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Abstract 33 

Questions: Past agricultural land use and forest management have shaped and influenced the understorey 34 

composition in European forests for centuries. We investigated whether understorey vegetation 35 

assemblages are affected by (i) legacies from a historical infield/outland agricultural system (i.e. a system 36 

with nutrient-enriched vs. nutrient-depleted areas), (ii) recent management intensity (i.e. thinning/felling 37 

activities), and (iii) the interaction of recent management and potential legacies. 38 

Location: Oak forests in Skåne, south Sweden. 39 

Methods: We use three vegetation surveys (1983, 1993/94 and 2014) and notes on management and land-40 

use history, available for 62 permanent 500 m² plots. We conducted linear mixed effect modelling to detect 41 

both main and interactive effects of past land use and recent management on understorey diversity 42 

measures and vegetation indicator values for light and fertility. We combined nonmetric multidimensional 43 

scaling (NMDS) with permutational multivariate analysis of variance (PERMANOVA) and indicator species 44 

analysis to detect compositional differences caused by past land use and/or recent management. 45 

Results: Understorey diversity was mainly affected by management activities, but the former 46 

infield/outland agricultural system was an important determinant of understorey composition. Understorey 47 

composition of former infields reflected higher nutrient availability and lower light availability compared to 48 

former outland. Past land use and recent management had interactive effects on light-related understorey 49 

variables: for the less intensively managed plots, the outland plots contained more light-demanding species 50 

than the infield plots, while for the more intensively managed plots, the light-demanding signature of the 51 

understorey was similar for infield and outland plots. 52 

Conclusions: Different intensities of past land use as well as recent forest management influenced the 53 

composition of the forest understorey, and interactions were present. Therefore, careful consideration of 54 

both the long-term land-use history and the more recent disturbances due to forest management are 55 

necessary when making future predictions of understorey composition and diversity. 56 

 57 

 58 
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Introduction 63 

Forests worldwide, as well as most other ecosystems, have been dominated, shaped and influenced by 64 

human activities for centuries and more (Bürgi & Gimmi, 2007; Williams, 1993). Hence, the European 65 

forests that we know today were created by a long history of human land-use changes, and only very few 66 

forests exist free of legacies from former human influence (Bengtsson, Nilsson, Franc, & Menozzi, 2000; 67 

Gossner et al., 2014). Human activities affecting forests are very diverse (Foster et al., 2003), comprising 68 

episodes of deforestation and agricultural use (Foster, Motzkin, & Slater, 1998), wood harvesting with 69 

different levels of intensity  (Gossner et al., 2014), manipulation of animal populations (Foster et al., 2003), 70 

litter collecting (Bürgi & Gimmi, 2007), and grazing by domestic animals (Bengtsson et al., 2000). 71 

Understanding how both past and present anthropogenic disturbances influence biodiversity and species 72 

assemblages is essential for conservation. Here, we focus on two aspects of anthropogenic disturbances 73 

that are common in European forests, but which rarely have been studied in combination, namely different 74 

intensities of both past agricultural land use and current forest management practices for wood harvesting. 75 

We assess their effects on the forest understorey layer, which represents the majority of plant species 76 

richness in temperate forests (Gilliam, 2007). This layer is most likely to reflect land-use legacies because it 77 

exhibits slow dynamics and is less easily manipulated (by e.g. plantation) compared to the overstorey. 78 

Most present-day European forests occur on lands that at some point in history were used for agriculture, 79 

and many studies have demonstrated that these forests still bear imprints of their past land use, which we 80 

call land-use legacies (Blondeel et al., 2019; Emanuelsson, 2009; Flinn & Marks, 2007; Hermy & Verheyen, 81 

2007; Perring et al., 2016; Vellend, 2003). Land-use legacies are often found in forest understoreys, due to a 82 

limited dispersal and recruitment capacity of typical forest species (De Frenne et al., 2011; Verheyen, 83 

Honnay, Motzkin, Hermy, & Foster, 2003). As a result, forest understorey compositions may depend on 84 

environmental conditions that no longer occur in a forest stand (Jonason et al., 2014). Land-use legacies 85 

affect the understorey directly, by past elimination of plants and their diaspores, as well as indirectly, by 86 

altering environmental conditions such as soil pH, soil nutrient concentrations, soil organic matter content 87 

and light availability (Flinn & Marks, 2007; Hermy & Verheyen, 2007). Several studies found that forest soils 88 
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on former arable land are still richer in nutrients and hence more productive as a result of past fertilization 89 

practices, compared to so-called ancient forests without a history of agricultural use (Falkengren-Grerup, 90 

Ten Brink, & Brunet, 2006; Koerner, Dupouey, Dambrine, & Benoit, 1997; Naaf & Kolk, 2015; Verheyen, 91 

Bossuyt, Hermy, & Tack, 1999). These higher nutrient contents in post-agricultural forests can influence the 92 

composition of the established vegetation after abandonment of cultivation, due to a dominance of 93 

competitive species which hamper the establishment of slow-colonizing herbs (Baeten, Hermy, & 94 

Verheyen, 2009; Koerner et al., 1997). 95 

In addition, most European temperate forests are or have been managed for timber production, with 96 

varying levels of intensity (e.g. clear-cuts, shelterwood systems, coppicing, single tree selection) (Gossner et 97 

al., 2014). Extracting timber changes the tree age structure, composition of tree species and vertical 98 

stratification, causing changes in the soil, litter and microclimatic conditions. This results in the alteration or 99 

disappearance of microhabitats (e.g. dead wood, cavities, root plates or mature trees) that host forest 100 

biodiversity (Chaudhary, Burivalova, Koh, & Hellweg, 2016). According to a meta-analysis by Chaudhary et 101 

al. (2016), forest management generally induces an overall decrease in forest biodiversity, but the effect of 102 

forest management differs between taxonomic groups (such as vascular plants, birds, fungi, beetles), and 103 

depends on the management type and intensity. For understorey vascular plants in particular, forest 104 

management can affect their diversity and composition through altering the light regime by creating 105 

canopy gaps at variable points in time, as well as the soil conditions, through compaction of the soil or 106 

changing nutrient cycles (Brunet, Fritz, & Richnau, 2010; Godefroid & Koedam, 2004; Godefroid, Massant, 107 

