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Abstract—In this work, we will discuss the modeling of the
Power Angular Profile (PAP) of the Dense Multipath Compo-
nents (DMC), taking into account multiple angular clusters.
We have extended the maximum likelihood estimation of the
angular DMC parameters in the RiMAX framework, so that
the PAP of the DMC can be modeled with a multimodal von
Mises distribution. This allows us to better characterize the
diffuse scattering between transmitter and receiver, originating
from multiple reflections in an environment. We have validated
our proposed method with synthetic radio channel data based
on Monte Carlo simulations, and have shown the importance
of applying a multimodal assumption over a unimodal one.

Index Terms—Channel Modeling, Multipath Estimation,
RiMAX, Angular Modeling, Polarization, DMC

I. INTRODUCTION

Over the recent years, mobile networks are becoming

heavily congested due to the continuous increase in user

traffic, caused by the emergence of wireless systems, mobile

applications and streaming services. To accommodate for

this additional demand in wireless signal spectrum, next-

generation mobile communication systems such as 5G are

currently being investigated. In the frequency bands utilized

by 5G, massive Multiple-Input Multiple-Output (MIMO)

technologies are expected to be employed to further enhance

the data transmission capabilities of these systems, by relying

on higher order beamforming and spatial multiplexing. The

primary spectrum that is considered for the lower 5G bands

all range between 1 GHz and 6 GHz, of which it is well

known that their channel capacities are highly influenced

by the amount of diffuse scattering present in the radio

channel. Diffuse scattering arises from radio waves scattering

on electrically small and rough surfaces, which are inherently

more present at sub-20 GHz frequencies [1], in contrast to the

higher 5G frequency bands (between 24 GHz and 30 GHz),

mainly due to their shorter wavelengths and less attenua-

tion. In indoor environments, where radio waves typically

scatter from various objects, diffuse scattering plays an even

more important role in the MIMO transmission capacity [2].

However, its contribution is not taken into account in the

standard channel models such as the 3GPP Spatial Channel

Model (SCM) [3], the ITU-R M.2135 channel model [4],

or the WINNER II channel model [5]. The novelty is that

we consider the existence of multiple angular clusters in the

residual power spectrum of the radio channel, allowing us

to construct a model that characterizes multiple reflections

of the electromagnetic waves at different angles in the

environment.

The structure of this paper is as follows. Section II sum-

marizes the related work on this topic, whilst Section III de-

scribes the applied channel model with the angular modeling

of the diffuse scattering. Section IV presents our simulation

setup and the resulting outcome. Finally, Section V summa-

rizes this paper with a conclusion and ideas for future work.

II. RELATED WORK

Recent works such as [6], [7] estimated the contributions

of diffuse scattering directly from MIMO radio channel

measurements by applying the RiMAX multipath estimation

framework to estimate both the Specular and the Dense Mul-

tipath Components (SMC and DMC) from the measurement

data. The SMC can be seen as the deterministic part of

the radio channel, comprised of a number of plane waves

with well defined propagation parameters in multipath space

(space, frequency, and time-delay domain). They concern the

coherent waves in the channel, which can either be direct

waves from transmitter to receiver, or specular reflections

due to mirror-like interactions with the environment. The

DMC can be seen as the stochastic part of the radio channel,

which is continuous in the aforementioned dimensions. They

originate mainly from diffuse scattering on electrically small

and rough surfaces, and also contain the unresolvable SMC

contributions which can not be estimated accurately enough

with a multipath estimation framework. The contributions of

DMC are characterized by autocorrelations of the signal com-

ponent, but the RiMAX framework [6], [7] only discusses the

frequency domain correlation modeling of the DMC.

Investigations into the behavior of the angular DMC pa-

rameters found that correlations exist between the locations of

the SMC and the dominating powers in the DMC spectrum.

[8] and [9] proposed to model the DMC profile as clusters

around the SMC. In [10], [11], a maximum-likelihood (ML)

method is utilized based on a unimodal von Mises distribution

to model the angular profile of the DMC. In [12], this

distribution was also found to be a good fit to model the

angular domain autocorrelation of the DMC in the 11 GHz

band, by convolution of the DMC angular profile with the

antenna array response.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/222452626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this work, we will extend the ML method in the RiMAX

algorithm from a unimodal to a multimodal assumption. As

such, we are able to model multiple angular clusters in

the DMC spectrum of the radio channel, originating from

multiple reflections of the plane waves in an environment.

As was shown in [12] and [13], the DMC increases the

level of the reconstructed eigenvalues, resulting in a better

approximation of the measured eigenvalue structure of the

MIMO channel. This indicates that an accurate modeling of

the DMC parameters is necessary to prevent the underes-

timation of the MIMO transmission performance [2]. This

paper extends our previous work on this topic [12], [14] by

extending the conventional RiMAX framework for the joint

estimation of multimodal DMC propagation parameters in

the frequency, angular and polarization domains. We have

validated our proposed method with synthetic radio channel

data based on extensive Monte Carlo simulations.

