
Towards Efficient Hardware Debugging using
Parameterized FPGA Reconfiguration

Alexandra Kourfali and Dirk Stroobandt
Department of Electronics and Information Systems (ELIS), Ghent University

iGent, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium.
{Alexandra.Kourfali, Dirk Stroobandt}@UGent.be

A. Introduction

Ensuring a design’s functional correctness within time-to-
market constraints, continues to stand as one of the biggest
challenges for today’s ASIC design teams. Lately, circuit
designers have turned to Field-Programmable Gate Arrays
(FPGAs) for the simulation of their complete systems (FPGA
emulation), that offer operating frequencies that are several or-
ders of magnitude faster than simulation. However, debugging
through FPGA emulation has its own challenges, such as lack
of on-chip signal observability. Moreover, observing a new
subset of signals requires recompilation of the circuit. Each
instrument-compile-debug iteration can take multiple hours.

B. Parameterised debugging flow

We propose a low overhead debugging flow, which is en-
tirely automated and integrated within the normal FPGA CAD
flow. It offers debug acceleration and enhanced internal signal
visibility by using parameterised configurations (PConf). This
will allow us to implement parameterised hardware systems,
with parameters that define different circuit instances that can
be optimised on the fly by reconfiguring for a current set of
parameter values. Our proposed debugging flow follows the
typical stages of the FPGA CAD flow and consists of two
phases: the offline and the online phase.

During the offline phase a generalised configuration is
created. The circuit is fully compiled, the mapping is fixed and
the extra instrumentation is added. This allows all available
signals to be connected with trace-buffer IP. In more detail,
during the first stage, Signal Parameterisation, all signals that
can be used for debugging are automatically selected and
parameterised. These signals are annotated as parameters, as
they will change (but less frequently than the other signals)
depending on the set of signals that will be traced during
debugging. These parameters can hence be implemented in
the reconfiguration resources.1

After the extra instrumentation has been added, the design
is synthesised and then, during technology mapping (TCON-
Map), the parameterized network (generated during synthesis),
is not directly mapped onto the resource primitives available
in the target FPGA architecture, but intermediately on abstract
primitives that introduce and allow the reconfigurability of
the logic and routing resources. Finally, the Place & Route

1We assume that the higher utilization of routing resources does not affect
the placement of the design.

(TPaR) stage can enable routing of the circuit where its
routing resources can be reused during the fault emulation
and this drastically reduces the area usage. At the end of the
computationally intensive compile phase, a virtual intermediate
FPGA configuration is created.

During the online phase, for every debugging cycle the
network is partially reconfigured with the exact signals the
designer wishes to trace at that specific instance. Here, only the
configuration cells of all the routing switch boxes and the con-
nection boxes for the memory resources will be reprogrammed,
instead of the full recompilation and/or reconfiguration, as it is
the case in related work. This online step will be future work,
as we first focus on the offline part of the toolflow.

C. Preliminary results

In order to evaluate our proposed method, we are integrat-
ing our techniques inside VTR, so that it can be complient with
our parameterised debugging infrastructure. The first experi-
ments with the VTR benchmarks indicate that we only need
the area for the largest circuit instance implementation, instead
of the sum of areas of the initial and the added implementation.
This enables us to include debugging infrastructure without
area overhead.

Our technique reduces the critical path delay of the added
functionality for the faults by reducing the number of LUTs
and the routing infrastructure on the critical path. The logic
depth (inversely related to clock speed) of the design did not
change by adding the extra debugging infrastructure.

The runtime overhead depends on the number of times the
emulator needs to be reconfigured and on the time to evaluate
the PConf and to reconfigure the bits that changed. The time
overhead can be expressed as the single specialization time
(for specializing the FPGA once) multiplied by the number of
times a new signal set will be activated. The evaluation time
is used to evaluate the Boolean functions in the parameterized
configuration produced by the offline generic stage of the
TCON tool flow (maximum 50 µs). Thus, each parameterised
configuration can be 3 orders of magnitude faster than a full
reconfiguration (176 milliseconds for a Xilinx Virtex-5 FPGA).

D. Conclusion

A low overhead debugging method is proposed. The main
(parameterised) debugging infrastructure is presented, which is
meant for both emulation approaches (for ASIC verification)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/222452709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and on-line in field debugging approaches (for FPGA design
verification) and it includes increasing design observability.
This infrastructure lies within the circuit implementation and
is only invoked when a debugging parameter is set. Therefore,
this infrastructure is always present but does not require much
additional area. The area needed is found by introducing
parameterized reconfiguration in the application. Hence, thanks
to the fact that there is virtually no overhead over the original
implementation, we can add the debugging functionality for
free.


