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Abstract

We determine the spatial distributions of star clusters at different ages in the grand-design spiral galaxy M51 using
a new catalog based on multi-band images taken with the Hubble Space Telescope (HST). These distributions,
when compared with the spiral structure defined by molecular gas, dust, young and old stars, show the following
sequence in the inner arms: dense molecular gas (and dust) defines the inner edge of the spiral structure, followed
by an overdensity of old stars and then young stellar clusters. The offset between gas and young clusters in the
inner arms is consistent with the expectations for a density wave. Clusters as old as a few hundred Myr remain
concentrated close to the spiral arms, although the distributions are broader than those for the youngest clusters,
which is also consistent with predictions from density wave simulations. The outermost portion of the west arm is
different from the rest of the spiral structure in that it contains primarily intermediate-age (=~100—400 Myr)
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clusters; we believe that this is a “material” arm. We have identified four “feathers,”

stellar structures beyond the

inner arms that have a larger pitch angle than the arms. We do not find age gradients along any of the feathers, but
the least coherent feathers appear to have the largest range of cluster ages.
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1. Introduction

Dynamical structures within galaxies impact local star
formation (e.g., Renaud et al. 2013; Emsellem et al. 2015).
Grand-design spiral galaxies like M51 are an ideal place to
study the interplay between gas density and motions, and how
these impact the formation of stars and stellar clusters. Recent
results suggest that dynamical structures like spiral arms and
bars create deviations from axisymmetry in the gravitational
potential that induce streaming motions, shear, and shocks in
the gas (Meidt et al. 2013; Colombo et al. 2014a), which lead to
changes in the local gas surface density and affect the
organization and structure of the ISM down to the scales of
giant molecular clouds (Hughes et al. 2013; Colombo et al.
2014b).

Stellar clusters, which form in regions of high gas density
within galaxies, are one of the key products of star formation.
Because they can be age-dated, their spatial distributions in a
spiral galaxy like M51 provide direct information on the nature
and timing of the molecular gas flow relative to the spiral arms.
The locations of age-dated clusters relative to spiral structure
traced by gas and old stars can also help to discriminate
between different theoretical models for the formation of the
arms, or at the very least show how the gravitational potential
affects the movement of the clusters. For example, Roberts
(1969) first explained that a quasi-stationary density wave
should lead to a temporal sequence of events as material
streams in and out of the spiral pattern. One observational
signature of this sequence would be spatial offsets for star-
forming tracers of different ages. To date, some works have
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found evidence for such spatial offsets (e.g., Tamburro et al.
2008; Egusa et al. 2009), while others have not (e.g., Foyle
et al. 2011).

The PAWS survey has provided an unprecedented view of
the molecular gas distribution and motions within the central
9 kpc of M51 (Schinnerer et al. 2013). An analysis of the CO
maps from this survey and the stellar population across the
galaxy suggested that M51 has different zones of radially
inflowing and outflowing gas. Regions of stalled gas are found
at the transition between these zones, and there may be
differences in the star-forming and cluster properties of the
clouds in regions where gas moves differently (Meidt et al.

2013).

Previously, Sanchez-Gil et al. (2011) estimated the ages of
the stellar populations in M51 from multi-wavelength (from
far-UV through IR, and including Ha)), low-resolution images,
using a pixel-by-pixel approach. They found that the youngest
(<4 Myr) stars are found along the central and inner edges of
the inner spiral arms, and are spatially distinct from somewhat
older 4-6 Myr stars, but did not track stellar populations older
than 10 Myr. Scheepmaker et al. (2009) previously used HST
images of M51 to detect individual star clusters and to estimate
their ages, and found high concentrations of young
(1 < 10 Myr) clusters along the spiral arms.

The goal of this work is twofold. First, we will define the
spiral structures in both the inner and outer regions of M51
using the infrared emission from old stars to identify the stellar
potential, and compare with the spiral structures traced by
young stars, molecular gas, and dust. Second, we will compare
the locations of age-dated star clusters from a new HST-based
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catalog (Chandar et al. 2016) with different dynamical
structures in M51, including spiral arms and “feathers” (stellar
features extending from the outer portion of a spiral arm).

The remainder of this paper is organized as follows.
Section 2 summarizes the selection and determination of star
cluster properties presented in Chandar et al. (2016), and
presents new maps showing the locations of clusters with
different ages within M51. Section 3 defines the spiral arms
from near-infrared images, which best trace the light from old
stars, the dominant mass component in the inner disk. We also
compare the locations of these stellar arms with those traced by
very young clusters, molecular gas, and dust. In Section 4 we
determine the spatial distributions of different age clusters
relative to the spiral arms and feathers, and in Section 5 we
compare our results with those predicted by different models of
spiral structure generation. Finally, we summarize the main
results of this work in Section 6.

