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ON THE LOCAL SOLVABILITY OF A CLASS OF

DEGENERATE SECOND ORDER OPERATORS WITH

COMPLEX COEFFICIENTS

SERENA FEDERICO AND ALBERTO PARMEGGIANI

Abstract. We study the local solvability of a class of operators with
multiple characteristics. The class considered here complements and
extends the one studied in [9], in that in this paper we consider some
cases of operators with complex coefficients that were not present in [9].
The class of operators considered here ideally encompasses classes of
degenerate parabolic and Schrödinger type operators. We will give local
solvability theorems. In general, one has L2 local solvability, but also
cases of local solvability with better Sobolev regularity will be presented.

1. Introduction

In this paper we study the local solvability of operators P defined on an
open set Ω ⊂ R

n, of the form

(1.1) P =
N∑

j=1

X∗
j fXj +XN+1 + iX0 + a0,

and of the form

(1.2) P =
N∑

j=1

X∗
j fjXj +XN+1 + a0,

where a0 is a smooth complex-valued function and

• the Xj = Xj(x,D), 0 ≤ j ≤ N + 1, are homogeneous first order
partial differential operators (i.e. with no lower order terms; in other
words, the iXj are vector fields) with smooth coefficients in Ω, such
that the symbols of XN+1 and X0 are always real and the symbols of
X1, . . . ,XN are real when P is of the form (1.1), and complex when
P is of the form (1.2);

• the fj ∈ C∞(Ω;R) for 1 ≤ j ≤ N , and
• f : Ω −→ R is a smooth function with S := f−1(0) 6= ∅ and df

∣∣
S
6= 0.

The operators of the form (1.1) will be called of mixed-type (because of
the presence of the complex coefficients operator XN+1+ iX0, with X0 6= 0)
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and those of the form (1.2) will be called of Schrödinger-type (because of
the presence of the real coefficients operator XN+1 only, X0 being identically
zero).

The class of operators of the form (1.1) and (1.2) enlarges and comple-
ments that studied in [9] (in turn, a generalization of the class introduced
by Colombini, Cordaro and Pernazza in [4]) of operators of the form

P =

N∑

j=1

X∗
j fXj + iX0 + a0,

which has as an important ancestor the Kannai operator (and the class
considered by Beals and Fefferman in [1]). In fact, as already explained
earlier, here we allow cases in which the X0,X1, . . . ,XN ,XN+1 have a real
symbol but with X0 6= 0 (the mixed-type case of Section 2), and cases
in which the X1, . . . ,XN are allowed to have a complex symbol but with
XN+1 6= 0 and X0 = 0 (the Schrödinger-type case of Section 4).

Note that in [9] we did allow a complex case in which the X1, . . . ,XN

were complex but there we had X0 6= 0 and XN+1 = 0.
Our main motivation in studying such a class of degenerate differential

operators is to push the frontier for the solvability in presence of multiple
characteristics. Besides the papers [1], [4], [9] and [8] (in which a case
with non-smooth coefficients is studied), and the book [13] (where one can
find an updated account of the solvability issue under the (Ψ) condition
of Nirenberg and Treves, problem solved by Dencker in [5]), we wish to
recall a number of works related to the local solvability of operators with
multiple characteristics, such as [21], [16, 17], [14], [23, 25], [20], [15], [12],
[18], and [6, 7] (see also [19] and references therein). In particular, among
them we wish to single out the recent paper [7] by Dencker in which he
introduces the class of sub-principal type operators (whose characteristics
are involutive) for which he gave necessary conditions for local solvability,
and the paper [18] by Parenti and Parmeggiani (see also [19]) in which they
obtain semiglobal solvability results (with a loss of many derivatives) for
operators with transversal multiple symplectic characteristics. . In the case
of the class of operators we consider in this paper, we aim to give sufficient
conditions for local solvability in presence of an interplay of different kinds of
degeneracies, namely that coming from the change of sign of f , or fj, in (1.1),
and (1.2), and that coming from the system of vector fields (iX0, . . . , iXN ).
This class is all the more interesting in that it contains operators whose
adjoint is not hypoelliptic.

In [9] we used a ”positive commutator method” that, starting from esti-
mating ||P ∗u||20, could make use of fundamental lower-bound estimates (the
G̊arding, the Melin, the Fefferman-Phong, and the Rothschild-Stein subel-
liptic estimates for Hörmander’s sums of squares). In the present case,
such a method cannot be used (as one can easily see, for instance, from
the Schrödinger operator P = Dt + A, since when estimating ||P ∗u||20 =
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||A∗u||20+ ||Dtu||
2
0+2Re (A∗u,Dtu) one is not able to directly extract any ex-

tra information coming from the term 2Re (A∗u,Dtu) as one could in [9]).
We will have to make a Carleman estimate straight from the beginning. In
the mixed-type case (i.e. P of the form (1.1)), we shall however be once
more in a position to exploit the above lower-bound estimates to go, in
some cases, beyond the L2 to L2 local solvability, and get a better H−s to
L2 local solvability (see Definition 1.1 below), with s = −1/2 or s = −1, or
s = −1/r (r ≥ 3). In the Schrödinger-type case, we will not be able to ex-
ploit the above lower-bound estimates and the Carleman estimate will grant
L2 local solvability results under the assumption that the system of complex
operators X1, . . . ,XN admits, locally near each x0 ∈ Ω, a real smooth first
integral g (i.e., such that dg(Xj) = dg(ReXj) + idg(ImXj) = 0) near x0,
1 ≤ j ≤ N , such that X0g 6= 0 near x0.

