded and invertible operator on
L2(G) and consequently,

(ω − T )−1(ω − T ) = I = (ω − T )(ω − T )−1. (3.2)

By Proposition 2.1, we have

σ(ω−T )−1(x)σ(ω−T )(x) = σ(ω−T )−1(x)(ω − σT (x)) = I, (3.3)

and

(ω − σT (x))σ(ω−T )−1(x) = σ(ω−T )(x)σ(ω−T )−1(x) = I. (3.4)

This analysis shows that Rω(σT (x)) := ω − σT (x) is an invertible operator on
L2(G) and

σ(ω−T )−1(x) = (ω − σT (x))
−1,

for all x ∈ G. The proof is complete. �

Let us consider continuous, symmetric and linear operators T : C∞(G) →
C∞(G) such that T and σT (x) admit self-adjoint extensions on L2(G), for all
x ∈ G. Examples of these operators arise with operators of the form T = A∗A
because σT (x) = σA(x)

∗σA(x). We keep the same notation for their self-adjoint
extensions on L2(G). We recall that the spectral theorem (for bounded and
unbounded self-adjoint operators) implies

T =

∞∫

−∞

λdEλ, σT (x) =

∞∫

−∞

λdEλ(x), (3.5)

where {Eλ}−∞<λ<∞ and {Eλ(x)}−∞<λ<∞ are the spectral measures of T and
σT (x) respectively. Now we present the main result of this section. We will use
the Stone formula (see Theorem 7.17 of [37])

E(λ) = lim
δ→0+

lim
ε→0+

∫ λ+δ

−∞

([t− iε− T ]−1 − [t+ iε− T ]−1)dt, (3.6)

in our further analysis.

Theorem 3.2. Let us assume that T and σT (x) are as in the previous discussion
and G : (−∞,∞) → C is a measurable function. Let us define the operator G(T )
by the functional calculus:

G(T ) :=

∞∫

−∞

G(λ)dEλ.
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Then, the identity

G(T )f(x) := [G(σT (x))f ](x), G(σT (x)) =

∞∫

−∞

G(λ)dEλ(x), (3.7)

holds true for every x ∈ G and f ∈ Dom(G(T )).

Proof. Let x ∈ G be a fixed coordinate. By using Lemma 3.1 and the Stone
formula, we have

Eλ(x) = lim
δ→0+

lim
ε→0+

λ+δ∫

−∞

((t− iε− σT (x))
−1 − (t+ iε− σT (x))

−1)dt

= lim
δ→0+

lim
ε→0+

λ+δ∫

−∞

(σ(t−iε−T )−1(x)− σ(t+iε−T )−1(x))dt.

If f ∈ C∞(G), then we deduce,

Eλ(x)f(x) = lim
δ→0+

lim
ε→0+

λ+δ∫

−∞

(σ(t−iε−T )−1(x)f(x)− σ(t+iε−T )−1(x)f(x))dt

= lim
δ→0+

lim
ε→0+

λ+δ∫

−∞

((t− iε− T )−1f(x)− (t+ iε− T )−1f(x))dt

= Eλf(x),

where in the last line we have used the Stone theorem applied to T. Now, the
identity Eλf(x) = Eλ(x)f(x) implies

G(T )f(x) =

∞∫

−∞

G(λ)dEλf(x) =

∞∫

−∞

G(λ)dEλ(x)f(x) = G(σT (x))f(x).

Thus, we finish the proof. �

Remark 3.3. Let us complement the previous theorem by observing that the
relation

Eλf(x) = Eλ(x)f(x), f ∈ C∞(G), (3.8)

holds true for all x ∈ G.

4. The index of operators on compact Lie groups

In this section we prove our main result. Since the prototype of Fredholm op-
erators are elliptic operators, we classify such condition in terms of the operator-
valued quantization.
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4.1. Ellipticity in terms of the operator-valued quantization. In terms
of the representation theory of a compact Lie group and the notion of operator
valued symbol, the ellipticity of operators can be characterized as follows.