2. Ages and Locations of Star Clusters in M51

The observations and basic reduction of the data used in this
work were described previously in Chandar et al. (2011), and
the cluster catalog is presented in Chandar et al. (2016), so here
we summarize the relevant steps and refer the interested reader
to those works for more details. M51 was observed ina 2 x 3
mosaic’ with the Wide Field Channel of the Advanced Camera
for Surveys (ACS/WFC) in the F435W (“B”), F555W (“V7),
F814W (“I”), and the F658N (“Ha) filters as part of program
GO-10452 (PI: S. Beckwith). The pixel scale of these
observations is 0705 pix ', or 2 pc pix ' at the assumed
distance of 8.4 Mpc for MS51 (distance modulus
m — M = 29.62; Feldmeier et al. 1997; Vinko et al. 2012).
We also obtained six pointings with the F336W (“U”) filter of
the WFPC2 camera as part of program GO-10501 (PI: R.
Chandar). Two additional archival F336W pointings cover the
nuclear region of M51 (GO-5652, PI: R. Kirshner and GO-
7375, PIL: N.Scoville). Our U-band mosaic was shown
in Figure 2 of Chandar et al. (2011), and has a resolution of
0”1 pix " corresponding to 4 pc pix . It covers ~60% of the
luminous portion of the ACS mosaic.

We selected star clusters to be brighter than V = 23.5 (i.e.,
My < —6), and to be broader than the point-spread function. A
final visual inspection to eliminate remaining close pairs of
individual stars led to a catalog of 3812 cluster candidates,
which was presented in Chandar et al. (2016). Circular aperture
photometry was performed on each cluster in each broadband
filter with an aperture radius of 2.5 pixels and background
annuli of 10 and 13 pixels. We perform photometry for the
narrowband He filter from an image where no flux from the
stellar continuum was subtracted. The instrumental magnitudes
were converted to the VEGAMAG photometric system by
applying the zero-points given in Sirianni et al. (2005) for the
ACS filters, and those given in Holtzmann et al. (1995) for
the WFPC?2 filter. Finally, we applied an aperture correction to
the magnitudes measured for each source, based on an
empirically determined relationship between concentration
index (C) and aperture correction determined for a number of
relatively isolated clusters.

Our cluster selection limit is several magnitudes brighter
than the detection limit. We can detect nearly all objects

° The observations and resulting mosaic images can be obtained at the

following URL: http://archive.stsci.edu/prepds/m51/.
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(except sometimes due to crowding) down to V = 26.
However, our ability to cleanly separate clusters from point
sources, close pairs of stars, and background galaxies worsens
significantly at magnitudes fainter than V ~ 23.5. We assessed
the completeness of our sample by adding artificial clusters
throughout the image, and then subjecting them to our selection
criteria. These experiments indicate that our sample is fairly
complete (at ~90% level) in most of M51. A similar level of
completeness occurs closer to my = 23.0 mag in the most
crowded portions of the spiral arms. We have confirmed,
however, that the completeness limit does not affect the results
presented here: the distributions presented in Section 6 are
similar regardless of whether or not we use a limit of
my = 23.0 or 23.5, but the shallower catalog yields poorer
statistics.

Age and mass are two basic properties of a star cluster. Our
methodology was described in detail in Chandar et al. (2016),
and is summarized here. We estimate the age 7 and extinction
Ayfor each cluster by performing a least y? fit comparing
observed magnitudes with the predictions from Bruzual &
Charlot (2003) stellar population models assuming solar
metallicity Z = 0.02, a Salpeter (1955) IMF, and a Galactic-
type extinction law (Fitzpatrick 1999). The best-fit values of 7
and Ay are those that minimize the statistic

2
|7 Ay) = W (™ — mf“)d) , )
A

where m{® and m™ are the observed and model magnitudes,

respectively, and the sum runs over all five bands,
A=U, B, V,I,and F658N. The weight factors in the formula
for x2 are taken to be Wy = [03 + (0.05)2]"!, where o is the
formal photometric uncertainty determined by PHOT for each
band. The mass of each cluster is estimated from the observed
V-band luminosity, corrected for extinction, and the (present-
day) age-dependent mass-to-light ratios (M/Ly) predicted by
the models, assuming a distance modulus A(m — M) of 29.62
or 8.4 Mpc for M51 (Feldmeier et al. 1997; Vinko et al. 2012).