III. CHANNEL MODEL

An observation of the MIMO radio channel h can be mod-

eled as the superposition of Specular Multipath Components

(SMC), and Dense Multipath Components (DMC), and can

be written as follows:

h = s(θs) + d(θd), (1)

in which h can be seen as a random variable distributed

according to a complex multivariate Gaussian distribution:

h ∼ Nc(s(θs),R(θd)). (2)

This work only concerns the DMC part of the channel, so we

refer to [15] for a discussion of the modeling of the SMC.

A. Unimodal assumption of DMC in angular domain

The DMC is modeled stochastically by means of the

covariance matrix of the residual (dense) part of the radio

channel R(θd), based on the DMC propagation parameters

θd,F in the time-delay domain, and θd,A in the angular-

polarization domain, defined as follows:

θd,F = [α0, α1, βd, τd], (3)

θd,A = [μT , μR, κT , κR, γd,vv, γd,vh, γd,hv, γd,hh, γα]. (4)

In [10], [16], the Power Angular Profile (PAP) of the DMC

at the transmitter (Tx) or the receiver (Rx) in the azimuth

plane is modeled using a unimodal von Mises distribution,

which is defined (e.g., at Tx) as follows:

fT (ϕ) =
1

2πI0(κT )
exp (κT cos(ϕ− μT )) , (5)

with I0(κT ) being the modified Bessel function of the first

kind and zeroth order, the parameter μT controlling the center

location of the distribution at Tx, and κT controlling its

angular spread. As the value for κT increases, the angular

spread of the distribution decreases, and the von Mises

distribution approaches the normal distribution. For a κT

value of 0, the von Mises distribution becomes the uniform

distribution.

In the polarimetric scenario, the PAP is modeled by multi-

plying the von Mises distribution with an angle-independent

polarization vector γd = [γd,vv, γd,vh, γd,hv, γd,hh, γα] [11].

The angular and polarization domain covariance matrix

RA(θd,A) ∈ C
NTNR×NTNR can then be written as follows:

RA(θd,A) = Rvv +Rvh +Rhv +Rhh + γαI. (6)

In Eq. (6), the angular domain covariance matrix Rxy for a

certain polarization setting xy (e.g., Tx-V and Rx-H; denoted

as VH) can be written as:

Rxy = γd,xy Cxy, (7)

in which Cxy is the combined Tx and Rx angular power

spectrum, defined as the Kronecker-product between two

matrices Cx and Cy , representing their separate angular

power spectrum. We can thus write the following:

Cxy = Cx ⊗Cy (8)

Cx =

∫ π

−π

αT,x(ϕ) fT (ϕ) α
H
T,x(ϕ) dϕ (9)

Cy =

∫ π

−π

αR,y(ϕ) fR(ϕ) α
H
R,y(ϕ) dϕ. (10)

In (9) and (10), αT,x and αR,y are the antenna array

responses of the transmitter for the polarization setting x,

and the receiver for the polarization setting y, respectively.

Finally, the full DMC correlation matrix R is calculated as

follows:

R = RF (θd,F )⊗RA(θd,A). (11)

In this work, we will only focus on the estimation of

the angular DMC parameters, so that we will model the

correlation matrix in the time-delay domain RF (θd,F ) as

a unitary matrix.

B. Multimodal assumption of DMC in angular domain

In the multimodal assumption of the angular DMC power

spectrum, multiple clusters exists in the PAP of Tx and Rx,

each with their own von Mises distribution defined by a

center location μ and an angular spread κ. As such, we can

re-write Rxy as being the summation over several separate

covariance matrices, which can be written as follows:

Rxy =

CT∑
ct=1

CR∑
cr=1

γct,cr
d,xy Cct,cr

xy , (12)

with CT and CR the number of clusters in the PAP of Tx

and Rx, respectively. It follows that Cct,cr
xy then becomes the

Kronecker-product between both Cct
x and Ccr

y as follows:

Cct,cr
xy = Cct

x ⊗Ccr
y (13)

Cct
x =

∫
αT,x(ϕ) f

ct
T (ϕ) αH

T,x(ϕ) dϕ (14)

Ccr
y =

∫
αR,y(ϕ) f

cr
R (ϕ) αH

R,y(ϕ) dϕ, (15)

in which f ct
T (ϕ) and f cr

R (ϕ) are both unimodal von Mises

distributions of the ct-th cluster at Tx, and the cr-th cluster



at Rx, respectively. As such, the combined PAP at Tx and

Rx will consist of a multitude of angular clusters, so that the

DMC angular parameters of multiple reflections at different

angles in the environment can be better characterized.

