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Highlight 

Increased knowledge about protein-protein interactions, posttranslational modifications and 

modifying ligands of plant receptor F-box proteins, will enable uncoupling of phytohormone 

responses and a more precise coordination of vital plant processes.  

 

Abstract 

Phytohormones regulate the plasticity of plant growth and development, and responses to 

biotic and abiotic stresses. Many hormone signal transduction cascades involve 

ubiquitination and subsequent degradation of proteins by the 26S proteasome. The 

conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating and 

the substrate-specifying E3 ligase. The most prevalent type of E3 ligase in plants is the Cullin-

RING ligase (CRL)-type with F-box proteins (FBPs) as the substrate recognition component. 

The activity of these SKP-Cullin-F-box (SCF) complexes needs to be tightly regulated in time 

and place. Here, we review the regulation of SCF function in plants on multiple levels, with a 

focus on the auxin and jasmonate SCF-type receptor complexes. We particularly discuss the 

relevance of protein-protein interactions and posttranslational modifications as mechanisms 

to keep SCF functioning under control. Additionally, we highlight the unique property of 

SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we 

explore how engineered selective agonists can be used to study and uncouple the outcomes 

of the complex auxin and jasmonate signaling networks that are governed by these FBPs. 
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(+)-7-iso-jasmonoyl-L-isoleucine; JAZ, jasmonate-ZIM domain; LRR, leucine-rich repeat; MAX2, 

MORE AXILLARY GROWTH 2; NEDD8, neural precursor cell expressed, developmentally down-

regulated 8; PPI, protein-protein interaction; PTM, posttranslational modification; RING, Really 

Interesting Gene; RBX1, RING-box 1; SCF, SKP-Cullin-F-box; TIR1/AFB, TRANSPORT INHIBITOR 

RESPONSE1/AUXIN SIGNALING F-BOX; TPL, TOPLESS; UPS, ubiquitin proteasome system  
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Introduction 

Plants face a continuously changing environment, which poses serious challenges. Therefore 

they, among others, employ distinct phytohormone cascades to launch the most apt and 

targeted response. Oxylipins, such as jasmonate (JA), represent a class of phytohormones that 

is intimately involved in modulating how plants respond to various perturbations. The bioactive 

form of JA, (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), is recognized by CORONATINE-INSENSITIVE 

PROTEIN 1 (COI1) and JASMONATE-ZIM DOMAIN (JAZ), forming a co-receptor complex (Fig. 1) 

(Fonseca et al., 2009; Sheard et al., 2010). COI1 is an F-box protein (FBP), typically forming part 

of an SKP-Cullin-F-BOX (SCF) E3 ubiquitin ligase complex that recognizes and facilitates the 

ubiquitination of the JAZ proteins, thereby marking them for degradation by the 26S 

proteasome (Sheard et al., 2010). The JAZ proteins, by themselves or in association with the co-

repressor TOPLESS (TPL) and the adaptor protein NOVEL INTERACTOR OF JAZ (NINJA), act as 

repressors of transcription factors, like MYC2 (Fig. 1) (Chini et al., 2007; Thines et al., 2007; 

Pauwels et al., 2010; Fernández-Calvo et al., 2011; Pauwels and Goossens, 2011; Chini et al., 

2016). More recently it was discovered that MEDIATOR 25 (MED25) physically interacts with 

MYC2 and COI1, thereby linking the JA receptor to transcriptionally active chromatin (Fig. 1) (An 

et al., 2017). 

The above-mentioned, commonly designated JA-signaling core proteins involved in JA 

signaling show conservation among land plants (Howe et al., 2018; Monte et al., 2019). 

Moreover, the analogy among phytohormone signaling pathways is remarkable. Indeed, not 

only JA signaling depends on FBPs as receptors, but also strigolactone, auxin and gibberellic acid 

(GA) signaling (Dill et al., 2004; Zhao et al., 2013). COI1’s closest homolog, TRANSPORT 

INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) (Fig. 2A), also integrates into an 

SCF-complex that mediates the ubiquitination and degradation of another family of repressors, 

the AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) proteins, following auxin perception (Gray et al., 

2001).  

Much research has been devoted to the substrate and ligand specificity of the FBPs. 

However, as we gain better knowledge of how FBPs and other components regulating 

phytohormone signaling cascades have evolved, it is imperative to also understand how plants 
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keep the FBP receptors “in check”. In this review, we will therefore highlight the knowledge 

about the control of the activity of the FBPs involved in plant hormone signaling, with a focus 

on COI1 and TIR1. For overviews of the regulation of the interaction between plant FBPs and 

their hormone ligands and protein substrates, we invite the reader to consult the many 

excellent reviews that already exist in the field. 

 

The ubiquitin proteasome system 

The ubiquitin proteasome system (UPS) is highly conserved in all domains of multicellular life, 

with plant genomes encoding large numbers of UPS components. For instance, 6% of the 

Arabidopsis thaliana genome is predicted to be involved in ubiquitin-mediated signaling 

pathways (Vierstra, 2009). 

 

Enzymatic steps of ubiquitination 

Ubiquitination is a posttranslational modification (PTM) that involves the covalent attachment 

of a 76-amino-acid protein called ubiquitin to proteins, either as a single ubiquitin moiety 

protein or a chain of ubiquitin molecules (polyubiquitination). This PTM event is orchestrated 

by three enzymes: the E1 activating enzyme, the E2 conjugating enzyme and the E3 ligase that 

act in concert to promote ubiquitination of the substrate (Fig. 1). The E1 enzyme catalyzes the 

thioester bond formation between the ubiquitin molecule and a cysteinyl sulfhydryl group on 

the E1 itself (Burch and Haas, 1994). Next, the E1~ubiquitin transfers the ubiquitin to an E2 

protein. Subsequently, through direct interaction with the E2~ubiquitin and the substrate, the 

E3 ligase facilitates the transfer of the ubiquitin to the substrate. The Arabidopsis genome, 

similar to other plant species, carries two genes coding for E1s, 37 for E2s and a massive 

amount, over 1500, for E3 ligases (Vierstra, 2012). 

 

Ubiquitin linkages and topology affect substrate function 

An ubiquitinated protein’s fate is dictated by the topology and linkage of the ubiquitin moieties. 