Recall the following the terminology introduced in [9].

Definition 1.1. Given s, s′ ∈ R we say that we have Hs to Hs′ local solv-
ability if for any given x0 ∈ Ω there is a compact K ⊂ Ω with x0 ∈ K̊ (the

interior of K) such that for all v ∈ Hs
loc(Ω) there exists u ∈ Hs′

loc(Ω) with

Pu = v in K̊. We will call the number s′ − s the gain of smoothness of the
solution.

Remark 1.2. It is important to remark once more that the class we con-
sider here, as well as that considered in [9], contains operators that are not
adjoints of hypoelliptic operators (see [19], Example 3.7).

We next establish some notation that will be used throughout the paper.
In general, for a differential operator with complex coefficients of the

form X(x,D) = 〈ζ(x),D〉, where D = (D1, . . . ,Dn), Dk = −i∂k, and ζ ∈
C∞(Ω;Cn), we have

(1.3) X(x,D)∗ = X̄(x,D) + dX̄(x),

where

X̄(x,D) = 〈ζ(x),D〉, and dX̄(x) =

n∑

k=1

Dkζk(x) = −dX(x).

Therefore, in general for the formal adjoints of the Xj(x,D) we have that
Xj(x,D)∗ = X̄j(x,D)+ dX̄j

(x) and, since X0(x, ξ) and XN+1(x, ξ) are real,

dX0
(x) = dX̄0

(x) = −dX0
(x), dXN+1

(x) = dX̄N+1
(x) = −dXN+1

(x),

so that, in particular, dX0
, dXN+1

are purely imaginary.
In the case of P of the form (1.1), we put

Σj := {(x, ξ) ∈ T ∗Ω \ 0; Xj(x, ξ) = 0}, 0 ≤ j ≤ N,

(1.4) Σ :=

N⋂

j=0

Σj ⊂ T ∗Ω \ 0,
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and call Σ the characteristic set of the system (X0,X1, . . . ,XN ). The kind
of degeneracy of an operator P of the form (1.1) therefore comes from the
interplay of the location of π−1(S) with respect to Σ (here π : T ∗Ω −→ Ω
denotes the canonical projection), that is, from the zero-set of f and the
behavior of the family of operators Xj , 0 ≤ j ≤ N near it.

Notice that the set Σ will play a role only in the case of mixed-type
operators (1.1), and not in the Schrödinger-type case (1.2).

We conclude this introduction by giving the plan of the paper. In Section
2 we will consider the mixed-type case in which the X0,X1, . . . ,XN ,XN+1

have a real symbol and X0 6= 0, and show in Theorem 2.5, under suitable
assumptions on the commutators of X0 with the Xj, 1 ≤ j ≤ N + 1, and

assuming control of the symbol of Im dX0
XN+1 by (

∑N
j=0Xj(x, ξ)

2))1/2, that
one has local solvability near S with a better gain of smoothness. In Section
3 we shall give examples of operators of mixed-type (1.1) to which Theorem
2.5 can be applied, thus showing the different issues of local solvability with
different smoothness. In Section 4 we will consider the Schrödinger-type case
X0 = 0 with X1, . . . ,XN having a complex symbol and show in Theorem
4.2 that one has L2 to L2 local solvability near any given point of Ω. In the
final Section 5 we will give examples of operators of Schrödinger type (1.2)
to which Theorem 4.2 can be applied.

2. The mixed-type case

We now turn our attention to an operator P of the form (1.1) (mixed-type
case), that is

P =

N∑

j=1

X∗
j fXj +XN+1 + iX0 + a0,

where the symbols of Xj , 0 ≤ j ≤ N + 1 are all real on the open set
Ω ⊂ R

n, and where f ∈ C∞(Ω;R) is such that S := f−1(0) is non-empty
and df

∣∣
S
6= 0. Recall that, writing Xj(x, ξ) = 〈αj(x), ξ〉 for αj ∈ C∞(Ω;Rn),

then dXj
=
∑n

k=1Dkαjk ∈ C∞(Ω; iR).
Note that in this case the subprincipal symbol of P is given by

sub(P )(x, ξ) = XN+1(x, ξ) + iX0(x, ξ).

In order to prove the a priori inequality that ensures the local solvability
result we are interested in, one has to control from below in L2 a quadratic

form of the kind (P̂γ,εu, u), u ∈ C∞
0 , where, for γ > 0 and ε ∈ (0, 1] suitably

fixed constants,

(2.5) P̂γ,ε = P̂γ,ε(x,D) :=

N∑

j=0

(
X∗

jXj − ε[Xj ,X0]
∗[Xj ,X0]

)
+

1

γ
Y,

with Y given by

(2.6) Y := −
1

2

(
(Im dX0

)XN+1 + ((Im dX0
)XN+1)

∗

)
= Y ∗.
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The point is then to give conditions on the system of real vector fields

iX0, . . . , iXN+1 in relation with S in order that P̂γ,ε satisfy the Fefferman-
Phong inequality (with γ and ε suitably chosen).