We test the sensitivity of our age-dating methodology to
different stellar population models, and different assumptions
(e.g., extinction law, metallicity, filter combinations). We find
that cluster ages are fairly insensitive to the specific models that
are used, as well as to the assumed metallicity (solar versus
1/2x solar) and extinction law (Galactic versus Starburst). The
most significant impact on the results comes from the specific
filter combination. We tested the results from UBVIHa,
BVIHq, and UBVI, and found that ~35% of the clusters have
ages that differ by at least 0.3 in log 7, with the UBVIH«
combination delivering better ages (see the discussion in
Section 3.2 in Chandar et al. 2016).

Figure 1 shows the spatial distribution of clusters with
different ages on an optical image of M51. Figure 2 shows the
same information, but now plots clusters in different intervals
of age in separate panels on a white background. This figure
shows that while structure in the cluster population clearly
diffuses over time, clusters still retain some concentration in
spiral patterns for a few hundred Myr; we will return to this
point in Section 5.
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Figure 1. Distribution of clusters with different ages on the HST ACS image of
MS51: <6 Myr (blue); 6-30 Myr (green); 30-100 Myr (yellow); 100-400 Myr

(orange); and >400 Myr (red). The lack of clusters in the very central portion
of the galaxy is real.

3. Structural Features in M51

MS51 has two prominent arms that wind clockwise with
increasing distance from the center of the galaxy. In this
section, we define the spiral arms in M51 from 3.6 um images
taken with the Spitzer Space Telescope, which reveal the old
stellar backbone along the galaxy. We then compare these arms
with the spiral structure observed in optical images (which
highlight the locations of young stars and dust) and with that
found in CO maps from the PAWS survey (which shows the
locations of cold molecular gas). We also define four different
feathers.

3.1. Spiral Arm Definitions

In Figure 3, we present a 3.6 um image of M51 taken as part
of the Spitzer Infrared Nearby Galaxies Survey (SINGS)
Legacy project (Kennicutt et al. 2003). This image has a large
field of view and covers both the inner and outer spiral arms.
The emission in this image comes primarily from old stars,
revealing the minimum in the stellar mass density potential.
This image has a pixel scale of 0775 pix~'.

We use the 3.6 pm image to define spiral arms in M51. First,
we mask out the companion galaxy, the inner 750 pc region of
M51, and bright point sources that appear to be unrelated to the
arms, including bright foreground stars. This masked image is
then subtracted from a median-averaged image and smoothed
by a Gaussian with a FWHM of 12 pixels (=0.6 kpc), a
procedure that enhances the spiral arms. Finally, we identify 50
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peaks along the spiral arms by running the DAOFIND task in
IRAF. Both panels of Figure 3 show the resulting contours of
the spiral arms and the identified peaks in orange.

We define different spiral arm segments, partly motivated by
a previous analysis of CO maps that revealed that there are
different dynamical zones within M51 (Querejeta et al. 2016).
These zones are shown as the solid and dashed black circles in
the left panel of Figure 3 (and also in Figure 5), and delineate
regions where gas is moving radially inward from those where
it is moving outward (the direction of gas motion in these zones
is shown by the black arrows). The inner solid circle at 22"
(/=830 pc) marks the corotation radius of the bar, and gas in this
region flows inward. The inner dashed circle is located at 40"
(1.5 kpc), and gas between 22"-40" flows outward. The next
dynamical zone, between 40”-100" has inflowing gas, and the
outer edge (=2100") of this zone marks the corotation radius of
the spiral pattern in M51. The final zone, between 100”-165"
has outflowing gas, and the outer edge near ~165” is marked
by the outer Lindblad resonance of the spiral. Our spiral arm
segments, defined by fitting the 3.6 pm peaks with logarithmic
spirals, are labeled and shown as the solid, colored lines: E1l
(red), E2 (magenta), E3 (green), E4 (yellow) for the east arm
extending toward the northeast, and W1 (dark blue), W2,
(cyan), W3 (blue), W4 (purple), and W5 (dark pink), for the
west arm extending toward the southwest.

Our spiral arm definitions are fairly similar to those
presented in Scheepmaker et al. (2009), but the deeper
3.6 um Spitzer image used here resulted in the detection of
twice as many peaks and therefore somewhat smoother arm
definitions. Honig & Reid (2015) recently used H 11 regions to
define spiral arms in several galaxies including M51. Overall,
the locations of their H1I regions are quite similar to the very
young (blue) clusters used in this work, which generally fall on
the leading edge of the arms defined here.