Theorem 4.1. Let G be a compact Lie group and eG its identity element. An
operator A ∈ Ψm(G) with operator valued symbol σA : G → B(C∞(G)) is elliptic
if and only if the matrix-valued function σA(x)ξ(eG) is an invertible matrix for

all but finitely many [ξ] ∈ Ĝ, and for all such ξ and x ∈ G satisfies

‖[σA(x)ξ(eG)]
−1‖op ≤ C〈ξ〉−m.

Thus both statements are equivalent to the existence of B ∈ Ψ−m(G) such that
R1 = I−AB and R2 = I−BA are smoothing. This means that Ri ∈ Ψ−∞(G) :=
∩mΨ

m(G), for i = 1, 2.

Proof. Let us denote by B(x, ξ) the matrix-valued symbol associated to A. This

means that B : G × Ĝ → ∪[ξ]∈Ĝ(C
dξ) satisfies B(x, ξ) = ξ(x)∗(Aξ)(x). Theorem

10.11.16 in [29] gives the identity B(x, ξ) = σσA(x)(y, ξ) := ξ(y)∗(σA(x)ξ)(y), for
all y ∈ G. In particular, if y = eG is the identity element in G,

σA(x)ξ(eG) = B(x, ξ), x ∈ G, [ξ] ∈ Ĝ. (4.1)

Thus, from Theorem 2.7 we finish the proof. �

Remark 4.2. A similar analysis as in the previous result gives the following char-
acterization of Hörmander classes in terms of operator-valued symbols. in fact,
A ∈ Ψm(G) if and only if

‖∂α
xD

β(σA(x)ξ(eG))‖op ≤ Cα,β〈ξ〉
m−|β|, (4.2)

for all α, β ∈ Nn. It is well know that pseudo-differential operators in Ψ0(G) are
bounded operators on L2(G) (see [24]).

4.2. Index formulae for elliptic operators. Now we prove our main results.
We start with the following theorem.

Theorem 4.3. Let G be a compact Lie group and A ∈ Ψ0(G) be an elliptic
operator. Then the analytical index of A is given by

ind(A) =

∫

G

µγ(g)dg, (4.3)

where

µγ(g) := exp(−γσA∗(g)σA(g))δg(g)− exp(−γσA(g)σA∗(g))δg(g), (4.4)

for all γ > 0, where δg is the Dirac point mass at g ∈ G.

Proof. Let us assume that A ∈ Ψ0(G) is an elliptic operator. Let us denote for
all x ∈ G, by BσA(x) the matrix-valued symbol associated to σA(x) : C

∞(G) →
C∞(G). If B(x, ξ) is the matrix-valued symbol associated to A, then Theorem
10.11.16 in [29] gives

BσA(x)(y, ξ) = B(x, ξ), x, y ∈ G, [ξ] ∈ Ĝ. (4.5)
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Consequently for every x ∈ G, σA(x) ∈ Ψ0(G) is an elliptic operator. So, for
every x ∈ G, σA(x) extends to a bounded and Fredholm operator on L2(G)
and the operatorsA,A∗A,AA∗, σA(x), σA(x)

∗σA(x), σA(x)σA(x)
∗, e−γA∗A, e−γAA∗

,
e−γσA(x)∗σA(x), and e−γσA(x)σA(x)∗ have discrete spectrum. In order to compute
the index of A we need to compute the operator-valued symbol of the opera-
tors e−γA∗A and e−γAA∗

. Although this can be done by using the operator-valued
functional calculus developed in the previous section, we give a more elementary
construction. For this we will use that the exponential formula eT =

∑∞
k=0

1
k!
T k

holds true for a bounded operator T, on a Hilbert space H, where we have as-
sumed that T is self-adjoint and eT is defined by the functional calculus. From
Proposition 2.1 and Remark 2.2, we have for f ∈ C∞(G) and γ > 0, the identity
e−γA∗Af(x) = e−γσA∗ (x)σA(x)f(x), in fact

e−γA∗Af(x) =

(
∞∑

k=0

(−γ)k/k!(A∗A)k

)
f(x) =

∞∑

k=0

(−γ)k/k!((A∗A)kf)(x)

=

∞∑

k=0

(−γ)k/k!σ(A∗A)k(x)f(x) =

∞∑

k=0

(−γ)k/k!(σ(A∗A)(x))
kf(x)