In this section we make the following hypotheses:

(HM1) iX0f > 0 on S;
(HM2) For all x0 ∈ S there exists a compact K ⊂ Ω, containing x0 in its

interior, and a constant CK > 0 such that for all j = 1, . . . , N + 1

{Xj ,X0}(x, ξ)
2 ≤ CK

N∑

j′=0

Xj′(x, ξ)
2, ∀(x, ξ) ∈ K × R

n;

(HM3) For all x0 ∈ S there exists a compact K ⊂ Ω, containing x0 in its
interior, and a constant CK > 0 such that

|(Im dX0
(x))XN+1(x, ξ)| ≤ CK

( N∑

j=0

Xj(x, ξ)
2
)1/2

, ∀(x, ξ) ∈ K ×R
n.

Definition 2.1 (Hypothesis (HM4)). We shall say that hypothesis (HM4)
is satisfied at x0 ∈ S if π−1(x0) ∩Σ 6= ∅ and

Tr+F (ρ) > 0, ∀ρ ∈ π−1(x0) ∩ Σ,

where Tr+F (ρ) is the positive trace of the Hamilton map of the principal

symbol of
∑N

j=0X
∗
jXj (see [11]).

Definition 2.2 (Hypothesis (HM5)). Let Lk(x) be the (real) vector space
generated by the vector fields iX0, . . . , iXN along with their commutators of
length at most k evaluated at the point x. 1 We shall say that hypothesis
(HM5) is satisfied at x0 ∈ S if π−1(x0) ∩ Σ 6= ∅ and one has the existence
of an integer r ≥ 1 such that

dimLr(x0) = n.

In the following remarks we explain the connection of hypotheses (HM4)
and (HM5) to the Melin and the Rothschild-Stein lower-bound estimates.

Recall that Σ is the characteristic set of the operator
∑N

j=0X
∗
jXj .

Remark 2.3. Condition (HM4) is equivalent to condition (H3) of [9]. In
fact, let ρ ∈ Σ and let HXj

(ρ) be the Hamilton vector fields of the sym-
bols Xj(x, ξ) at ρ. Define V (ρ) = Span{HXj

(ρ); j = 0, . . . N} and let
J = J(ρ) ⊂ {0, . . . , N} be a set of indices for which HXj

(ρ), j ∈ J , form a
basis of V (ρ). If r = ♯J and if one considers the r × r matrix

M(ρ) = [{Xj ,Xj′}(ρ)]j,j′∈J ,

1We take this opportunity to correct the statements in [9] (Thm. 9.2) and [19] (Thm.
3.12) in which the same condition (HM5) appears. In both papers, Lr(x) was meant to be
defined as in the definition, and it suffices that the maximality condition on the dimension
be holding at x0 only.
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then (HM4) is equivalent to requiring

rankM(ρ) ≥ 2, ∀ρ ∈ π−1(x0) ∩ Σ.

Note also that if condition (HM4) holds at x0 then there exists a sufficiently
small open neighborhood Vx0

of x0 such that it holds for all ρ ∈ π−1(Vx0
)∩Σ.

Finally, since the subprincipal symbol of
∑N

j=0X
∗
jXj is identically zero

(the symbols Xj(x, ξ) being real) we have that condition (HM4) is Melin’s
strong Tr+ condition

sub(

N∑

j=0

X∗
jXj)(ρ) + Tr+F (ρ) > 0, ∀ρ ∈ π−1(x0) ∩ Σ,

whence (HM4) yields that for a sufficiently small compact K containing x0
in its interior we have the sharp Melin inequality [11]

(2.7) (
N∑

j=0

X∗
jXju, u) =

N∑

j=0

||Xju||
2
0 ≥ cK ||u||21/2 − CK ||u||20, ∀u ∈ C∞

0 (K),

for cK , CK positive constants.

Remark 2.4. Condition (HM5) yields the Rothschild-Stein sharp subelliptic
estimate in a neighborhood Vx0

of x0 (see [22], and [10]): For any given
compact K ⊂ Vx0

there exists CK > 0 such that

(2.8) ||u||21/r ≤ CK

( N∑

j=0

||Xju||
2
0 + ||u||20

)
, ∀u ∈ C∞

0 (K).

Note that condition (HM4) (via the sharp Melin inequality), yields (2.8) with
r = 2. Moreover, hypothesis (HM4) is symplectically invariant, and the
sharp Melin inequality holds true for general pseudodifferential operators.
Note also that for the full microlocal analogue of (2.8) one needs the full
strength of the maximal hypoelliptic estimates of [10] (see also [3]).

In this section we will show that under hypotheses (HM1) through (HM3)
the operator P of the form (1.1) is L2 to L2 locally solvable near any given
x0 ∈ S such that π−1(x0) ∩ Σ 6= ∅. When in addition hypothesis (HM4)

holds then P is H−1/2 to L2 locally solvable near such an x0, when (HM4)

is replaced by (HM5) then P is H−1/r to L2 locally solvable near such an
x0, and finally when x0 is such that π−1(x0) ∩ Σ = ∅ then P is H−1 to
L2 locally solvable near such an x0. This result generalizes the result of
[9] in that, there, only the case XN+1 = 0 was considered. As in [9], the
point here is to obtain an a priori estimate that makes use of the Fefferman-

Phong almost-positivity estimates for the auxiliary operator P̂γ,ε and the
G̊arding, or the sharp Melin inequality, or the Rothschild-Stein subelliptic
estimate, depending on the cases, for the operator

∑N
j=0X

∗
jXj. However,

the approach of [9] cannot be directly used in the present case.
We will prove the following theorem.
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Theorem 2.5. Let P be an operator of the form (1.1) defined on an open
set Ω ⊆ R

n. If P satisfies hypotheses (HM1), (HM2) and (HM3), then

(i) for all x0 ∈ S one has that P is L2 to L2 locally solvable at x0;
(ii) if x0 ∈ S is such that Σ ∩ π−1(x0) 6= ∅ and condition (HM4) is

satisfied at x0 then P is H−1/2 to L2 locally solvable at x0;
(iii) if x0 ∈ S is such that Σ ∩ π−1(x0) 6= ∅ and condition (HM5) is

satisfied at x0 then P is H−1/r to L2 locally solvable at x0;
(iv) if x0 ∈ S is such that Σ ∩ π−1(x0) = ∅ then P is H−1 to L2 locally

solvable at x0.