Proteins are often ubiquitinated on lysine residues or at the N-terminal amino groups (Walton 

et al., 2016), or, less commonly, on serine or threonine residues (Gilkerson et al., 2015). In 
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addition to the different ubiquitin additions on the substrate, all seven lysine residues (K6, K11, 

K27, K29, K33, K48 and K63) found on the ubiquitin protein show the potential for ubiquitin 

linkage (Kim et al., 2013). Whereas the common K48 linkage results in polyubiquitination and 

proteasome degradation, not every ubiquitinated protein undergoes proteolysis. For instance, 

mono-ubiquitinated proteins have been implicated in DNA repair and intracellular trafficking 

(Barberon et al., 2011; Kasai et al., 2011; Strzalka et al., 2013). Conversely however, linkage on 

K29, specifically of the DELLA proteins, which are involved in gibberellic acid (GA) signaling, has 

also been implicated in proteasomal degradation, (Wang et al., 2009).  

 

The SCF complex coordinates the ubiquitination of target proteins  

The E3 ligases are normally classified based on the composition of their subunits, on their 

catalytic domains and, mechanistically, on how they facilitate the transfer of the ubiquitin from 

the E2 to the substrate (Hua and Vierstra, 2011). Several types exist, but here we will focus 

exclusively on the SCF complex E3 ligases, because of their well-studied involvement in the 

regulation of many diverse aspects of plant development and interaction with the environment, 

through their role as receptors for several phytohormones such as auxins and JAs (reviewed in 

Lechner et al., 2006; Li et al., 2018).  

The SCF complex is classified as a multimeric E3 ligase. Molecularly, SCF complexes are 

comprised of four subunits in Arabidopsis: Cullin1 (CUL1), Arabidopsis SKP1-like (ASK) proteins, 

RING-box 1 (RBX1) and the FBP, with each subunit aiding in the E3’s ability to recognize and 

ubiquitinate the substrate, thereby marking it for degradation (Fig. 1). The CUL1 protein acts as 

a scaffold, interacting with RBX1 at its C-terminus, which coordinates the recruitment of the E2 

conjugating enzyme (Zheng et al., 2002). Furthermore, CUL1 interacts with ASK proteins at its 

N-terminus. Through their interaction with the FBPs, ASK proteins act as adaptors. Experimental 

evidence demonstrated that the individual subunits in the SCF complex are regulated by redox 

state, PTMs and protein-protein interactions (PPIs) (Dezfulian et al., 2016; Bagchi et al., 2018; 

Iglesias et al., 2018). Individually regulating posttranscriptionally the subunits of the SCF 

complex and consequently the degradation of different substrates, may help ensure the swift 

initiation of the different hormone signaling cascades. It is possible that upon a specific 
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environmental cue, the abundance of only the FBP is adjusted, without having to rapidly turn 

over the other proteins within the complex. Possibly offering support of this, weak coi1 alleles – 

which have a lower amount of COI1 protein present – demonstrate only partial loss of COI1 

function, implying there may be regulatory COI1 dosage-dependent effects that alter COI1 

physiological roles (He et al., 2012; Yan et al., 2013). Albeit, the partial loss of COI1 function 

seen in weak coi1 alleles is possibly also partially dependent on the coi1 mutations residing in 

the leucine-rich repeat (LRR), C-terminal substrate-interacting domain, effecting COI1’s ability 

to interact with a subset of JAZ proteins. Future investigation into dosage dependency of FBPs, 

possibly through the creation of weak alleles generated by CRISPR, is capable of addressing this 

question. 

The major role of the FBPs is the targeted recognition of substrates for ubiquitination. 

FBPs are characterized by an ≈60-amino-acid FBP domain, located at their N-terminus, that 

interacts with ASK proteins (Xu et al., 2009) (Fig. 2A). The C-terminus of the FBP acts as a 

substrate recognition domain, subdividing the FBPs into 42 families (Xu et al., 2009). The FBA, 

Kelch and LRR domain families are among the largest (Xu et al., 2009). The hormone receptors 

TIR1, COI1, SLEEPY1 (SLY1, for GAs) and MAX2 (for strigolactones) have LRR type F-box domains 

(Fig. 2A). Yan et al. (2018) recently demonstrated that COI1 acts as the primary receptor for JA 

and can bind JA or COR without JAZ present, whereas JAZ was not shown to bind JA in the 

absence of COI1. Understanding more about the dynamics of hormone perception is helping to 

reveal new sights into how CRLs and their specific FBP components play essential roles in the 

activation of plant hormone responses (Tan et al., 2007; Thines et al., 2007; Fu et al., 2012; 

Verma et al., 2016). 

There are roughly 700 FBPs encoded in the Arabidopsis genome, approximately ten 

times more than in humans and Drosophila melanogaster (Jin et al., 2004; Schumann et al., 

2011). The high number of FBPs is ubiquitous across higher plants, as Medicago truncatula has 

roughly 1100, Zea mays and Populus trichocarpa around 400 and Oryza sativa (rice) more than 

900 FBPs, highlighting the evolutionary importance of the expansion of this family (Stefanowicz 

et al., 2015). The mechanism behind the high number of FBPs is postulated to be due to 

tandem duplication events (Gagne et al., 2002). Genome analysis uncovered that many rice FBP 
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genes are found in tandem repeats of two to nine genes, and approximately 35% of Arabidopsis 

FBP genes are in tandem repeats of two to seven genes (Gagne et al., 2002; Jain et al., 2007). 

Although a large number of FBPs are functionally uncharacterized, it is likely that not every FBP 

gene evolved a unique function, because FBPs have been found to show functional redundancy 

(Xu et al., 2009; Ikram et al., 2014).  

In the following paragraphs, we discuss how the abundance and function of hormone 

receptor FBPs are regulated through PPIs, protein-ligand interactions and PTMs, with a special 

focus on COI1 and TIR1. Additionally, we highlight new insights into how engineered agonists 

can be developed to modulate the conformational changes necessary for FBP substrate 

interaction, which can be utilized to uncouple specific hormone responses.  

 

Regulation of SCF assembly: interactions between FBPs, CUL1, RBX1 and ASK proteins 

Above we have described that FBPs are components of the SCF complex functioning in 

polyubiquitin-mediated protein degradation. In the following paragraphs, we focus on how the 

activity of FBPs are kept in check by the availability and activity of the other members of the 

complex. 