It should be noted that the total angular DMC parameter

set K for either a unimodal or a multimodal assumption is

equal to the following:

K = [(CT + CR) {μ, κ}, CTCR {γvv, γvh, γhv, γhh}, γα] ,
(16)

such that the number of parameters L to be estimated is

equal to |K| = 1 + 2 (CT + CR) + 4 (CT + CR). A single

cluster at both Tx and Rx (unimodal assumption) leads to the

estimation of 9 angular DMC parameters, whilst 2 clusters at

both Tx and Rx already makes 25, and 3 clusters even makes

49. This will no doubt have its consequences regarding the

accuracy of the estimation procedure.

C. Estimator for the multimodal angular DMC model

The log-likelihood function of RiMAX can be calculated

by using the correlation matrix R̃ of the residual DMC

spectrum d(θd), which is defined in the angular-polarization

domain as follows:

LA(h|θd,A) = − ln(det(RA(θd,A)))

− tr(RA(θd,A)
−1 R̃A) + C,

(17)

in which C is a constant. We can then use the initializa-

tion and the optimization procedure for the angular DMC

parameters as described in [11], by extending its linear model

from a unimodal to a multimodal angular DMC assumption,

as described below. First, we need to write the total angle-

independent polarimetric power vector Γct,cr
d , representing

the polarimetric power between the angular DMC clusters ct
at Tx, and cr at Rx, as follows:

Γct,cr
d = vec

{[
γct,cr
d,vv , γct,cr

d,vh , γct,cr
d,hv , γ

ct,cr
d,hh

]}
, (18)

in which vec{·} is an operator that reshapes a matrix into

a row vector. We can then construct a model from Eq. (6),

relying on the linear dependences of the covariance matrix

RA as follows:

RA,v = vec{RA}T (19)

RA,v =

CT∑
ct=1

CR∑
cr=1

Γct,cr
d Cct,cr

v + γα I (20)

Cct,cr
v =

⎡
⎢⎢⎣

vec{Cct,cr
vv }T

vec{Cct,cr
vh }T

vec{Cct,cr
hv }T

vec{Cct,cr
hh }T

⎤
⎥⎥⎦ , (21)

This linear model can then be used to find an ini-

tial set of multimodal angular DMC parameters by using

the beamforming based method as described in [11]. The

angular-polarization domain DMC propagation parameter

θd,A can then be optimized by making use of the Newton-

Raphson algorithm. Firstly, the score function qA(h|θd,A)

and the Fisher information matrix JA(θd,A) of the angular-

polarization domain log-likelihood function LA(h|θd,A)
need to be calculated as follows:

qA(h|θd,A) = tr

(
RA(θ

(itr)
d,A )−1

[
∂RA(θ

(itr)
d,A )

∂θd,A

]

RA(θ
(itr)
d,A )−1R̃A − I

) (22)

JA(θd,A)ij = tr

(
RA(θ

(itr)
d,A )−1

∂RA(θ
(itr)
d,A )

∂θd,A,j

RA(θ
(itr)
d,A )−1

∂RA(θ
(itr)
d,A )

∂θd,A,i

)
.

(23)

The propagation parameter θ
(itr)
d,A is then updated by the

incremental step Δθ
(itr)
d,A as follows:

Δθ
(itr)
d,A = −JA

(
θ
(itr)
d,A

)−1

qA

(
h|θ(itr)

d,A

)
(24)

θ
(itr+1)
d,A = θ

(itr)
d,A + λA Δθ

(itr)
d,A , (25)

in which λA is the step length, initialized at 1. If the resulting

updated parameter θ
(itr+1)
d,A causes an increase in the log-

likelihood function Eq. (17), convergence is achieved, and

we will start the next iteration with the optimization of the

time-delay DMC propagation parameter. If not, λA is divided

by 4, and the algorithm keeps searching for a new updated

parameter θ
(itr+1)
d,A until convergence is achieved.

IV. SIMULATIONS

A. Simulation setup

In total, 1000 Monte Carlo simulations were performed by

sampling random values per simulation run for the angular

DMC parameters within a certain range, and running the

initialization and optimization procedures as summarized

above. In this work, we have assumed a fixed value of two

clusters at both Tx and Rx, respectively. When processing

real measurement data, a technique should be devised in order

to estimate how many clusters exist in the residual DMC

spectrum at both Tx and Rx, respectively.