We prepare the proof of Theorem 2.5 by establishing the following key
estimate.

Proposition 2.6. There exists a compact K ⊂ Ω containing x0 in its in-
terior and with sufficiently small diameter, and constants cK , CK > 0 such
that for all u ∈ C∞

0 (K)

(2.9) 2Re(P ∗u,−iX0u) ≥ cK

N∑

j=0

||Xju||
2
0 +

3

2
||X0u||

2
0 − CK ||u||20.

Proof of Proposition 2.6. Let for short B = −X0. Fix x0 ∈ S and consider
a compact K ⊂ Ω containing x0 in its interior. Write
(2.10)

2Re(P ∗u, iBu) =
N∑

j=1

2Re(X∗
j fXju, iBu)

︸ ︷︷ ︸
(2.10.1)

+ 2Re
(
(X∗

N+1 − iX∗
0 )u, iBu

)
︸ ︷︷ ︸

(2.10.2)

.

Observe that, by suitably shrinking K around x0, hypothesis (HM1) yields
the existence of a positive constant c0 such that −iBf = iX0f ≥ c0 > 0
on K. We then work in this new compact that we still denote by K and
estimate (2.10.1) and (2.10.2) separately. As for (2.10.1) we have that for
all 0 ≤ j ≤ N ,

(2.11) 2Re(X∗
j fXju, iBu) = 2Re(fXju, i[Xj , B]u) + 2Re(fXju, iBXju)

= 2Re(fXju, i[Xj , B]u) + 2Im(fXju,BXju)

= 2Re(fXju, i[Xj , B]u) +
1

i

(
(fXju,BXju)− (BXju, fXju)

)

= 2Re(fXju, i[Xj , B]u) +
1

i

(
(B∗fXju,Xju)− (BXju, fXju)

)

= 2Re(fXju, i[Xj , B]u) +
1

i

(
((Bf)Xju,Xju)

+(dBfXju,Xju) +
✭
✭
✭
✭
✭
✭
✭✭

(BXju, fXju)−
✭
✭
✭
✭
✭
✭
✭✭

(BXju, fXju)
)

≥ −||f ||L∞(K)

(
(||dB ||L∞(K) + 1)||Xju||

2
0 + ||[Xj ,X0]u||

2
0

)
+ c0||Xju||

2
0.

As for the term in (2.10.2), we have

(2.12) 2Re
(
(X∗

N+1 − iX∗
0 )u, iBu

)
= 2Im(X∗

N+1u,Bu)− 2Re(iX∗
0u, iBu)
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=
1

i

(
(X∗

N+1u,Bu)− (Bu,X∗
N+1u)

)
+ 2Re(−X∗

0u,Bu)

=
1

i

(
(X∗

N+1u,Bu)− ([XN+1, B]u, u) − (XN+1u,B
∗u))

)

+2Re(−X0u,Bu)− 2Re(dX0
u,Bu)

(recalling that X∗
N+1 = XN+1+ dXN+1

and X∗
0 = X0+ dX0

, and that dXN+1

and dX0
are purely imaginary, see (1.3))

=
(B=−X0)

Re

(
1

i

(
− (dXN+1

u,X0u) + ([XN+1,X0]u, u) + (XN+1u, dX0
u))
))

+2||X0u||
2
0 + 2Re(dX0

u,X0u)

≥ −
1

2δ0
||dXN+1

||2L∞(K)||u||
2
0 −

δ0
2
||X0u||

2
0 −

1

2δ1
||u||20

−
δ1
2
||[XN+1,X0]u||

2
0 − Re(Im dX0

XN+1u, u)

−
1

δ2
||dX0

||2L∞(K)||u||
2
0 − δ2||X0u||

2
0 + 2||X0u||

2
0.

Using (2.11) and (2.12) in (2.10), and recalling that B = −X0 in (2.11)
gives

2Re(P ∗u, iBu) ≥
N∑

j=1

(
c0 − ||f ||L∞(K)(||dX0

||L∞(K) + 1)
)
||Xju||

2
0

−||f ||L∞(K)

N∑

j=1

||[Xj ,X0]u||
2
0 −

δ1
2
||[XN+1,X0]u||

2
0

−Re(Im dX0
XN+1u, u) +

(
2−

δ0
2

− δ2

)
||X0u||

2
0

−
( 1

2δ0
||dXN+1

||2L∞(K) +
1

2δ1
+

1

2δ2
||dX0

||2L∞(K)

)
||u||20.

Since x0 ∈ S and K contains x0 in its interior, we may shrink the compact
set K around x0 to a compact set, that we still denote by K, in such a way
that ||f ||L∞(K) is so small that c0 − ||f ||L∞(K)(||dX0

||L∞(K) + 1) ≥ c0/2. We

may then also pick δ0 and δ2 sufficiently small in order that 2− δ0
2 −δ2 ≥ 7/4.