 

Cullin is the scaffold 

RBX1 recruits the E2 conjugating enzyme, with CUL1 providing the horseshoe-shaped scaffold 

that bridges the interaction with ASK and the FBP (Fig. 1). Essential for the formation and 

activity of the complex is the (de)neddylation of CUL1 (Scott et al., 2014). Analogous to 

ubiquitination, neddylation entails the covalent addition of the small protein NEDD8 

(neural precursor cell expressed, developmentally down-regulated 8, also known as RELATED 

TO UBIQUITIN (RUB)) to a substrate protein in plants (reviewed in Mergner and 

Schwechheimer, 2014). Thus, these two very similar PTMs are directly linked to each other, 

with neddylation controlling ubiquitination and consequently protein degradation. The transfer 

of NEDD8 accordingly occurs by NEDD8 E1 activating enzymes (NAE) and E2 conjugating 

enzymes (NCE) (Mergner and Schwechheimer, 2014). DCN1 was found to be a NEDD8 E3 ligase, 

because it is sufficient for facilitating the transfer of NEDD8 to its substrate, typically the CUL 
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proteins (Kurz et al., 2008). However, it is likely that there are more NEDD8 E3 ligases. 

Furthermore, CUL1 also may undergo deneddylation, which can be achieved by CSN5, a subunit 

of the CSN (COP9 signalosome) complex (Dohmann et al., 2005; Franciosini et al., 2015). In its 

deneddylated stage, CUL1 physically interacts with Cullin-ASSOCIATED AND NEDDYLATION-

DISSASOCIATED (CAND) 1 (Feng et al., 2004). In animals, it has been shown that CAND1 acts as 

a protein exchange factor promoting the exchange of FBPs within the SCF complex (Pierce et 

al., 2013). Neddylation of the proteins enables proper SCF function but whether deneddylation 

of CULLIN inhibits the SCF complex remains to be determined because studies show a necessity 

for ‘dynamic’ deneddylation (Fig. 2) (Schwechheimer et al., 2001; Jin et al., 2018). 

Interestingly, in addition to the usual view of ASK1 forming a bridging protein between 

the FBP and CUL1, the human crystal structure of the SCFSKP2 complex revealed that the N-

terminus of the FBP directly interacts with that of CUL1 (Zheng et al., 2002). Insight into the 

biological relevance of CUL1 interacting directly with a plant FBP, TIR1, was gained through 

mutating residues in the conserved first helix (H1) of the F-box domain, responsible for CUL1–

FBP interaction. This resulted in enhanced levels of TIR1, but phenotypically resembled auxin-

resistant mutants, mainly because the increase in TIR1 protein levels is thought to help stabilize 

the Aux/IAA repressor proteins by inhibiting their degradation (Fig. 2) (Yu et al., 2015). Similarly, 

in Arabidopsis the higher abundance of the homologous AFB1 protein compared to that of TIR1 

is related to a natural variation in AFB1’s H1 domain that affects AFB1’s ability to interact with 

CUL1. This may be a mechanism that extends to regulating protein abundance of other plant 

FBPs but some questions remain. Notably, TIR1’s closest homolog COI1 shows an increased 

stability through its assembly with the SCF complex (Yan et al., 2013). Also, how assembly into 

the SCF complex decreases stability of the FBP needs to be further validated, although, it most 

likely resembles the autocatalytic mechanism in animals and fungi (Yu et al., 2015). 

 

RBX1 forms the catalytic core 

RBX1 forms the catalytic core of the SCF complex. A specific interactor of RBX1, Glomulin 

(GLMN), seems to interfere with SCF activity in mammals (Duda et al., 2012) and, very recently, 

its Arabidopsis homolog, ABERRANT LATERAL ROOT FORMATION4 (ALF4), was also shown to 
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(Bagchi et al., 2018). The interaction between ALF4 and RBX1 in Arabidopsis inhibits SCFTIR1 

activity, resulting in the accumulation of Aux/IAA repressors (Fig. 2) (Bagchi et al., 2018). It 

remains unknown if ALF4 (or a potential homolog) also interacts with RBX1 of SCFCOI1 and would 

thus modulate JA response as well. Additionally, RBX1 regulates FBPs by promoting the 

neddylation of CUL (Gray et al., 2002). 

 

ASK acts as adaptor 

Compared to CUL1 and RBX1, the 21 ASK proteins from a larger family in Arabidopsis (Ogura et 

al., 2008). This allows many combinatorial ways of SCF assembly, although many FBPs have no 

known ASK adaptor partner. Multiple groups have sought to uncover the specificity of ASK 

proteins for FBPs, employing bimolecular fluorescence complementation, yeast two-hybrid and 

microarray gene expression profiles across various tissues (Dezfulian et al., 2012; Kuroda et al., 

2012). The different ASKs display variable affinities and interaction capacities for the multiple 

FBPs and vice versa. (Wang et al., 2006; Kuroda et al., 2012). It remains to be understood why 

certain FBPs are unable to interact with ASKs in yeast two-hybrid assays, when this system is 

able to validate many FBP–ASK interactions. It may be that, because it is a heterologous system, 

specific PTMs or missing ‘unknown’ factors are required for interaction between ASKs and FBPs. 

Another heterologous system used to validate ASK interactors is baculovirus-insect cells. Using 

this system, it was demonstrated that ASK(1/2/11/13) protein presence was necessary for 

degradation of JAZ proteins by COI1 (Li et al., 2017a). This revealed the necessity of ASK protein 

interactions for FBP biological activity. 

The best-described ASKs, ASK1 and ASK2, are detectable in all tissues independent of 

the stage of development, and able to interact with over 40 FBPs, including TIR1, COI1, SLY and 

MAX2 (Risseeuw et al., 2003; Stirnberg et al., 2007; Kuroda et al., 2012; Marzec, 2016). Yet, 

other ASK proteins display a more tissue- and developmental stage-specific expression 

(Dezfulian et al., 2012; Kuroda et al., 2012). While there are not many examples, it is possible 

that ASK proteins with a more specific expression profile have more explicit functions, as it has 

been shown in Lilium longiflorum (lily) that pollen tube-specific ASK proteins are essential for 

pollen tube maturation (Chang et al., 2009). Noteworthy, the general abundance of the FBPs 
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seems to be positively correlated with ASK abundance, e.g. in ask1 mutants it has been shown 

that levels of the JA receptor COI1 decreased (Yan et al., 2013). Furthermore, COI1’s closest 

homolog TIR1 was also found to have an increased stability in the presence of ASK1 (Dezfulian 

et al., 2016). It is postulated that the interaction between COI1 and ASK1 or ASK2 blocks the 

ubiquitination of K297 on COI1 (Fig. 2A), which otherwise would lead to its degradation (Yan et 

al., 2013).  