=

∞∑

k=0

(−γ)k/k!(σA∗(x)σA(x))
k(x)f(x)

= e−γσA∗ (x)σA(x)f(x), x ∈ G,

where we have used that A and σA(x) are bounded operators on L2(G) justifying
so the convergence computations with the exponentials operators. So, the oper-
ator valued symbol associated to e−γA∗A is given by σe−γA∗A(x) = e−γσA∗ (x)σA(x).
On the other hand, let us denote Ke−γA∗A to the distributional kernel associated
to e−γA∗A. Then,

tr(e−γA∗A) =

∫

G

Ke−γA∗A(g, g)dg. (4.6)

Because Kγ(g, g) = Re−γA∗A(g, eG), for every g ∈ G, (here eG is the identity
element of G) we have the distributional identity

e−γA∗Aδg(g) = σe−γA∗A(g)δg(g) =

∫

G

δg(y)Re−γA∗A(y−1g)dy = Re−γA∗A(g, eG).

(4.7)
Taking into account the first part of the proof, we deduce

e−γσA∗ (g)σA(g)δg(g) = Re−γA∗A(g, eG) (4.8)

and consequently

tr(e−γA∗A) =

∫

G

e−γσA∗ (g)σA(g)δg(g)dg.

Similarly, an analogous analysis applied to A∗ instead of A gives

tr(e−γAA∗

) =

∫

G

e−γσA(g)σA∗ (g)δg(g)dg.
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So, by Lemma (2.4) we have

ind(A) =

∫

G

(e−γσA∗ (g)σA(g)δg(g)− e−γσA(g)σA∗ (g)δg(g))dg, (4.9)

where in the last line we have used Lemma 2.4. So, we finish the proof. �

Remark 4.4. The main advantage here is Proposition 2.1 for the composition of
operators, where we have a closed formula, instead of the usual global calculus
where is used the notion of asymptotic expansions.

Remark 4.5. If A ∈ Ψ0(G) is a left invariant operator on a compact Lie group,
its operator valued symbol is the constant mapping σA(x) = A, x ∈ G, in this
case, A is a right convolution operator and from (4.3), ind(A) = 0. Operators on
compact Lie groups with non vanishing index can be found in [29, Chapter 4].

Now, we prove an index theorem for operators of arbitrary order.

Theorem 4.6. Let G be a compact Lie group, m ∈ R and A ∈ Ψm(G) be an
elliptic operator. Then the analytical index of A is given by

ind(A) =

∫

G

µγ,m(g)dg, (4.10)

where

µγ,m(g) := exp(−γσA∗(g)Λ−2mσA(g))δg(g)− exp(−γΛ−mσA(g)σA∗(g)Λ−m)δg(g),
(4.11)

for all γ > 0, where δg is the Dirac point mass at g ∈ G.

Proof. For the proof we apply Theorem 4.3 to the operator E = Λ−mA ∈ Ψ0(G).
In fact, by using that Λm is self-adjoint, from the logarithmic property of the
index we have

ind(A) = ind(Λm) + ind(E) = ind(E).

Because Λ−m is left invariant, σΛ−m
(x) = Λ−m, and σE(x) = Λ−mσA(x). Now,

E∗ = AΛ−m, σE∗(x) = σA(x)Λ−m and we have

ind(E) =

∫

G

µγ(g)dg, (4.12)

where

µγ,m(g) := exp(−γσA∗(g)Λ−2mσA(g))δg(g)− exp(−γΛ−mσA(g)σA∗(g)Λ−m)δg(g),
(4.13)

for all γ > 0. So, we finish the proof. �

Now, we need some preliminary results in order to prove our third index theo-
rem.

Proposition 4.7. Let G be a compact Lie group. Every elliptic pseudo-differential
operator T : C∞(G) → C∞(G) of order m ≥ 0 extends to a closed operator T on
L2(G).
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Proof. Let us assume that T ∈ Ψm(G) is an elliptic operator. We will show that T
is closed on L2(G). Let fn → f and assume that Tfn → g where the convergence
is in the L2(G)−norm. We will prove that Tf = g. From the Theorem 2.7
there exists S ∈ Ψ−m(G) such that TS = I + R where R ∈ Ψ−∞(G). Since
operators in Ψr(G) are bounded on L2(G) for r ≤ 0, we have that STfn → Sg
and (ST )fn → (ST )f. Hence Sg = STf. Notice that g ∈ L2(G) and TS(g) =
TST (f) = TSTf = Tf +RTf = g +Rg. On the other hand

R(Tf) = RT ( lim
n→∞

fn) = lim
n→∞

RTfn = R( lim
n→∞

Tfn) = Rg.