Therefore, with so chosen δ0 and δ2, with

C(δ1) =
1

2δ0
||dXN+1

||2L∞(K) +
1

2δ1
+

1

2δ2
||dX0

||2L∞(K) > 0,

with c′0 = min{c0/2, 1/4}, and recalling Y given in (2.6) we get, with γ0 :=
c′0/3,

(2.13) 2Re(P ∗u, iBu) ≥
c0
2

N∑

j=1

||Xju||
2
0 − ||f ||L∞(K)

N∑

j=0

||[Xj ,X0]u||
2
0

−
δ1
2
||[XN+1,X0]u||

2
0 − C(δ1)||u||

2
0 + (Y u, u) +

7

4
||X0u||

2
0
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≥ γ0

(
N∑

j=0

(
||Xju||

2
0 −

1

γ0
||f ||L∞(K)||[Xj ,X0]u||

2
0

)
+

1

γ0
(Y u, u)

)

︸ ︷︷ ︸
(2.13.1)

+γ0

N∑

j=0

||Xju||
2
0 + γ0

( N∑

j=0

||Xju||
2
0 −

δ1
2γ0

||[XN+1,X0]u||
2
0

)

︸ ︷︷ ︸
(2.13.2)

−C(δ1)||u||
2
0 +

3

2
||X0u||

2
0.

Note that (2.13.1) can be written as (P̂γ0,ǫ(K)u, u), with (recall (2.5))

P̂γ0,ǫ(K) =
N∑

j=0

(
X∗

jXj −
1

γ0
||f ||L∞(K)[Xj ,X0]

∗[Xj ,X0]
)
+

1

γ0
Y

where ε(K) = ||f ||L∞(K)/γ0 is a positive constant that shrinks to zero when
K is shrunk around x0, that is, ε(K) → 0 as K → {x0}.

At this point we need the following crucial lemma.

Lemma 2.7. Suppose (HM2) and (HM3) hold. Then we may shrink K,
keeping x0 in its interior, to a compact, that we keep calling K, such that

P̂γ0,ε(K) satisfies the Fefferman-Phong inequality on C∞
0 (K)

(P̂γ0,ε(K)u, u) ≥ −C1||u||
2
0, ∀u ∈ C∞

0 (K),

for some constant C1 > 0 (depending on K).

Proof of the lemma. The proof is obtained exactly in the same way of Lemma
6.1 of [9]. We first shrink K, keeping x0 in its interior, so that by virtue of

(HM2) and (HM3) the total symbol of P̂γ0,ε(K) is bounded from below by a
constant in a neighborhood of K×R

n. One then extends the total symbol of

P̂γ0,ε(K) to a symbol in the class S2
1,0(R

n ×R
n), which is still bounded from

below. The resulting operator, which is still a differential operator, satisfies

the Fefferman-Phong inequality and coincides with P̂γ0,ε(K) on C∞
0 (K). This

concludes the proof of the lemma. �

Lemma 2.7 allows to control the term (2.13.1).
As regards the term (2.13.2) we can write it as (Q1u, u) with

Q1 :=
N∑

j=0

X∗
jXj −

δ1
2γ0

[XN+1,X0]
∗[XN+1,X0].

Performing on Q1 the same procedure we used in Lemma 2.7, we may choose
δ1 > 0 so as that for Q1 the same conclusion of Lemma 2.7 holds on C∞

0 (K),
where K is the resulting compact containing x0 in its interior.
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Therefore, for all u ∈ C∞
0 (K),

(2.14) 2Re(P ∗u, iBu) ≥ γ0

N∑

j=0

||Xju||
2
0 +

3

2
||X0u||

2
0 − C||u||20,

with C a positive constant (depending on the compact). This concludes the
proof of the proposition. �

Proof of Theorem 2.5. It is now an easy matter to prove the theorem. Since

2Re(P ∗u, iBu) ≤ ||P ∗u||20 + ||X0u||
2,

we have

||P ∗u||20 ≥ γ0

N∑

j=0

||Xju||
2
0 +

1

2
||X0u||

2
0 − C||u||20.

Finally, by using the Poincaré inequality on X0 (which is nonsingular on
S), and by possibly shrinking once more the compact K around x0, we may
absorb the negative constant −C in front of the L2-norm and obtain, with
a new suitable positive constant C,

(2.15) ||P ∗u||20 ≥ γ0

N∑

j=0

||Xju||
2
0 + C||u||20, ∀u ∈ C∞

0 (K),

which yields the estimate that guarantees the local solvability of P in the
senseH−s to L2 with s = 0 in case (i) and s = 1 in case (iv) of the statement
of the theorem.

It remains to deal with cases (ii) and (iii) of the statement. As for (ii),
we use hypothesis (HM4) to exploit the sharp Melin inequality (2.7) and,
using (2.15), to get

(2.16) ||P ∗u||20 ≥ γ0

N∑

j=0

||Xju||
2
0 + C||u||20 ≥ C ′||u||21/2, ∀u ∈ C∞

0 (K),

and hence the H−1/2 to L2 local solvability of P near x0.
As for (iii) we make use of hypothesis (HM5) that, by the subelliptic

estimate (2.8) for Hörmander’s sums of square of vector fields and (2.15),
gives

(2.17) ||P ∗u||20 ≥ γ0

N∑

j=0

||Xju||
2
0 + C||u||20 ≥ C ′||u||21/r, ∀u ∈ C∞

0 (K),

and hence the H−1/r to L2 local solvability of P near x0. This concludes
the proof of the theorem. �

3. Examples of locally solvable mixed-type operators

In this section we will show some examples of operators of mixed-type
(1.1) that are locally solvable by virtue of Theorem 2.5.
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3.1. Example 1. This is an example of a degenerate Schrödinger operator
which falls in the mixed-type class, which is L2 to L2 locally solvable.