 

Stability of FBPs is also affected by direct interactions with non-SCF components: the SGT1-

HSP complex 

Two independent forward genetic screens attempting to identify regulators of phytohormone 

signaling in Arabidopsis uncovered the co-chaperone protein SUPPRESSOR OF G2 ALLELE OF 

SKP1 b (SGT1b) as a regulator of both the JA and auxin signaling pathways (Fig. 3). On the one 

hand, Lorenzo et al. (2004) revealed that the jai4 mutation, despite being in a background that 

shows enhanced JA sensitivity, caused JA insensitivity in root growth inhibition assays and 

mapped to the SGT1b locus. Likewise, Gray et al. (2003) found that the eta3 mutation also 

mapped to the SGT1b locus and caused enhanced auxin insensitivity in the tir1-1 background 

(Fig. 3). More recently, the molecular rationale behind this genetic complementation was 

revealed, when it was shown that both COI1 and TIR FBPs are client proteins of the SGT1b 

chaperone complex that also comprises the heat shock proteins (HSP)70 and HSP90, and can 

thus interact with SGT1b (Zhang et al., 2015) (Fig. 3).  

The Arabidopsis genome encodes two SGT1 proteins, SGT1b and SGT1a. SGT1a loss-of-

function lines do not show an altered JA or auxin response, nor other distinguishable 

phenotypes from wild-type lines, contrary to loss-of-function SGT1b lines. Accordingly, COI1 

and TIR1 proteins accumulated to wild-type levels in the sgt1a mutant lines, whereas these 

FBPs showed significantly lower accumulation levels in the sgt1b mutant lines. Nonetheless, 

SGT1a could also associate with COI1 and TIR1 FBPs in planta in co-immunoprecipitation assays 

(Zhang et al., 2015). It was postulated that SGT1a has a minor role in the regulation of FBP 

stability, for instance by maintaining residual COI1 levels in sgt1b mutants, which is supported 

by the complementation of certain sgt1b mutant phenotypes by the overexpression of SGT1a in 
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a dosage-dependent manner (Azevedo et al., 2006). Yet, the sgt1a-1 sgt1b-1 double mutant is 

embryo lethal, which complicates unraveling their specific functions within the plant (Azevedo 

et al., 2006). A broader role was suggested for SGT1a and SGT1b in hormone responses that 

utilize FBPs as receptors, such as JA (COI1), auxin (TIR1) and GA (SLEEPY1 or SLY1), but not in 

hormone responses with other receptor modules that do not involve FBPs, such as 

brassinolides and abscisic acid (Zhang et al., 2015). 

So, what could be the molecular function of SGT1b in the context of hormone signaling? 

SGT1b has been shown to interact with and thought to act as a co-chaperone for HSP70 and 

HSP90 (Takahashi et al., 2003; Catlett and Kaplan, 2006; Clément et al., 2011) (Fig. 3). The HSPs 

are highly conserved in eukaryotes, acting as chaperones and assisting in protein stabilization, 

folding, translocation and complex formation under both biotic and abiotic stress (reviewed in 

Park and Seo, 2015). The HSP90 and HSP70 families consist of at least seven and eighteen 

members, respectively, that are differentially expressed, for instance pending developmental 

and environmental cues, and localize to different subcellular compartments (reviewed in 

Krishna and Gloor, 2001; Lin et al., 2001). 

Interaction between HSP90 and SGT1b has been experimentally validated multiple 

times, through co-immunoprecipitation experiments as well as genetic interactions (Takahashi 

et al., 2003; Botër et al., 2007; Hubert et al., 2009). Functionally, SGT1b is thought to act as a 

scaffold for client transfer from HSP90 or HSP70, whereas HSP90 would work as a chaperone in 

an ATP-dependent manner to assist in client protein folding during stress (Hubert et al., 2009; 

Park and Seo, 2015). For instance, it has been shown that increased temperature can rapidly 

promote TIR1 accumulation in a HSP90-dependent manner, and that within this process both 

HSP90 and SGT1b interact with TIR1 (Fig. 3). Loss of HSP90 activity results in TIR1 degradation 

and consequent defects in several auxin-mediated growth processes at distinct temperatures 

(Wang et al., 2016). Together this demonstrates that TIR1 is an HSP90 client and suggests that 

the HSP90–SGT1 chaperone complex integrates temperature and auxin signaling, and thereby 

modulates plant growth in changing environments. 

 

PTM crosstalk adds complexity to SCF complex activity 
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PTMs of proteins are diverse. Several hundreds of different types of modified amino acids have 

been registered for eukaryotic proteins in UniProt. These PTMs affect protein activity, stability, 

localization and interactions, also of proteins that themselves have PTM activity, including the 

FBPs. Phosphorylation and the less common sumoylation have already been reported for plant 

FBPs, as well as S-nitrosylation. Finally, also the FBPs themselves can get ubiquitinated, often in 

regulatory feedback loops. 

 

Phosphorylation crosstalk 

Crosstalk between phosphorylation and ubiquitination, including by, but not necessarily limited 

to, SCF complexes and FBPs, is most renowned in humans, where phosphorylation of (the) 

phosphodegron(s) in a protein modulates its ubiquitination in a cis-regulatory manner, 

including of SCF targets (Filipčík et al., 2017). In contrast, several studies indicate that in 

Arabidopsis (de)phosphorylation does not affect SCFTIR1 and Aux/IAA protein interaction, and is 

thus not critical for this element of the auxin response (Dharmasiri et al., 2003; Kepinski and 

Leyser, 2004). Recently however, an auxin signaling mechanism was discovered, which acts in 

parallel to the canonical auxin pathway based on TIR1 and the other AFB auxin receptors. This 

signaling mechanism involves TRANSMEMBRANE KINASE 1 that interacts with and 

phosphorylates the non-canonical Aux/IAA proteins Aux/IAA32 and 34, which lack the TIR1 

interacting domain, thereby increasing their stability and modulating plant growth (Cao et al., 

2019). Involvement of (de)phosphorylation events in the establishment of COI1–JAZ interaction 

has not been established yet. Conversely however, although less well-illustrated by 

experimental data, the FBPs themselves can be modulated by phosphorylation. In Arabidopsis 

this has been reported for the FBPs SKIP18 and SKIP31, the phosphorylation of which was 

critical for interaction with and degradation of 14-3-3 proteins (Hong et al., 2017). 