3.2. Comparison with Optical Emission

We overlay the 3.6 um contours showing our spiral arm
definitions on top of an optical HST image of M51 in the right
panel of Figure 3, and show an enlarged view of a portion of
the inner eastern spiral arm in Figure 4. The infrared emission
peaks, shown as the solid orange circles, wander somewhat
relative to the dark dust lane and the brightest knots of optical
emission from the recently formed young stellar clusters that
punctuate the leading edge of the arms. Overall, this bright
3.6 um emission (which is the basis of our spiral arm
definitions) falls mostly somewhere between the two in the
inner arms and in the outer east arm. The situation is somewhat
different in the outermost portion of the west arm, where the
brightest infrared emission appears to be coincident with the
dust in the optical image. We will see throughout the rest of this
paper that the outermost western spiral has different properties
than the other spiral segments.

We estimate the typical offset, between the bright 3.6 um
emission that we have used to define the spiral arms and the
dark dust lanes seen in the optical image using a few inner
segments of the spiral arms (including the one that is shown).
In the inner arms where the spiral pattern is the most regular,
we find typical offsets in the range ~075-2" or 20-80 pc. This
will become important later when we compare the locations of
age-dated clusters to the spiral arms defined by the 3.6 um
emission.
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Figure 2. Gradual diffusion of clusters throughout the disk of M51. The clusters start out quite concentrated in the arms, and they become more and more dispersed as
they age. Clusters with ages of a few hundred Myr do, however, still show weakly concentrated structure and are not yet fully dispersed. The color-coding is the same
as in Figure 1: (<6 Myr (blue) 6-100 Myr (green); 100—400 Myr (orange); and >400 Myr (red).

3.3. Comparison with CO Emission

Figure 5 brings together the 3.6 um image and spiral arm
definitions, locations of optically detected star clusters, and
maps of molecular gas that have been previously published.
Here, the orange contours show '2CO(1—0) molecular gas for
the central 11 x 7kpc of M51 from the PAWS survey
(Schinnerer et al. 2013), covering the inner region. Cold
molecular gas is concentrated in narrow spiral patterns starting
~750 pc from the center. There are a number of “spurs” or
small-scale physical extensions of gas from the arm into the
interarm regions. Molecular gas is also found between the
spiral arms, although the intensity of its emission is
significantly lower than that in the arms. While CO emission
was detected within the central ~1 kpc of M51, it is fairly
weak. The number of star clusters drops off significantly within
the central ~750 pc.

A visual comparison between the CO contours and an optical
image shows that emission from the molecular gas coincides
almost perfectly with the dark dust lanes found in the optical
image of M51, while the bright emission from massive stars

within stellar clusters is on the outer edge of the CO gas/dust
lane. This offset is seen in Figure 5, with young star clusters
(T < 6 Myr) shown as the blue dots offset toward the outer
edge of the spiral pattern from the CO gas. We find a typical
separation between the dark dust lanes and bright clusters of
~5"-6" or ~200-240 pc for the inner spiral arm.

3.4. Comparison between Spiral Patterns in the Young and Old
Stars, Gas, and Dust

The background image of Figure 5 is the 3.6 um image that
has been corrected for dust emission (Querejeta et al. 2015).10
An enlarged version of this image, focusing on the inner spiral
arms, is shown in Figure 6. Weak infrared emission is observed
along the outer edge of the dust lanes/molecular gas; this
infrared emission is the light of the old stars. We compare the
locations of the dust lanes and the infrared emission in the inner

19 We did not use this dust-corrected image to define the spiral arms because
there are clear over-subtractions in some locations, which affected the locations
of the detected infrared peaks. This map is better, however, for a visual
comparison with emission at other wavelengths.
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Figure 3. Left: definitions of MS51 spiral arm segments are shown on a
grayscale 3.6 um Spitzer image. The orange contours show seven levels of
intensity from 0.01 to 0.45 MJy/sr on a logarithmic scale, and the filled dots
mark local intensity peaks. The fitted logarithmic arm segments are labeled and
defined as E1 (red), E2 (dark pink), E3 (green), and E4 (yellow) for the east
arm, and W1 (blue), W2 (cyan), W3 (light blue), W4 (purple), and W5
(magenta) for the west arm. The black circles define the different dynamical
zones discussed in Section 3.1. Right: contours from the Spitzer 3.6 ym image
(orange) are shown superposed on the optical HST/ACS image. In both the
inner arms and the outer east arm, the strong infrared emission (orange circles)
falls just beyond the dark dust lanes (which coincide with the molecular gas) in
the direction of rotation. The orange circles also generally tend to be offset
from the strongest optical emission, falling between it and the dust lanes in the
inner portion of the spiral arms. The approximate offsets between the dust
lanes, peak 3.6 ©m emission, and optical emission are quantified in the text.