Now from the equality Tf +RTf = g +Rg we deduce that Tf = g. �

The corresponding statement for trace class pseudo-differential operators is the
following (for the proof, we follow the approach of the recent works by J. Delgado
and M. Ruzhansky [16, 17, 18]).

Theorem 4.8. Let A be a pseudo-differential operator on Ψm(G), m < − dim(G)
with distributional kernel K(x, y). Then A is trace class on L2(G) and

tr(A) =

∫

G

∑

[ξ]∈Ĝ

dξTr[σA(x, ξ)]dx,

where σA(x, ξ) is the matrix-valued symbol of A.

Proof. It is well known that if A is a pseudo-differential operator of order less
that −n = − dim(G), then A is trace class (see [27]). Now, the trace Tr(A) of
A is given by Tr(A) =

∫
G
K(x, x)dx provided that K(x, y) will be a continuous

function on the diagonal. If we assume the boundedness of x 7→ K(x, x), since, in
the case of compact Lie groups we have K(x, y) =

∑
[ξ]∈Ĝ dξTr(ξ(x)σ(x, y)ξ(y)

∗

),

then, K(x, x) =
∑

[ξ]∈Ĝ dξTr[σA(x, ξ)], and we could end the proof. So, we only

need to show the boundedness of κ(·) = K(·, ·). Let us note that κ is a bounded
function on G. Indeed, because A ∈ Ψm(G), if Idξ denotes the identity matrix on

Cdξ×dξ , we have

|κ(x)| ≤
∑

[ξ]∈Ĝ

dξ|Tr[σA(x, ξ)]| =
∑

[ξ]∈Ĝ

dξ|Tr[σA(x, ξ)Idξ ]|

≤
∑

[ξ]∈Ĝ

dξ‖σA(x, ξ)‖HS‖Idξ‖HS =
∑

[ξ]∈Ĝ

dξ‖σA(x, ξ)Idξ‖HS × d
1
2
ξ

≤
∑

[ξ]∈Ĝ

dξ‖σA(x, ξ)‖op‖Idξ‖HS × d
1
2
ξ =

∑

[ξ]∈Ĝ

d2ξ‖σA(x, ξ)‖op

.
∑

[ξ]∈Ĝ

d2ξ〈ξ〉
m < ∞,

where we have used that m < −n in order to conclude that the last series con-
verges. So, for every ℓ ∈ N, let us define the function

κℓ(x) :=
∑

〈ξ〉≤ℓ

dξTr[σA(x, ξ)]. (4.14)
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For every x ∈ G, |κ(x)| < ∞, and the sequence of derivable functions κℓ, ℓ ∈ N,

converges pointwise to κ. Let (Yj)
dim(G)
j=1 be a basis for the Lie algebra g of G, and

let ∂j be the left-invariant vector fields corresponding to Yj. If we assume that
the sequence of continuous functions ∂jκℓ converges uniformly to some continuous
function κ′ on G (that is compact) then κ is derivable and κ′ = ∂jκ, (consequently
we could prove the continuity of κ). So, we need to prove the existence of κ′. If
ℓ < ℓ′, then

‖∂jκℓ − ∂jκℓ′‖L∞(G) ≤
∑

ℓ<〈ξ〉≤ℓ′

dξ|Tr[∂jσA(x, ξ)]| .
∑

ℓ<〈ξ〉≤ℓ′

d2ξ〈ξ〉
m → 0, as ℓ → ∞.

(4.15)
So, the sequence of continuous functions ∂jκℓ is a Cauchy sequence on C(G) and
we end the proof taking into account that (C(G), ‖·‖L∞(G)) is a complete normed
space. �

We end this section with the following result.