 

S-Nitrosylation crosstalk  

PTMs can be modulated via the redox state of the cell, which fluctuates based on various 

environmental signals. A common redox modification is S-nitrosylation, which is the addition of 

a nitric oxide moiety on a sulfhydryl group, typically of a cysteine. Hormone responses have 
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demonstrated redox sensitivity (Ndamukong et al., 2007; Bashandy et al., 2010; Marquez-

Garcia et al., 2014). Interestingly, several subunits of the SCF complex have been 

experimentally validated to undergo S-nitrosylation, thereby allowing the plant to utilize 

changes in the cellular redox state to modulate SCF complexes and their activity. First, 

Arabidopsis ASK1 can be S-nitrosylated in vitro in C37 and C118, two essential residues for 

proper activation of the auxin signaling pathway in planta (Fig. 2A). Accordingly, ASK1 S-

nitrosylation was found to enhance ASK1 binding to CUL1 and TIR1/AFB2, which is required for 

SCFTIR1/AFB2 assembly. Mutations of these specific S-nitrosylation cysteine residues in ASK1 lead 

to a reduced interaction between ASK1 and TIR1/AFB2 in a yeast two-hybrid screen (Iglesias et 

al., 2018). As such, aberration of ASK1 S-nitrosylation leads to a reduction in auxin-responsive 

genes, indicating that S-nitrosylation of ASK1 is necessary for proper FBP function (Iglesias et 

al., 2018).  

The FBPs themselves can also be S-nitrosylated, which has been shown for instance for 

TIR1. Similarly to S-nitrosylated ASK1, S-nitrosylation of TIR1 enhances interaction with its 

substrate, the Aux/IAA proteins (Terrile et al., 2012). S-nitrosylation of TIR1, as well as of ABP2, 

occurs at the conserved residue C140 and C135, respectively (Fig. 4) (Terrile et al., 2012). 

Hence, following the more recent finding that this residue enhances the ability of TIR1 to 

oligomerize, which in turn is necessary for its capacity to interact with and degrade the Aux/IAA 

proteins, it was postulated that TIR1 S-nitrosylation contributes to its oligomerization (Dezfulian 

et al., 2016). Interestingly, COI1 was also found to oligomerize but how this affects its ability to 

act as the JA receptor remains unstudied (Dezfulian et al., 2016). Likewise, possible S-

nitrosylation of the conserved cysteine residue (Fig. 4) remains to be explored. 

 

Sumoylation crosstalk 

Conjugation of small ubiquitin-related modifier (SUMO) occurs mostly on nuclear proteins, 

particularly as a rapid response to biotic and abiotic stress (reviewed in Augustine and Vierstra, 

2018; Vu et al., 2018). Again, sumoylation has already been reported for some FBP targets, such 

as the DELLA protein REPRESSOR OF GA (RGA), in which GA-independent targeting of the K65 

residue by sumoylation affects GA-mediated ubiquitination and degradation (Conti et al., 2014). 
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Interestingly, the E3 SUMO SIZ1 also modulates GA in Arabidopsis by sumoylating SLEEPY1 

(SLY1), the FBP element in the SCFSLY1 complex that specifically targets DELLAs, such as RGA1 

(Kim et al., 2015). Sumoylation of other plant FBPs has not been reported yet, but nonetheless, 

sumoylation has been found implicated in other FBP-dependent phytohormone signaling 

cascades, including that of JA, in which SUMO-conjugated JAZ proteins were found to inhibit 

the JA receptor COI1 from mediating non-sumoylated JAZ degradation (Srivastava et al., 2018). 

 

(Auto-)Ubiquitination of FBPs 

Finally, FBP-type ubiquitin ligating enzymes can be conjugated to ubiquitin themselves. In many 

cases, this may be the mere result of auto-ubiquitination. For instance, once assembled, the 

CUL/RBX1 core in the CRL may start ubiquitinating their adaptors instead of the substrate, 

particularly when the substrate is absent. Thereby, the turnover of the adaptor is increased, 

which provides the plant with a mechanism to dampen the activity of CRLs when they are not 

needed but without compromising the CUL/RBX1 core (Hotton and Callis, 2008; Hua and 

Vierstra, 2011). To our knowledge, auto-ubiquitination of FBPs has not been reported in plants 

yet. Notwithstanding, Arabidopsis TIR1 destabilizes in mutants deficient in the general 

assemblage of SCF complexes and also increases in abundance when the proteasome inhibitor 

MG-132 is administered (Fig. 2), suggesting it is subjected to PTM and proteasome-mediated 

degradation (Stuttmann et al., 2009). Furthermore, in COI1, the K297 residue was identified as 

an active ubiquitination site (Fig. 4A). Accordingly, COI1 was shown to be degraded through the 

ubiquitin/26S proteasome pathway, albeit in a SCFCOl1-independent manner (Yan et al., 2013). 

Likewise, circadian phase-specific accumulation of the clock-associated FBP ZEITLUPE (ZTL) is 

controlled through different circadian phase-specific degradation rates by the ubiquitin/26S 

proteasome system (Kim et al., 2003). 