Figure 4. An optical image of a portion of the inner West spiral arm is
superposed with the same infrared contours from Spitzer as seen in Figure 3
and shown in orange. The orange circles show the locations of the strongest
3.6 ym emission. Approximate locations for the dust lane (which is coincident
with molecular gas) and the optical emission peaks are shown by the solid
black lines and labeled. There is a progression from the optical peaks, to the
3.6 um peaks, to the location of the dust from the outer edge of the spiral arm
inward. Typical values for these offsets are given in the text. The arrows show
the sense in which gas and stars moving in elliptical orbits rotate in the M51
disk, and how they travel along the arm for part of their orbits, which appears to
result in clusters lingering in spiral arms and traveling quickly between them.

arms and find a typical offset between ~2"-5" or ~80-200 pc.
A comparison of an 8 ym image from Spitzer (see Figure 10 in
Puerari et al. 2014) with the 3 ym image used here to define the
stellar spiral arms reveals that the diffuse gas structure is offset
from and less well-defined than the stars in W3 and E3.
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Figure 5. This figure compares the locations of optically bright star clusters
(small dots, Section 2), both very young (blue dots; 7 S 6 Myr) and old (red
dots; 7 > 400 Myr), with our definition of the spiral arms (curved lines;
Section 3) and cold CO molecular gas (orange contours from the PAWS
survey; Schinnerer et al. 2013). The background image is a 3.6 um Spitzer
image that shows the stellar mass distribution of the galaxy (Querejeta et al.
2015).

The various offsets suggest the following picture for the
organization of spiral structure in M51: cold molecular gas
(traced by both CO emission and dark dust lanes in the optical)
defines the inner edge of the spiral structure in M51. Bright
3.6 um emission from an overdensity of old stars (the definition
of spiral arms adopted in this work) are on the outer edge of
this gas, followed even further out by optically bright young
stellar clusters.

In addition to the spiral arms, in this work we will discuss
the location and ages of clusters in “feathers,” coherent stellar
structures emanating from the spiral arms. These should not be
confused with the many extinction features located between the
arms that were identified by La Vigne et al. (2006). We identify
four such stellar structures in an optical image of M51 shown in
Figure 7; these structures can also be seen in the stellar density
map, and are not affected by oversubtraction. The feathers
contain star clusters, have larger pitch angles than the spiral
arms, and appear to be a continuation of dark extinction and
CO features (which we refer to as “spurs”; La Vigne et al.
2006). Figure 7 identifies four feathers in M51.

4. Spatial Distributions of Different Age Clusters

Figures 1 and 2 show the spatial distributions of clusters with
different ages in M51. The youngest clusters, those with ages
less than 6 Myr (shown in blue), are preferentially located close
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Figure 6. Portion of the inner spiral arms shown in Figure 5. The stellar density
map created from a processed 3.6 ym image is overplotted with CO contours in
orange, which coincide with the dust lanes. Our spiral arm definitions are
shown in green, and tend to be just outside of the CO emission/dust, although
the exact distance varies somewhat. The blue dots show that very young
(7 < 6 Myr) star clusters tend to be located beyond our definition of the inner
spiral arms, and coincide fairly well with the infrared emission in this image.
The locations of the infrared emission here are fairly similar to those of the
optical emission in Figure 4. We highlight two portions of the spiral arm where
the progression from CO gas/dust to spiral arm to young clusters is clearly
observed.

Feather 4

W

Figure 7. Locations of “feathers” discussed in this work.

to (but not coincident with) the densest portion of the spiral
arms, as defined in Section 3. These very young clusters also
tend to clump together, which can be seen in Figure 2. Note,
however, that some very young clusters are also occasionally
found between the spiral arms. This is not due to inaccuracy in
our age-dating method. Ha emission, seen in the Hubble
Heritage image of M51'! is also observed at these locations,
indicating that at least some recent star formation does occur
between the arms (discussed further below).

' hubblesite.org /gallery /album/heritage /pr20050212a/small_web
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Somewhat older clusters with ages between 6 and 30 Myr
(green) and 30-100 Myr (yellow) are still found close to spiral
arms, although they clearly have a larger spread away from the
arms than the very youngest clusters. Even intermediate-age
clusters, those that are =~100-400 Myr old and shown in
orange, retain some knowledge of the initial spiral structure,
and have not fully diffused throughout the disk of M51. This is
discussed further below. The oldest clusters (=400 Myr; red),
meanwhile, show a fairly even distribution throughout the
galaxy, including across the spiral arms. The exception to these
trends is arm segment W5, which is dominated by approxi-
mately 100-400 Myr old clusters, with almost no young
clusters close to or within the arm. The latter observation is
supported by a visual inspection of Figure 1, which shows far
fewer H1I regions in W5 than in any other arm segment. This
feature will be discussed further below. Young -clusters
continue to form in the outer arm E4, and are fairly tightly
concentrated to the arm.