Theorem 4.9. Let us consider m ≥ 0 and let A ∈ Ψm(G) be an elliptic operator.
Then the index of A is given by

ind(A) =

∫

G

∑

[ξ]∈Ĝ

dξTr((µγ(g)ξ)(eG)) dg, (4.16)

where

(µγ(g)ξ)(eG) = (exp(−γσA∗(g)σA(g))ξ)(eG)− (exp(−γσA(g)σA∗(g))ξ)(eG),
(4.17)

for all γ > 0.

Proof. By taking into account that A has discrete spectrum, by Proposition 4.7
we can use Theorem 2.4 in order to compute the index of A. If Bγ(x, ξ) is the
matrix-valued symbol associated to e−γA∗A then

(σe−γA∗A(x)ξ)(eG) = Bγ(x, ξ). (4.18)

If m > 0, in order to compute σe−γA∗A(x) we will use the operator-valued func-
tional calculus developed above. Let us note that for m = 0, A∗A is a bounded
operator on L2(G) and the symbol σe−γA∗A(x) has been computed in Theorem 4.3
by using the exponential formula eT =

∑∞
k=0

1
k!
T k. If m > 0, then A could be un-

bounded on L2 and consequently we cannot use the previous exponential formula.
So, by Theorem 3.2 applied to F (t) = e−γt and T = A∗A, we have the identity
F (A∗A)f(x) = [F (σA∗A(x))f ](x), f ∈ C∞(G), which in turn is equivalent to

e−γA∗Af(x) = [e−γσA∗A(x)]f(x) = [e−γσA∗ (x)σA(x)]f(x), x ∈ G, (4.19)

where we have used the composition formula σBA(x) = σB(x)σA(x) applied to
B = A∗. Consequently, by the uniqueness of the operator-valued quantization,
we deduce that

σe−γσA∗A (x) = e−γσA∗ (x)σA(x), and, Bγ(x, ξ) = (e−γσA∗ (x)σA(x)ξ)(eG). (4.20)

Now, we have



THE INDEX OF ELLIPTIC OPERATORS ON COMPACT LIE GROUPS 15

tr(e−γA∗A) =

∫

G

∑

[ξ]∈Ĝ

dξTr(Bγ(x, ξ))dx, (4.21)

where we have used Theorem 4.8. So, we have

tr(e−γA∗A) =

∫

G

∑

[ξ]∈Ĝ

dξTr((e
−γσA∗ (x)σA(x)ξ)(eG))dx. (4.22)

A similar analysis gives

tr(e−γAA∗

) =

∫

G

∑

[ξ]∈Ĝ

dξTr((e
−γσA(x)σA∗ (x)ξ)(eG))dx. (4.23)

Thus, we obtain

ind(A) =

∫

G

∑

[ξ]∈Ĝ

dξTr((e
−γσA∗(x)σA(x)ξ)(eG)− (e−γσA(x)σA∗ (x)ξ)(eG))dx. (4.24)

With the last line we finish the proof. �

Remark 4.10 (Index of matrix-valued pseudo-differential operators). Let us note
that Theorem 2.4 implies the following formula for the index of A.

ind(A) = tr(e−γA∗A)− tr(e−γAA∗

). (4.25)

We now observe by applying Theorem 4.8 that

ind(A) = tr(e−γA∗A)− tr(e−γAA∗

)

=

∫

G

∑

[ξ]∈Ĝ

dξtr[σe−γA∗A(x, ξ)]dx−

∫

G

∑

[ξ]∈Ĝ

dξTr[σe−γAA∗ (x, ξ)]dx

=

∫

G

∑

[ξ]∈Ĝ

dξTr[iγ(x, ξ)]dx,

where iγ(x, ξ) := σ[e−γA∗A−e−γAA∗ ](x, ξ).

5. The index of operators on Tn, SU(2) and SU(3).

In this section we consider our index formulae on the n-dimensional torus
Tn, and the special unitary groups SU(2) and SU(3). Our starting point is the
following example in the commutative setting. Our main goal is to provide explicit
computations for the integral expression in Theorem 4.9.