 

Transcriptional and translational regulation of FBP expression 

The underpinning behind the transcriptional regulation of COI1 and TIR1/AFBs expression 

remains fairly elusive. Nonetheless, there are several scattered and interesting observations 

that plants also evolved transcriptional and/or translational regulatory systems to keep FBPs, 
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such as COI1 and TIR1, in check. For instance, using genome-wide transcriptional profiling, 

many auxin-induced and auxin-signaling genes, including AFB5, have been found to be under 

clock regulation (Covington and Harmer, 2007). Transcriptional regulation through the circadian 

clock has similarly been seen for COI1, whose transcript level oscillations are TIC (TIME FOR 

COFFEE)-dependent (Shin et al., 2012). COI1 and AFB5 are not the only FBP genes that are 

transcriptionally regulated by the circadian clock. Bioinformatics analysis highlighted that 

transcripts of approximately one third of all Arabidopsis genes are modulated in a circadian 

manner, with many transcripts corresponding to FBPs that exhibit rhythmic oscillations 

(Covington et al., 2008). The circadian clock regulating transcript abundance may be reflective 

of how a number of stresses that elicit responses from FBP hormone receptors are themselves 

time of day dependent. Similarly, hormone levels themselves display rhythmic oscillations 

(reviewed in Spoel and van Ooijen, 2014). It will be interesting to see what transcription factors 

or other regulatory proteins act downstream of the clock to modulate the circadian responses. 

Additionally, the transcriptional regulation of COI1 may be directly linked to the 

presence of the hormone it perceives, because COI1 transcript levels show a moderate 

reduction upon application of JA (Shin et al., 2012). However, typically, hormone application 

does not involve a change in the expression of its receptor. For instance, there was no 

alteration in the root transcript levels of TIR1/AFB, after addition of IAA (Parry et al., 2009). 

Nevertheless, TIR1 transcript levels have been shown to be transcriptionally regulated, because 

the transcription factor AGL15 can repress TIR1 expression (Zheng et al., 2016). It will be 

interesting to uncover more concise transcriptional regulatory networks for COI1 and TIR1. It 

cannot be excluded that there may be a common, possibly combinatorial, transcriptional 

regulatory network to govern expression of multiple FBP-encoding genes. This assumption is 

triggered by consultation of the ATTED-II A Plant Coexpression Database (Obayashi et al., 2018). 

Indeed, when we use COI1 as the bait in this database, a marked co-expression is observed with 

a subset of FBPs, including AFB3, AFB5 and ZTL, among many others. Whether this observation 

is a mere result of accidental grouping because of a common lack of strong differential 

expression, or indeed reflects the existence of a coordinated transcriptional regulatory 

network, remains to be investigated. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz272/5512435 by G

hent U
niversity user on 12 June 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

17 

 

Finally, the regulatory discourse of FBPs can be extended beyond the transcriptional 

level, because posttranscriptional mechanisms seem to be involved as well. The translational 

regulation of TIR1 and AFB2/3 has been shown to be dependent on small RNAs, because the 

microRNA 393 (miR393) was found to cleave their corresponding mRNAs, thereby reducing 

their abundance. This cleavage has been found to occur in response to various developmental 

and environmental cues (Navarro et al., 2006; Parry et al., 2009; Vidal et al., 2010; Si-Ammour 

et al., 2011). The regulatory action of miR393 on TIR1/AFB transcripts was found to be 

conserved in the plant kingdom, as illustrated by its discovery in rice and cucumber, among 

others (Bian et al., 2012; Xu et al., 2017). MicroRNA-based cleavage of COI1 transcripts has not 

yet been revealed, but for other FBP transcripts, it has already been reported. For instance, the 

FBPs LEAF CURLING RESPONSIVENESS (LCR) and MAX2 are regulated by miR394 and miR528, 

respectively (Lima et al., 2011; Song et al., 2012). This suggests that posttranscriptional 

regulation by small RNAs may be a widespread mechanism to keep FBP expression in check. 

 

The interaction between the FBPs and substrates is promoted by small molecules 

So far, we discussed how TIR1/AFBs and COI1 are regulated at a transcriptional and 

posttranscriptional level and by PPIs and PTMs. These FBPs are kept in check by an additional 

way unique to plants: the recognition of their substrates is dependent on the presence of a 

small molecule. Only in the presence of an auxin-like IAA, TIR1/AFBs associate with Aux/IAAs 

and only in the presence of an oxylipin such as JA-Ile, COI1 associates with JAZ proteins (Tan et 

al., 2007; Sheard et al., 2010). By controlling the presence of these hormones in the nucleus, 

plants have an elegant way of fine-tuning F-box function. This can be achieved by (i) hormone 

biosynthesis, (ii) intercellular transport, (iii) intracellular compartmentalization and transport, 

(iv) modification of the small molecule and finally (v) catabolism (reviewed in Ma and Robert, 

2014). 

Intercellular polar auxin transport has been studied for decades and is an essential part 

in the function of auxin to control plant development (reviewed in Zažímalová et al., 2010). 

Evidence for cell-to-cell transport of endogenously produced oxylipins on the other hand is only 

recently emerging using micrografting of JA-deficient mutants (Gasperini et al., 2015; Nguyen et 
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al., 2017). The ABC transporter protein JASMONATE TRANSPORTER 1 (JAT1) was only recently 

identified as a plasma membrane-localized JA exporter, but it is also localized intracellularly at 

the nuclear envelope and involved in transport of JA-Ile to the nucleus (Li et al., 2017b). 

Regulation of nuclear hormone concentrations via intracellular compartmentalization and 

transport has also been found in auxin signaling (Mravec et al., 2009; Ranocha et al., 2013; 

Simon et al., 2016). Endoplasmic reticulum-localized PIN-LIKES (PILS) proteins are suggested to 

store auxin in the endoplasmic reticulum and, hence, indirectly control nuclear auxin signaling 

(Barbez et al., 2012; Feraru et al., 2019). 

One of the most elegant ways of controlling the activity of auxins and JA-Ile is by 

chemical modification in order to make them inactive, more active or more selective. In a more 

advanced form of selectivity engineering, a chemically modified IAA was synthesized that is only 

active in combination with a mutant TIR1 protein (Uchida et al., 2018).  In addition to IAA, 

different auxin agonists, such as 2,4-D, picloram and 1-naphthaleneacetic acid, can stimulate 

interaction between TIR1 and Aux/IAA proteins but with different strengths (Hayashi et al., 

2014; Eyer et al., 2016). Moreover, the potency of a small molecule to facilitate interaction 

varies between the different F-box/substrate co-receptors in case of auxins and JA-Ile (Takaoka 

et al., 2018; Vain et al., 2019). There are ten JAZ proteins capable of COI1 interaction in 

Arabidopsis (Takaoka et al., 2018) and a myriad of possible combinations between the six 

TIR1/AFBs and 29 Aux/IAA family proteins (Calderon-Villalobos et al., 2010). This opens up the 

possibility of identifying selective agonists that only promote the formation of certain subsets 

of co-receptors. Using rational design, a selective JA agonist was engineered that stabilizes 

specifically the interaction with COI1 and JAZ9/JAZ10 (Fig. 5) (Takaoka et al., 2018). In another 

approach, RubNeddin4 was characterized as a selective agonist of auxin to promote interaction 

of TIR1 and a subset of Aux/IAA proteins (Vain et al., 2019). In both cases, these selective 

agonists were used to dissect these very complex pathways and to uncouple different 

downstream effects. Existence of endogenous selective agonists has not been reported so far, 

but undoubtedly await discovery. In this regard, it is thought-provoking to look at the variation 

in the structure of oxylipin signals within and across plant species, as well as in their attackers. 