4.1. Cluster Ages Relative to Spiral Structure

In this section, we present a quantitative treatment of the
locations of star clusters of different ages in M51, relative to the
spiral arms, as defined by the old stellar backbone revealed in
the 3.6pm images. A cluster is associated with an arm segment
when it is within 2 kpc of that segment, where distance is
calculated from the cluster position to the closest point in the
arm segment. Clusters near the intersection points of two arm
segments could potentially be associated with either segment.
In these cases, we define horizontal or vertical boundaries and
manually assign the clusters to an arm segment.

Figure 8 shows the distribution of different age clusters
perpendicular to the spiral arm segments E1, E2, E3, and E4.
Each age distribution is normalized to the total number of
clusters in its arm segment: 231 (El), 287 (E2), 654 (E3), and
454 (E4), respectively. Each row shows the distribution of
clusters with different ages: younger than 6 Myr (top row),
6-30 Myr (second row), 30-100 Myr (third row), and
100-400 Myr (bottom row). Figure 9 shows a similar plot for
clusters in the west arm segments, with 205 (W1), 352 (W2),
581 (W3), 206 (W4), and 190 (W5) clusters, respectively. Note
that the abrupt cutoff below —1 kpc for E1 and W1 is due to
our exclusion of the central 750 pc region of M51.

We see from Figures 8 and 9 that there is a general trend for
the youngest cluster distributions to be fairly peaked close to
the spiral arm segments (although the distributions are not fully
symmetric), and that the distributions become flatter and
broader for older clusters, but that even clusters in our
100400 Myr interval are still found in the arms. The one
exception to this trend is the 100400 Myr clusters in the W5
(and to a lesser extent W4) segment, which peak quite strongly
at the arm. The overdensity of intermediate-age 100-400 Myr
old clusters near the spiral arms is likely due to the fact that
clusters spend much more time moving through the arms than
through the interarm regions; see the discussion of simulation
results in Section 5.

Two of the main results of this work can be seen even more
clearly in Figure 10, where we compare the azimuthal
distribution of molecular gas with young (7 < 10 Myr) and
intermediate-age (100—400 Myr) clusters in portions of the
inner and outer spiral. Figure 10(a) shows the annuli that are
used for the azimuthal plots: 2.0-2.5 kpc for the inner spiral
and 5.0-5.5 kpc for the outer one. The azimuthal angles start
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from north and go counterclockwise. Because the PAWS
survey did not map the molecular gas content in the outer
portion of M51, we use data from the lower spatial resolution
HERACLES survey (Leroy et al. 2009) for the outer spiral arm.
Figure 10(b) shows that HERACLES data give a fairly similar
azimuthal profile as PAWS for the inner spiral for our bin sizes,

suggesting that the HERACLES maps are adequate for our
purposes. Here, the y-axis is expressed in terms of H, surface
density (M, pc=2), where we have assumed a (Galactic)
conversion factor of aco = 4.4 M, pc=2 K-'km~!s (Schinnerer
et al. 2013). The lower panels compare the azimuthal profiles of
molecular gas with that of young (7 < 10 Myr) and intermediate-
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age (100400 Myr) clusters in the inner (bottom left) and outer
(bottom right) annuli. The molecular gas, plotted as the solid line,
shows strong peaks at both spiral arms. For the inner spiral, the
blue dashed line shows fairly narrow peaks for the young clusters,
and shows that these peaks are offset by ~1 kpc from the peaks in
the molecular gas. There are far fewer older clusters, reflected by
the lower amplitude of the red line, and they appear to be more
evenly distributed than the young clusters. These spatial offsets
between the peaks in the gas and cluster profiles support the
density wave model for the inner spiral of M51. The situation,
however, changes in the outer spiral. Here, the broad peak
observed between 2.5 and 4 radians in CO gas appears to be fairly
cospatial with the (few) young and intermediate-age clusters in
this region, suggesting that a different mechanism is responsible
for the outer spiral structure.