Example 5.1. (The torus). Let us consider the n-dimensional torus G = T
n :=

Rn/Zn and its unitary dual T̂n := {eℓ : ℓ ∈ Zn}, eℓ(x) := ei2πℓ·x, x ∈ Tn. Let us
assume that A ∈ Ψm(Tn), m ≥ 0, is an elliptic operator. Under the identification
Tn ∼= [0, 1)n, by Theorem 4.9 the index of A is given by

ind(A) =

∫

[0,1)n

∑

ℓ∈Zn

(µγ(x)e
2πiℓx)(1) dx, (5.1)
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where

(µγ(x)e
i2πxℓ)(1) = (exp(−γσA∗(x)σA(1))e

2πiℓx)(1)−(exp(−γσA(x)σA∗(x))e2πiℓx)(1),

for all γ > 0. Other properties on the quantization of global pseudo-differential
operators on the torus can be found in [28].

Now, we present an index formula for elliptic operators on SU(2). The matrix-
valued calculus of pseudo-differential operators for SU(2) can be found in [31].

Example 5.2. (The group SU(2)). Let us consider the group SU(2) ∼= S3 con-
sisting of those orthogonal matrices A in C2×2, with det(A) = 1. We recall that
the unitary dual of SU(2) (see [29]) can be identified as

ŜU(2) ≡ {[tl] : 2l ∈ N, dl := dim tl = (2l + 1)}. (5.2)

There are explicit formulae for the representations tl as functions of Euler angles
in terms of the so-called Legendre-Jacobi polynomials, see [29]. Let us consider
m ≥ 0 and let A ∈ Ψm(SU(2)) be an elliptic operator. Then the index of A is
given by

ind(A) =

∫

SU(2)

∑

l∈ 1
2
N

(2l + 1)Tr((µγ(g)tl(g))(I2)) dg, (5.3)

where I2 ∈ C
2×2 is the identity matrix and

(µγ(g)tl(g))(I2) = (exp(−γσA∗(g)σA(g))tl(g))(I2)−(exp(−γσA(g)σA∗(g))tl(g))(I2),
(5.4)

for all γ > 0. By using the diffeomorphism ̺ : SU(2) → S3, defined by

̺(g) = x := (x1, x2, x3, x4), for g =

[
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

]
, (5.5)

we have

ind(A) =

∫

S3

∑

l∈ 1
2
N

(2l + 1)Tr((µγ(̺
−1(x))tl(̺

−1(x)))(I2)) dσ(x), (5.6)

where dσ(x) is the surface measure on S3. Now, we want to compute explicitly
the last integral. If we consider the usual parametrization of S3 defined by x1 :=
cos( t

2
), x2 := ν, x3 := (sin2( t

2
)− ν2)

1
2 cos(s), x4 := (sin2( t

2
)− ν2)

1
2 sin(s), where

(t, ν, s) ∈ D := {(t, ν, s) ∈ R
3 : |ν| ≤ sin(

t

2
), 0 ≤ t, s ≤ 2π},

then dσ(x) = sin( t
2
)dtdνds, and we have the following index formula in terms of

iterated integrals,

ind(A)

=

2π∫

0

2π∫

0

sin(t/2)∫

− sin(t/2)

∑

l∈ 1
2
N

(2l + 1)Tr((µγ(̺
−1(t, ν, s))tl(̺

−1(t, ν, s)))(I2)) sin(
t

2
)dνdtds.

We end this section with the following example in the non-commutative con-
text.
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Example 5.3. The Lie group SU(3) (see Fegan [21]) has dimension 8 and 3
positive square roots α, β and ρ with the property

ρ =
1

2
(α + β + ρ). (5.7)

We define the weights

σ =
2

2
α +

1

3
β, τ =

1

3
α +

2

3
β. (5.8)

With the notations above the unitary dual of SU(3) can be identified with

ŜU(3) ∼= {λ := λ(a, b) = aσ + bτ : a, b ∈ N0, }. (5.9)

In fact, every representation π = πλ(a,b) has highest weight λ = λ(a, b) for some
(a, b) ∈ N

2
0. In this case dλ(a,b) := dπλ(a,b)

= 1
2
(a+1)(b+1)(a+ b+2). If we choose

an elliptic operator A ∈ Ψm(SU(3)) with m ≥ 0, then by using Theorem 4.9, we
can to compute the index of A by the formula

ind(A) =

∫

SU(3)