For instance, in Arabidopsis catabolism of JA-Ile is modulated by catalytic enzymes like the 
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CYP94 Cytochrome P450 proteins (Heitz et al., 2012; Koo et al., 2014; Aubert et al., 2015). 

Depending on the P450, JA-Ile can be oxidized to 12-OH-JA-Ile or 12-COOH-JA-Ile that do not 

mediate interaction between COI1 and JAZ, leading for instance to an impaired defense 

response to Botrytis cinerea (Koo et al., 2014; Aubert et al., 2015). Conversely, the natural 

antagonist coronatine (COR), produced by Pseudomonas syringae, competitively binds COI1 

(Katsir et al., 2008). Building on this natural compound, conjugates of COR and various non-

polar amino acids (Met, Leu, Val) showed different abilities to activate late or early 

transcriptional JA response genes (Yan et al., 2016). The corresponding JA conjugates could also 

be detected in rice and tomato, demonstrating a possible conserved means to modulate JA 

response. COI1 in the liverwort Marchantia polymorpha is unable to recognize JA-Ile and 

instead recognizes dn-iso-OPDA and dn-cis-OPDA (Monte et al., 2018). In higher plants, COI1 

evolved specific residues for it to function as a JA-Ile receptor, possibly enabling it to gain novel 

regulatory roles. Conversely, Arabidopsis COI1 still recognizes dn-cis-OPDA, although it remains 

to be elucidated if specific signaling functions were retained, as multiple OPDA derivatives can 

be found in Arabidopsis (Chini et al., 2018; Monte et al., 2018). 

 

Perspectives 

Angiosperms display an enormous variety of species-specific traits and developmental niches. 

Given the vast amount of FBPs encoded in their genomes, it is plausible to assume that FBPs, 

which facilitate a wide range of PPIs that induce proteolytic degradation of numerous, yet 

specific substrates, have contributed to this versatility. In this regard, it is as relevant to 

understand how FBPs themselves, and not only their substrates, are regulated. As our 

knowledge of FBP regulation corresponding to their physiological function increases, it will 

allow more precise understanding of how to control development, growth and metabolism in 

plants. A current area of interest lies in determining what external cues prime the FBPs, as not 

all FBPs serve as receptors. For example, ZTL has a light, oxygen or voltage (LOV) domain and is 

activated by a chemical bond facilitating a conformational change, triggered by a lack of light 

(Pudasaini et al., 2017). But for those FBPs that may serve as receptors but with yet unknown 

ligands, how may we efficiently identify their ligands? Indeed, the design of (high-throughput) 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz272/5512435 by G

hent U
niversity user on 12 June 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

20 

 

screens allowing to readily detect the interaction between FBPs and small molecules – or other 

compounds or triggers that can act as a ligand – remains a challenging technical aspect. When 

overcome, it may greatly help to reveal specific tissue-specific, developmental and external 

elements that serve to activate FBPs. More detailed knowledge about FBP function and 

regulation and their ligands may also find applications beyond the plant kingdom. For instance, 

the auxin-TIR1-Aux/IAA and JA-Ile-COI1-JAZ systems have been adopted by animal, Drosophila, 

yeast and medical scientists to create conditional synthetic genetic switches (Nishimura et al., 

2009; Brosh et al., 2016; Natsume et al., 2016; Trost et al., 2016). 

 The tremendous technological advances in proteomics are enabling a vastly wider scope 

and greater resolution of analysis of PTM occurrences, such as of ubiquitination or S-

nitrosylation on a substrate or their direct/indirect interactors, including the mapping of the 

PTM site (Walton et al., 2016). In combination with base editing, for instance using CRISPR/Cas9 

variants with cytidine or adenine deaminase activity facilitating transitions of C-G to T-A or A-T 

to G-C, respectively (Zong et al., 2017; Kang et al., 2018), precise targeted alteration of 

nucleotides corresponding to the PTMs can be achieved, which will allow revealing 

unprecedented insights into the functional role and relevance of the PTM. A more cohesive 

view on the role of PTMs and PPIs will enable the rational design of more or superior agonists 

or antagonists. As discussed above, the uncoupling of regulatory processes by rational-designed 

agonists has already been demonstrated in hormone receptor FBPs involved in growth and 

defense. The future will tell us how desired outputs can be enhanced even more while 

diminishing unwanted effects of FBP signaling. It may also help resolving the relevance of the 

apparent functional redundancy found in the JA and auxin regulatory networks, specifically with 

regard to the respective substrates of COI1 and TIR1/AFBs, that form families of 13 JAZ and 29 

AUX/IAA proteins, respectively. Research thus far is supporting the idea of specificity for the 

different JAZ and AUX/IAA proteins, which leads to activation of a defined subset of JA or auxin 

signaling responses (Chini et al., 2018). 

 Further, it remains to be determined to what extent the PPI and PTMs identified in 

model plant species such as Arabidopsis are ubiquitously found in other plant species, 

particularly crops and medicinal plants. Tandem duplication events are postulated to be 
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responsible for the large number of plant FBPs (Gagne et al., 2002), and multiple FBP homologs 

may exist in species-specific manners, like three COI1s in rice (Lee et al., 2013) and one in 

Arabidopsis or the liverwort M. polymorpha (Monte et al., 2018). In parallel to working with 

these more complicated models, working with basal land plants, like the liverwort M. 

polymorpha that exhibits low genetic redundancy in most regulatory pathways (Bowman et al., 

2017), including the JA signaling pathway with just one COI1 and one JAZ protein (Monte et al., 

2018; Monte et al., 2019), will enable to reveal fundamental regulatory roles of plant FBPs as 

well as identifying their ligands. 