From Figures 11 and 12, we see that the different arm
segments have had different amounts of recent star formation,

with strong recent cluster formation in segment W3, and to a
lesser extent in E3. Gas is flowing in these segments, which
might be expected to suppress rather than to enhance star
formation (e.g., Meidt et al. 2013). The movement of gas in
these segments, which are outside of the spiral corotation
radius, may be dominated by flows resulting from the
interaction with the companion galaxy, rather than flows along
or through the underlying spiral. In W3, the dominant young
cluster concentration is offset by =~0.5 kpc toward the
companion galaxy; this offset is likely due to the ongoing
interaction with the companion galaxy.

As mentioned previously, arm segment W5 appears to be
quite different from the other segments. This segment contains
very few young clusters (there are very few regions of Ha
emission), and is dominated by clusters with ages of
100—400 Myr. This result is consistent with this outer region
being part of a material arm; simulations show that material
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arms can hold onto their star clusters for many rotations (Dobbs
& Pringle 2010). The lack of recent star formation is also
consistent with the fairly low amount of gas in W5 when
compared with the higher gas content and star formation rate in
outer arm E4.

4.2. Ages of Clusters In Feathers

MS51 has several coherent stellar “feathers” emanating from
the spiral arms, identified in Figure 7. These contain star
clusters, have larger pitch angles than the spiral arm, and
appear to be a continuation of dark extinction features (we refer
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Figure 13. Histograms showing the distribution of clusters across spiral arms for the four spiral generation models shown in Figure 2 of Dobbs & Pringle (2010):
spiral with a fixed pattern speed (top left), a barred galaxy (top right), a flocculent spiral (bottom left), and a tidally induced spiral based on the M51 system (bottom
right). Four different age clusters are shown for each simulation, as indicated. The center of the spiral arm is assumed to coincide with the location of the peak of the
youngest cluster distribution, and positive positions are downstream from the spiral arm.

to these extinction features as “spurs”). We studied the ages of
clusters in two of the most prominent stellar feathers in a
previous paper (Chandar et al. 2011), and here extend our
analysis to include two additional structures.

We previously found that the clusters in feather 1, one of the
most coherent stellar structures, formed nearly coevally,
~100 Myr ago. We also noted that one of the most massive
clusters in M51 is located within feather 1. Clusters in feather 2
appear to be somewhat older on average, with a typical age of
T =~ 200 Myr, but also appear to have formed over a longer
period of time. Here, we identify and examine the cluster
content of feathers 3 and 4 for the first time. These features are
less coherent than feathers 1 and 2, and can be traced over
shorter distances. Overall, feather 3 appears to have similar
ranges and median cluster ages as feather 2, which is just to the
south. Feather 4, however, has a larger age spread than any of
the other three feathers, and is also the least coherent. Most
importantly, we do not see evidence for age gradients along any
of the feathers, as might be expected if star formation had been
triggered at one end and propagated across to the other end.
Rather, these features are consistent with clusters forming out
of gas that has been sheared out as it moves through the arms.
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5. Comparison with Simulations

A number of works have used hydrodynamical simulations
to study the response of the gas disk to different mechanisms
for generating spiral structure. These simulations track the
expected locations of different age stars and clusters and make
predictions that can be compared with observations. For a fixed
density wave, there should be spatial offsets for different age
tracers; such as, for example, between molecular gas and young
clusters, as material streams in and out of the spiral pattern
(e.g., Roberts 1969 Dobbs & Pringle 2010). In the global spiral
density wave simulation of Dobbs & Pringle (2010), the
youngest clusters are all tightly confined to the spiral arms,
with older ~100 Myr clusters found at similar locations but
more spread out than the younger clusters, as shown in the top
left panel of Figure 13. In a flocculent galaxy, where the spiral
structure results from local gravitational instabilities in the disk,
no offsets between gas and young clusters are necessarily
expected, and clusters with different ages are not cospatial (see
the bottom left panel in Figure 13; Dobbs & Bonnell 2008;
Wada et al. 2011). In some models of spiral arm generation, gas
and star clusters spend much more time in the spiral arms than
between the arms, since they stream parallel to the arm, in a
fashion similar to that shown by the arrows in Figure 4. In these
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simulations, clusters move slowly through the arms and quickly
through the interarm regions, and if not dispersed by feedback,
clusters with ages up to a few hundred Myr are predicted to
respond to the potential and exhibit a spiral pattern (e.g., Dobbs
et al. 2016).

We find some intriguing similarities and differences when
we compare the observational results and different model
predictions. In M51, different age clusters all peak at the spiral
arms (as discussed in Section 4), but the widths of the
distributions increase somewhat at older ages, similar to
predictions from the fixed spiral model of Dobbs & Pringle
(2010). Recent simulations find that spiral structure tends to
persist for hundreds of Myr, but no corresponding structure was
found in similar age cluster populations in NGC 628, M83, or
NGC 1566 (Dobbs et al. 2016). Interestingly, in this work we
do observe this signature in the few-hundred-Myr cluster
population of M51.