∑

a,b∈N0

1

2
(a+ 1)(b+ 1)(a+ b+ 2)Tr((µγ(g)πaσ+bτ )(I3)) dg, (5.10)

where I3 ∈ C3×3 is the identity matrix and

(µγ(g)πaσ+bτ )(I3)

= (exp(−γσA∗(g)σA(g))πaσ+bτ )(I3)− (exp(−γσA(g)σA∗(g))πaσ+bτ )(I3),

for all γ > 0. Now, as in the previous example, we compute the integral explicitly.
If we consider the parametrization of SU(3) (see, e.g., Bronzan [13]),

g ≡ g(θ, φ) = g(θ1, θ2, θ3, φ1, φ2, φ3, φ4, φ5) := (uij)i,j=1,2,3,

where 0 ≤ θi ≤
π
2
, 0 ≤ φi ≤ 2π, and

• u11 = cos θ1 cos θ2e
iφ1

• u12 = sin θ1e
iφ3

• u13 = cos θ1 sin θ2e
iφ4

• u21 = sin θ1 sin θ3e
−iφ4−iφ5 − sin θ1 cos θ2 cos θ3e

iφ1+iφ2−iφ3

• u22 = cos θ1 cos θ3e
iφ2

• u23 = − cos θ1 sin θ3e
−iφ1−iφ5 − sin θ1 sin θ2 cos θ3e

iφ2−iφ3+iφ4

• u31 = − sin θ1 cos θ2 sin θ3e
iφ1−iφ3+iφ5 − sin θ2 cos θ3e

−iφ2−iφ4

• u32 = cos θ1 sin θ3e
iφ5

• u33 = cos θ2 cos θ3e
−iφ1−iφ2 − sin θ1 sin θ2 sin θ3e

−iφ3+iφ4+iφ5 ,

then, the group measure is the determinant given by

dg =
1

2π5
sin θ1 cos

3 θ1 sin θ2 cos θ2 sin θ3 cos θ3dθ1dθ2dθ3dφ1dφ2dφ3dφ4dφ5, (5.11)

and we have

ind(A) =
1

4π5

∫

[0,π
2
]3

∫

[0,2π]5

∑

a,b∈N0

(a+ b+ ab+ 1)(a+ b+ 2)Tr((µγ(g(θ, φ))πaσ+bτ )(I3))

× sin θ1 cos
3 θ1 sin θ2 cos θ2 sin θ3 cos θ3dθ dφ,

with (θ, φ) = (θ1, θ2, θ3, φ1, φ2, φ3, φ4, φ5), dθ = dθ1dθ2dθ3, and dφ = dφ1dφ2dφ3dφ4dφ5.
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30. Ruzhansky M., Turunen V., Wirth J., Hörmander class of pseudo-differential operators on

compact Lie groups and global hypoellipticity, J. Fourier Anal. Appl., 20 (2014), 476–499.
31. Ruzhansky M., Turunen V., Global quantization of pseudo-differential operators on com-

pact Lie groups, SU(2) and 3-sphere, Int. Math. Res. Not. IMRN 2013, no. 11, 2439–2496.
32. Ruzhansky M., Wirth J., Global functional calculus for operators on compact Lie groups,

J. Funct. Anal., 267 (2014), 144–172
33. Ruzhansky M., Wirth J., Lp Fourier multipliers on compact Lie groups, Math. Z., 280

(2015), 621–642.
34. Sabin, A. Y. On the index of nonlocal elliptic operators for compact Lie groups. Cent.

Europ. J. Math. 9(4), 833–850.
35. Slebarski, S. The Dirac operator on homogeneous spaces and representatio ns of reduc- tive

Lie groups. I , Amer. J. Math. 109 (1987), no. 2, 283–301,
36. Urakawa, H. The heat equation on compact Lie group, Osaka J. Math. 12 (1975), no. 2,

285–297.
37. J. Weidmann. Linear operators in Hilbert spaces. Translated from the German by Joseph

Szücs. Graduate Texts in Mathematics, 68. Springer-Verlag, New York-Berlin, 1980.

Duván Cardona:

Department of Mathematics

Pontificia Universidad Javeriana.

Bogotá
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