Let Ω0 ⊂ R
n
x an open set, and consider in Ω = Rt × Ω0 the Schrödinger

operator

P = f(x)
n∑

j=1

D2
xj

+Dt,

where f ∈ C∞(Ω0;R) is a harmonic function in the x-variable such that
S0 = f−1(0) 6= ∅ and df

∣∣
S0
6= 0. Therefore the set S in the statement is given

here by S = R× S0. We therefore think of f as a function of (t, x) which is
constant in the variable t. Since

P =

n∑

j=1

Dxj
f(x)Dxj

+Dt + i

n∑

j=1

(∂xj
f)Dxj

,

we have that P is of the form (1.1) (mixed-type) with N = n,

Xj = Dxj
, 1 ≤ j ≤ n, X0 = 〈∇f(x),Dx〉, and Xn+1 = Dt.

Since iX0f = |∇f(x)|2 > 0 on S, {X0,Xj} = −
∑n

k=1(∂
2f/∂xj∂xk)ξk, 1 ≤

j ≤ n, {X0,Xn+1} = 0, and dX0
= −i∆f = 0 by assumption, we have that

(HM1), (HM2) and (HM3) are fulfilled. As the characteristic set Σ ⊂ T ∗Ω\0
of
∑n

j=0X
∗
jXj is {(t, x, τ, 0); τ 6= 0}, we have that π−1(t0, x0)∩Σ 6= ∅ for all

(t0, x0) ∈ Ω and none of conditions (HM4) and (HM5) may hold. Theorem
2.5(i) thus yields that P is L2 to L2 locally solvable near each point of S.

3.2. Example 2. Consider in R
2 with coordinates x = (x1, x2) the func-

tions f(x) = x1− (x2+x32/3) and g = g(x2) = 1+x22. For α > 1 a constant,
let

X(x, ξ) = g(x2)ξ1 + ξ2, X0(x, ξ) = αξ1 +
ξ2

g(x2)
,

let

X1(x, ξ) =
√

g(x2)
X(x, ξ)√
1 + g(x2)2

, X2(x, ξ) =
1√
g(x2)

X(x, ξ)√
1 + g(x2)2

,

and let

X3(x, ξ) = µ1(x)X(x, ξ) + µ2(x)X0(x, ξ),

with µ1, µ2 ∈ C∞ real valued. Consider the operator

P =

2∑

j=1

X∗
j fXj + iX0 +X3.

Since

iX0f(x) = α− 1 > 0, and {X0,X}(x, ξ) =
{ξ2, g}(x2)

g(x2)2
X(x, ξ),

we have that also {X0,X3} is a smooth multiple of X and hence that con-
ditions (HM1), (HM2) and (HM3) are fulfilled. Therefore Theorem 2.5(i)
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yields that P is L2 to L2 locally solvable at each point of S = f−1(0). Note
that conditions (HM4) and (HM5) cannot hold in this case.

3.3. Example 3. Consider in R
3 with coordinates x = (x1, x2, x3) the op-

erators

X1 = Dx1
, X2 = xk1Dx3

, X3 = β(x)Dx1
, X0 = Dx2

,

where k ≥ 1 is an integer and β ∈ C∞(R3;R). Let f(x) = x2 + g(x1, x3)
and let

P =

2∑

j=1

X∗
j fXj + iX0 +X3.

It is clear that (HM1) is fulfilled. Since {X0,Xj} = 0, j = 1, 2, and because
of the assumption on β, condition (HM2) is fulfilled, and by virtue of the
fact that dX0

(x) = 0, we have that also (HM3) is satisfied. As X0, X1 and
X2 satisfy the Hörmander condition at step r = k + 1 ≥ 2 either condition
(HM4), when k = 1, or condition (HM5), when k ≥ 2, holds so that Theorem

2.5(ii) (when k = 1) or (iii) (when k ≥ 2) yields that P is H−1/r to L2 locally
solvable at S = f−1(0).

3.4. Example 4. Consider in R
3 with coordinates x = (x1, x2, x3) an open

set Ω intersecting the plane x1 = −1, and the operators Xj(x,D), 0 ≤ j ≤ 3,
with symbols

X0(x, ξ) = ξ2 − x1ξ3, X1(x, ξ) = ξ1 − x3ξ3, X2(x, ξ) = (1 + x1)ξ3,

X3(x, ξ) =
2∑

j=0

(
βj(x)Xj(x, ξ) + γ(x){X0,Xj}(x, ξ)

)
, β1, β2, γ ∈ C∞(Ω;R).

We have dX0
= 0 and

(3.18) {X1,X0} = −X2, {X1,X2} = (2 + x1)ξ3, {X2,X0} = 0.