The generated center values μ of our von Mises distribu-

tions were randomly sampled from the interval [0◦ : 360◦],
with the additional condition that the center value of the

second cluster needs to be at least 50◦ away from the first

cluster. This ensures that a proper matching can be performed

between the generated and the estimated clusters before

calculating their estimation errors, since their center values

can be distinguished enough during the evaluation phase. The

angular spread of each cluster, regulated by the parameter

κ, was randomly sampled from the interval [0.5 : 5]. This

corresponds with a standard deviation of 96.45◦ and 27.21◦,

respectively. The angle-independent polarization matrix γd

was sampled randomly between [0.2 : 1] for each cluster

combination ct, cr, and for each polarization setting xy,

and the noise power γα was sampled randomly between

[0.05 : 0.15].



B. Unimodal modeling of a multimodal spectrum
The main purpose of this work is to be able to characterize

multiple peaks in the power level in the residual angular

DMC spectrum at both Tx and Rx, at those angles of

departure and arrival contributing to diffuse reflections of the

electromagnetic waves in the environment. Figure 1 shows

a generated multimodal spectrum containing two clusters

(resulting in two peaks), which we processed first by using

a unimodal assumption, and then by using a multimodal

assumption.
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Figure 1: Power Angular Profile of the DMC. The black line denotes
the generated input DMC spectrum, red is the estimated multimodal DMC
spectrum, and green is the estimated unimodal DMC spectrum.

From Figure 1, we can observe that if we would model

an angular DMC spectrum with multiple clusters by using a

unimodal assumption (i.e., with a unimodal distribution), both

the center values and the angular spread of this distribution

can be wrongfully estimated. When looking at the two input

clusters in Figure 1a, the multimodal distribution fits these

very well, whilst the unimodal distribution estimates the

center value somewhere in between them. When looking at

Figure 1b, the unimodal distribution tends to estimate its

center value more towards the stronger cluster, whilst its

estimate for the angular spread pushes the distribution such

that it tries to average out the entire DMC spectrum. However,

if we model this spectrum using a multimodal assumption,

both generated center values are estimated correctly, and their

angular spreads correspond very well with the true generated

values.

C. Simulation results
Table I shows the estimation errors between the generated-

and the estimated von Mises distributions (i.e., clusters) at Tx

and Rx. The μ error denotes the difference between the gener-

ated and the estimated center value of both distributions. The

κ error denotes the difference in angular spread (converted

into degrees), whilst the γd error denotes the difference in

relative power (summed over all polarizations) between each

generated and estimated cluster (expressed in %).

μ error (◦) κ error (◦) γd error (%)

#1 #2 #1 #2 #1 #2

Tx mean 0.04 -0.13 -0.06 -0.05 -0.09 -0.08

stdvar 3.12 2.56 1.95 2.67 3.24 3.22

Rx mean 0.14 0.08 -0.03 -0.05 -0.18 -0.10

stdvar 4.62 5.73 2.42 2.68 4.00 4.28

Table I: Estimation errors between the generated- and the estimated von
Mises distributions (i.e., clusters) at Tx and Rx. Distribution #1 always
denotes the stronger cluster, whilst distribution #2 denotes the weaker cluster.

From Table I, we can conclude that our algorithm is able

to estimate the generated clusters with a mean error of less

than 1◦ for both the center values and the angular spreads

of each cluster. The mean error in relative power is limited

to less than one tenth of a percent. Our algorithm achieved

convergence in less than 25 iterations, with a mean number

of 5.86 iterations.

Figures 2, 3 and 4 show the estimation errors between

the generated and the estimated DMC parameters of the von

Mises distributions as a histogram, of both the strongest (red)

and the weakest (blue) cluster. The color purple indicates the

overlap between both (red and blue) histograms.

(a) Transmitter

(b) Receiver

Figure 2: Histogram of the estimation errors between the generated- and
the estimated center values of each cluster.

V. CONCLUSIONS

In this work, we have extended the maximum likelihood

estimation of angular DMC parameters in the RiMAX al-

gorithm from a unimodal to a multimodal assumption, in



(a) Transmitter
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Figure 3: Histogram of the estimation errors between the generated- and
the estimated angular spreads (converted into degrees) of each cluster.

(a) Transmitter

(b) Receiver

Figure 4: Histogram of the estimation errors between the generated- and
the estimated relative powers (expressed in %) of each cluster.

order to account for multiple angular clusters in the residual

DMC spectrum. Monte Carlo simulation showed that our

algorithm is able to estimate the generated clusters with an

accuracy of less than 1◦ for both the center values and the

angular spreads of each cluster. Modeling the angular DMC

spectrum by applying a unimodal assumption can sometimes

be erroneous, resulting in the fact that both the center values

and the angular spreads in this spectrum can be wrongfully

estimated. A correct modeling of the DMC parameters is

thus necessary to accurately characterize the true MIMO

transmission performance, highlighting the importance of

taking into account a multimodal assumption over a unimodal

one.
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