The cluster population associated with the inner spiral arms
of M51 is consistent with predictions from density wave
simulations. Different age clusters peak at the spiral arms, and
the widths of the distributions increase with age. Spatial offsets
are observed between the molecular gas and young clusters.
We note, however, that the width of the spatial distributions for
very young clusters (and in many cases for older clusters as
well) across spiral arms is significantly narrower in the
simulations (as shown in Figure 13) than is observed in M51.
In the simulations, clusters are assumed to form as soon as gas
reaches some density threshold; based on our results, this
assumption may be too simplistic, as also suggested by other
recent work (e.g., Schinnerer et al. 2017).

In the flocculent model, by contrast, the peak locations vary
strongly with age, but the height and width do not. Both the
locations of the peaks and widths of different age cluster
distributions vary in the model with a central bar. The
flocculent and barred models are a poor match to the observed
results for clusters in M51.

Feathers, or spurs, are also seen in numerical simulations, with a
fixed spiral potential (Kim & Ostriker 2002; Wada & Koda 2004;
Shetty & Ostriker 2006, Dobbs & Bonnell 2006), and more
recently for an interacting galaxy (Pettitt et al. 2016). Feathers are
formed in the simulations when GMCs in the spiral arms are
sheared out in the interarm region. Dobbs et al. (2014) compute
stellar age distributions in GMCs located in feathers (or effectively
the feathers themselves) and arm GMCs. The clusters have a large
age spread in the feathers, as the feathers correspond to long-lived
GMCs, which form stars over a long lifetime. Shorter-lived GMCs,
on the other hand, are already dispersed by the time they reach the
interarm region. Equivalent analysis has not yet been performed
for simulations of interacting galaxies. For flocculent galaxies, gas
does not pass through the spiral arms, so feathers cannot form in
the same way (Dobbs & Bonnell 2008; Wada et al. 2011). Instead,
any such features would simply be short sections of spiral arm, so
presumably their age distributions would reflect this.

Overall, the fixed spiral simulation is best able to reproduce
(at least) some of the general trends observed in the cluster
population in the inner portion of M51, while the flocculent and
barred galaxy models do a much poorer job of reproducing the
observations. The outer spiral seems to be best reproduced in
the interaction model of Dobbs et al. (2010), and is more
consistent with being a material arm rather than a density wave.
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6. Summary

We have defined the spiral arms in M51 from a deep 3.6 um
image taken with the Spitzer Space Telescope, which traces the
old stellar backbone of the galaxy, and compared this image with
the spiral structure observed at optical and radio wavelengths. We
found the following approximate sequence for the locations of
stars (young and old), gas, and dust. Optical light at bluer
wavelengths from HST images traces the youngest, brightest stars
and clusters, which are found along the outer edge of the arm.
The infrared 3.6 um images revealed that the older stars mostly
trail the young, optically bright clusters by about 2” in the inner
arms. This stellar mass overdensity is followed by the dust lanes
and molecular gas, which are concentrated into very narrow
spiral structure (in the inner arms).

We have compared the locations of age-dated star clusters in
M51, from the HST-based catalog of Chandar et al. (2016),
with different dynamical structures within the galaxy, including
the spiral arms and stellar feathers. Our spiral arms were
divided into different segments that coincide with the locations
of distinct dynamical zones found previously by Meidt et al.
(2013). The stellar feathers were visually identified in optical
HST images of M51. We determined the spatial distributions of
clusters in the following ranges of age: (1) 7 < 6 Myr, (2)
6-30 Myr, (3) 30-100 Myr, (4) 100-400Myr, and
(5) T 2, 400 Myr.

Our key findings were:

1. Few clusters are detected within ~750 pc of the center
of M51.

2. Clusters with a range of ages, up to a few hundred Myr,
are located within the spiral arms. In fact, the spatial
distributions for different age clusters all peak close to the
spiral arms, although the peak height decreases and the
width increases with cluster age. This result, plus the
spatial offset found between the molecular gas and
clusters, supports a density wave origin for the spiral
structure in the inner arms of M51.

3. The outer arm segment W5 (closest to the companion)
contains primarily intermediate-age clusters, with very
few young clusters. This differs from the eight other arm
segments studied here, and suggests that this is a
material arm.

4. We identify four “feathers,” stellar structures beyond the
inner spiral arm with a larger pitch angle than the arms.
None of these show evidence for an age gradient along
the structure, and the least coherent feathers appear to
have the largest range of cluster ages.
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