Let f(x) = x2 + x32/3 − x1x3. Then (HM1) holds. As a consequence of
the definition of X3 and of the relations (3.18) we have that {X0,X3} is
controlled (on the fibers of compact sets of Ω) by X0, X1 and X2, whence
(HM2) and (HM3) are all satisfied. Let Ω± := Ω ∩ {x1 ≷ −1}. Note that
since (x, ξ) ∈ Σ ⇒ ξ3 6= 0 (otherwise we are in the zero-section of T ∗Ω), we
have

(a) π−1(Ω±) ∩ Σ = ∅,
while

(b) if x0 = (−1, x02, x
0
3) ∈ Ω then

π−1(x0) ∩ Σ = {(x0, ξ) ∈ T ∗Ω \ 0; ξ1 = x03ξ3, ξ2 = −ξ3, ξ3 6= 0} 6= ∅.

In case (a) we have that for any given x0 ∈ f−1(0) ∩ Ω± Theorem 2.5(iv)

yields that P =
∑2

j=1X
∗
j fXj +X3 + iX0 is H−1 to L2 locally solvable near

x0.
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In case (b), any given x0 ∈ f−1(0) ∩ Ω ∩ {x1 = −1} has a fiber which
contains characteristic points, and we may find a (connected) open neigh-
borhood V ⊂ Ω of x0 such that in π−1(V ) ∩ Σ the Hamilton fields HX0

,
HX1

and HX2
are linearly independent and the relations (3.18) grant the

validity of (HM4) at x0 (and hence for all ρ ∈ Σ with π(ρ) belonging to a

neighborhood of x0). Therefore Theorem 2.5(ii) yields that P is H−1/2 to
L2 locally solvable near x0.

4. The Schrödinger-type case

Let now P be an operator of the form (1.2), that is,

P =
N∑

j=1

X∗
j fjXj +XN+1 + a0,

where, recall, f1, . . . , fN ∈ C∞(Ω;R). Note that the subprincipal symbol of
P is given by

XN+1(x, ξ) +

N∑

j=1

(
Im

(
(X̄jfj)(x)Xj(x, ξ)

)
−

i

2
fj(x){X̄j ,Xj}(x, ξ)

−fj(x)Re
(
dXj

(x)Xj(x, ξ)
))

.

In this section we make the following hypotheses:

(HS1) X1, . . . ,XN have complex coefficients;
(HS2) For all x0 ∈ Ω there exists a connected neighborhood Vx0

⊂ Ω of x0
and a function g ∈ C∞(Vx0

;R) such that
(i) Xjg = 0 on Vx0

for all 1 ≤ j ≤ N ;
(ii) XN+1g 6= 0 on Vx0

.

Remark 4.1. Note that once a function g has been found to satisfy (HS2)
(i) and (ii), one may change the sign of g so as to have iXN+1g > 0 on Vx0

.

One has the following result.

Theorem 4.2. Let P be of the form (1.2) such that conditions (HS1) and
(HS2) are satisfied. Then for all x0 ∈ Ω there exists a compact set K
containing x0 in its interior such that the operator P is L2 to L2 locally
solvable in K̊ (the interior of K).

Proof. We have to obtain an L2 a priori estimates for the adjoint P ∗, which
may be written as

P ∗ =
N∑

j=1

X∗
j fjXj +X∗

N+1 + ā0,

where it is important to note that since XN+1(x, ξ) = XN+1(x, ξ), then
XN+1(x,D)∗ = XN+1(x,D) + dXN+1

(x). Let now x0 ∈ S and let K ⊂ Vx0
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be a compact set containing x0 in its interior K̊ =: U . Let g be a function
such that (HS2-i) and (HS2-ii) hold with iXN+1g > 0 onK. For ϕ ∈ C∞

0 (K)
and λ > 0 to be picked later on we consider

(4.19) Im (eλgP ∗ϕ, eλgϕ) =

N∑

j=1

Im (eλgX∗
j fjXjϕ, e

λgϕ)
(4.19.1)

+Im (eλgX∗
N+1ϕ, e

λgϕ)
(4.19.2)

+ Im (eλg ā0ϕ, e
λgϕ)

(4.19.3)
.

We separately estimate the three terms (4.19.1), (4.19.2) and (4.19.3) in
(4.19).

As regards (4.19.1), for all 1 ≤ j ≤ N and for all ϕ ∈ C∞
0 (K) we have

(4.20) Im (eλgX∗
j fjXjϕ, e

λgϕ) = Im (fjXjϕ,Xj(e
2λgϕ))

= Im (fjXjϕ, 2λ(Xjg)e
2λgϕ) + Im (fjXjϕ, e

2λgXjϕ) = 0,

because Xjg = 0 and (fjXjϕ, e
2λgXjϕ) ∈ R.

As regards (4.19.2), for all ϕ ∈ C∞
0 (K) we have

Im (eλgX∗
N+1ϕ, e

λgϕ) = Im (ϕ,XN+1(e
2λgϕ))

= Im (ϕ, 2λ(XN+1g)e
2λgϕ) + Im (ϕ, e2λgXN+1ϕ)

= Im (ϕ, 2λ(XN+1g)e
2λgϕ) + Im (ϕ, e2λgX∗

N+1ϕ)− Im (ϕ, dXN+1
e2λgϕ).

Therefore

Im (eλgX∗
N+1ϕ, e

λgϕ) =
1

2

[
Im i(ϕ, 2λ(iXN+1g)e

2λgϕ) + Im (dXN+1
e2λgϕ,ϕ)

]
.