As mentioned already above, revolutionary genome editing tools, such as CRISPR/Cas9, 

can be utilized to alter structural motifs that effect PTMs of the FBP and/or to engineer 

orthogonal receptor/ligand strategies (reviewed in Helander et al., 2016). Much of the current 

knowledge of FBP regulation involves regulation of specific SCF complex subunits, and targeting 

the subunits leads to many additional undesired effects. Hopefully, in the future a combination 

of engineered agonists and targeted gene editing will enable maximum efficiency in controlling 

FBP-dependent signaling cascades that govern developmental, growth and metabolic outputs in 

plants.  
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Figure legends 

 

Fig. 1. SCF-mediated protein degradation. The E1 activating enzyme forms a thioester bond, in 

an ATP-dependent reaction with the ubiquitin (Ub) protein. The E1 enzyme, either UBA1 or 

UBA2 in Arabidopsis, transfers the ubiquitin to the E2 conjugating enzyme. The CUL1 protein of 

the SCFCOI1 E3 ligase complex acts to bridge the RBX1 protein, which coordinates the 

recruitment of the E2 conjugating enzyme. The N-terminus of the FBP, here exemplified by the 

JA receptor COI1, contains a F-Box domain (brown rectangle) that interacts with ASK1/2, 

whereas the C-terminus of COI1 acts as the recognition domain for the substrate, here 

exemplified by JAZ1. The E3 ligase facilitates the proximal interaction between the E2 

conjugating enzyme. Although it has not been experimentally validated yet for COI1, UBC8 was 

experimentally shown to have high activity with a large number of FBPs, including TIR1 (Kraft et 

al., 2005; Winkler et al., 2017), necessary for ubiquitination of the substrate. COI1 also directly 

interacts with MED25 and thereby brings COI1 to MYC2 target promoters (An et al., 2017). The 

activity of the SCF-type E3 ligase complex is controlled by the neddylation of CUL1 with the 

small protein RUB. Finally, the (poly)ubiquitinated substrate can be recognized by the 26S 

proteasome and undergo proteolysis. The ubiquitin proteins can be reused for the 

ubiquitination of additional substrates. Once MYC2 is released from the JAZ-NINJA-TPL 

repressor complex, MED25 transcriptional machinery recruitment is facilitated and the JA 

response activated. 

 

Fig. 2. Interaction of COI1 and TIR1 with SCF subunits. Thick black lines represent direct 

interaction of the respective FBP with the corresponding protein or pertaining to having the 

PTM. Dotted gray lines refer to an indirect interaction between the PTM or the protein. Dashed 

gray lines refer to the potential for the protein to have the PTM or interaction. The 

corresponding effect of the JA or auxin response as well as the effect the PTM or PPI has on the 

stability of the FBP is shown with green and dark blue respectively indicating a positive and 

negative effect on the FBP stability or hormone response. White indicates that there is no 

experimental data to support a response or effect whereas yellow refers to the fact that some 
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interactions or modifications are dynamic and can have both positive and negative effects. 

Supplementary table 1 depicts all of this information with references in a table format. 

 

Fig. 3. Interaction validation of the SCF subunits with SGT1 and HSPs. The chart depicts 

experimentally validated interactions between the four subunits of the SCF and SGT1 and HSPs. 

The different validation strategies are indicated at the right: genetic interaction, in vitro or in 

planta PPIs, and interaction in yeast (typically Y2H), as these are highly conserved proteins. 

*The interaction between SGT1 and CUL1 was found in Hordeum vulgare (barley). Because 

there is only one SGT1 gene in barley, a MUSCLE alignment was performed showing it shares a 

62.3% amino-acid sequence conservation with SGT1b and 64.6% with SGT1a from Arabidopsis. 

**There is one SGT1 gene in Saccharomyces cerevisiae, with a 26.1% amino-acid sequence 

conservation with SGT1b and 28.1% with SGT1a from Arabidopsis. ***The close homologs to 

Arabidopsis CUL1 in S. cerevisiae are CDC53 and CUL3, which both interact with SGT1.   

 

Fig. 4. Posttranslational modifications of F-box proteins. (A) The phylogenetic tree of FBPs was 

constructed by the PhyML program (one click mode, Dereeper et al., 2008) using the MUSCLE 

alignment (Chojnacki et al., 2017), which was manually edited using Jalview (Waterhouse et al., 

2009). The sequence of ZTL was used as an outgroup. Simplified domain architecture of the 

FBP/ASK and PTMs are depicted. (B) Selected part of the Jalview alignment of amino-acid 

sequences depicting the conserved cysteine residue which is S-nitrosylated in both TIR1 and 

AFB2. (C) The protein structure of COI1 (Sheard et al., 2010) (3ogk/pdb) with the analysis of the 

conserved amino-acid residues mapped on the protein surface using the Consurf program 

(Ashkenazy et al., 2016) based on the MUSCLE alignment and the Phyml-calculated 

phylogenetic tree. In the van der Waals representation, the conserved cysteine (C148) depicting 

the location of a possible S-nitrosylation is shown. The ligand, JA-Ile, is shown in the balls-and-

sticks representation colored in green. (D) The protein structure of TIR1 (Hayashi et al., 2008) 

(3c6o/pdb) with the analysis of the conserved amino-acid residues mapped on the protein 

surface using the Consurf program (Ashkenazy et al., 2016) based on the MUSCLE alignment 

and the Phyml-calculated phylogenetic tree. In the van der Waals representation, the 
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conserved cysteine (C140) is shown depicting the location of the S-nitrosylation. The ligand, 

(2S)-2-(1H-indol-3-yl)hexanoic acid, is shown in the balls-and-sticks representation colored in 

green. 

 

Figure 5. Selective agonists of FBP/substrate interactions. (A) Phytohormones such as JA-Ile 

(light green circle) mediate binding of an array of substrate JAZ repressor proteins with the 

cognate FBP COI1. This leads to their polyubiquitination, degradation by the proteasome and 

subsequent activation of downstream responses. Here, distinct JAZ repressor isoforms are 

visualized by the different color. (B) Selective agonists (red circle) only promote interaction of a 

subset of repressor proteins, here exemplified by the dark green isoform JAZ10, with COI1 

leading to activation of only a subset of downstream responses. 
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