Since iXN+1g > 0 near x0, there exists a compact set K0 ⊂ Vx0
containing

x0 in its interior and a positive constant c0 such that iXN+1f ≥ c0 on K0.
We can then shrink the compact set K around x0 to a compact contained
in K0, that we keep denoting by K, in such a way that for λ > 0 and for all
ϕ ∈ C∞

0 (K) we have

Im i(ϕ, 2λ(iXN+1g)e
2λgϕ) ≥ 2λc0||e

λgϕ||20,

and thus

(4.21) Im (eλgX∗
N+1ϕ, e

λgϕ) ≥ λc0||e
λgϕ||20 −

1

2
||dXN+1

||L∞(K)||e
λgϕ||20.

As for the term (4.19.3), we have for all ϕ ∈ C∞
0 (K)

(4.22) Im (eλgā0ϕ, e
λgϕ) ≥ −||a0||L∞(K)||e

λgϕ||20,

whence, by inserting (4.20), (4.21) and (4.22) into (4.19), we find that for
all ϕ ∈ C∞

0 (K) and all λ > 0

(4.23) Im (eλgP ∗ϕ, eλgϕ) ≥
(
λc0 −

||dXN+1
||L∞(K)

2
− ||a0||L∞(K)

)
||eλgϕ||20.

Fixing λ > 0 sufficiently large yields the existence of C > 0 such that

||P ∗ϕ||20 ≥ C||ϕ||20, ∀ϕ ∈ C∞
0 (K),



On the local solvability of a class . . . 15

and concludes the proof of the theorem. �

Remark 4.3. Suppose B : C∞
0 (Vx0

) −→ C∞
0 (Vx0

) is a zeroth order properly
supported pseudodifferential operator such that B∗ = B + R, where R is a
smoothing operator. One then has

Im(P ∗ϕ,Bϕ) =
N∑

j=1

Im(Xjϕ, fj[Xj , B]ϕ) +
1

2

N∑

j=1

Im(Xjϕ, [fj , B]Xjϕ)

+Im(ϕ, [XN+1, B]ϕ) +O(||ϕ||20),

where in O(||ϕ||20) we have the contributions of [R,Xj ]ϕ, [R,XN+1]ϕ and
[B, dN+1]ϕ. The first two terms to the right give problems, for one is not
able to control norms of the kind ||Xjϕ||0, the only usable term being given
by the third one. This suggests that, in this setting, to be able to exploit
condition (HS2-ii) a resonable choice of B is indeed B = eλg.

5. Examples of locally solvable Schrödinger-type operators

In this section we exhibit some examples to which Theorem 4.2 can be
applied to conclude L2 to L2 local solvability.

5.1. Example 1. In Rt × R
n
x × R

m
y we consider the operators

P1 = −∆x−∆y+Dt, P2 = −∆x+∆y+Dt, P3 = f1(t)∆x+f2(t)∆y+Dt,

where f1, f2 are smooth, non-identically zero functions of t only. Then P1,
P2 and P3 are all L2 to L2 locally solvable.

5.2. Example 2. This example is related to the so-called Mizohata struc-
tures (see [24] or [2]). Let Ω0 ⊂ R

n
x × Ry be an open set and consider in

Rt × R
n
x × Ry the open set Ω = Rt × Ω0. Let Q = Q(x) be a real-valued

quadratic form and let

Xj = Dxj
− i

∂Q

∂xj
(x)Dy, 1 ≤ j ≤ n.

Let Y = Y (x, y,Dx,Dy) be a first order homogeneous differential operator
with real symbol and finally let

XN+1 = Dt + Y.

Then the function g = g(t) = t satisfies the assumptions (HS1) and (HS2)
and the operator

P =

n∑

j=1

X∗
j fjXj +XN+1 + a0

is L2 to L2 locally solvable near each point of Ω, whatever the choice of the
(non-identically zero) fj ∈ C∞(Ω;R) (and of a0 ∈ C∞(Ω;C)).
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5.3. Example 3. In R
4 with coordinates x = (x1, x2, x3, x4) let Ω ⊂ R

4 be
open and let

X1 = D1 − i
x2
2
D3, X2 = D2 + i

x1
2
D3, X3 = D4 + α(x)D3,

where α ∈ C∞(Ω;R). Then, choosing g = g(x4) = x4 we have that,
whatever the (non-identically zero) functions f1, f2 ∈ C∞(Ω;R) (and of
a0 ∈ C∞(Ω;C)), the operator

P = X∗
1f1X1 +X∗

2f2X2 +X3 + a0

is L2 to L2 locally solvable near each point of Ω.

Remark 5.1. The point in the Examples 2 and 3 above is to work with
a “cylindric” geometry, in which a system of complex vector fields X =
{iX1, . . . , iXN} is given to be locally tangent (in the sense that the real parts
and the imaginary parts of the vector fields are tangent) to the level sets
Lc = g−1(c) of some smooth real-valued function g, the real vector field
iXN+1 being transverse to the Lc (for c near some regular value c0 of g).
One may very well choose the system X to be a locally involutive system
or, more specifically, spanning a hypo-analityc structure in the sense of [24]
on each level set Lc, with at least one real first-integral. Keeping the vector
field iXN+1 transverse to the Lc, one may then think of P as an evolution
operator associated with the involutive/hypo-analytic structure on the leaves
Lc in the direction iXN+1.

Remark 5.2. The operators considered in Sections 4 and 5 resemble very
much the Schrödinger operator Dt + ∆x. In studying them one gives up
all possible extra information coming from lower order terms, that might
interfere with the term Dt. This explains, to some extent, the local L2

existence result.
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