& Koedam, 2005; Vangansbeke et al., 2015; Wagner, Fischer, & Huth, 2011). 108 

Here, we are interested in how both recent forest management and past land-use intensity differences may 109 

have interactive effects on understorey assemblages and their trajectories over time. Reasons to believe 110 

such interactions are present arise from a study by Huston (2004), pointing out the importance of the 111 

disturbance-productivity interaction as a determinant of species richness. Within this framework, we 112 

consider the intensity of forest management as the disturbance factor, and different intensities of past 113 

agricultural land use as a proxy for the productivity factor. Several other studies argue that diversity may be 114 

a function of the interaction between disturbance and productivity, and therefore the productivity effects 115 
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on diversity can only be assessed when they are stratified by disturbance regimes (e.g. Kondoh, 2001; 116 

Huston, 2014). For example, Proulx & Mazumder (1998) demonstrated that plant species richness increases 117 

with increasing disturbance (in this case grazing pressure) in a nutrient-rich environment, but decreases in a 118 

nutrient-poor environment. Furthermore, several studies highlight the occurrence of interactions between 119 

legacies of past land use with natural disturbance processes such as forest fires, hurricanes and droughts 120 

(Chazdon, 2003; Comita et al., 2010; Foster et al., 2003; Hogan, Zimmerman, Thompson, Nytch, & Uriarte, 121 

2016). We believe that forest management actions can have similar effects on the forest vegetation as 122 

natural disturbances, and hence can interact with land-use legacies as well. Some recent studies indeed 123 

showed possible interactions between past land-use changes and alterations in present conditions through 124 

management practices on species richness and composition (Janssen et al., 2018; Kelemen, Kriván, & 125 

Standovár, 2014). 126 

In this study, we use a unique dataset containing three vegetation surveys (in 1983, 1993/94 and 2014), 127 

extensive soil data (1983 and 2014) and notes on forest management and past land use for 62 permanent 128 

plots in oak forest in Southern Sweden. Our aim is to assess the combined effects of both past land use and 129 

recent disturbances due to management on understorey composition and diversity. In the early medieval 130 

period, a so-called infield-outland agricultural system emerged in the region, resulting in a distinction 131 

between plots on former outland, managed for grazing, and plots on former infields, intensively manured 132 

for crop production and hay (Emanuelsson, 2009; Emanuelsson et al., 2002). In addition, plots across both 133 

past land use types also differed in the level of management intensity they experienced since the first 134 

survey in 1983. This crossing of past land use with a two-level management intensity factor allowed us to 135 

investigate both their main and interactive effects on the composition and diversity of the forest 136 

understorey community over a period of three decades. In contrast to previous studies on interactions 137 

between past land use and recent management (e.g. Janssen et al., 2017; Kelemen et al., 2014; Kolb & 138 

Diekmann, 2004), we are defining past land-use change as a distinction between former infields (nutrient-139 

enriched) and former outland (nutrient-depleted), rather than the classical ancient/recent forest 140 

distinction. Furthermore, we have the opportunity to investigate trajectories of change in the understorey 141 

communities, thanks to the availability of three vegetation surveys over a time span of three decades. 142 
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Specifically, we investigated the following research questions: 143 

(i) Are legacies from the former infield/outland agricultural system reflected in the community 144 

composition and diversity of the understorey? Have these land-used legacies changed over 145 

time? 146 

(ii) Does recent forest management intensity affect the community composition and diversity of 147 

the understorey? 148 

(iii) Have recent disturbances due to forest management interacted with land-use legacies, causing 149 

changes in the dynamics of the understorey composition and diversity between 1983 and 150 

2014? 151 

Material and methods 152 

Study area: past land use and recent management 153 

The study area comprises the south Swedish province of Skåne, an area of ca 11 000 km2 and ca 1.3 million 154 

inhabitants. The border between the central-European sedimentary bedrock area (here mainly limestones 155 

and clay shales) and the Fennoscandian shield of Precambrian crystalline rocks (granite and gneiss) crosses 156 

the province from southeast to northwest, resulting in a gradient from the more densely populated 157 

southwest with fertile agricultural soils to the northeastern part dominated by forests on less productive 158 

soils (Figure 1, including forest distribution). Most soils have not developed directly upon bedrock but 159 

originate from Quaternary deposits formed during and after the latest (Weichselian) glaciation which 160 

completely covered Skåne with its icesheet.  161 

We sampled 62 permanent forest plots, situated in forests dominated by oak (Quercus robur and in some 162 

cases Quercus petraea) and hornbeam (Carpinus betulus) in the tree layer. Distances between study plots 163 

varied strongly, ranging from 15 m to 111 km, with a median value of all distances between plots of 41 km. 164 

To characterize the past land use of each plot, we distinguished between former infields and outland 165 

(Emanuelsson, 2009). A permanent infield-outland system emerged in the early medieval period when 166 

villages became sedentary. Infields were located close to settlements or farm-houses, and were intensively 167 
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manured. The infields were either used for crop production or managed as semi-open wooded meadows 168 

which produced hay, small-dimension wood products from coppice, as well as some timber trees. The 169 

outland was situated further from villages, and was managed jointly by the village for grazing, timber and 170 

other wood-based products. The manure from grazers was then applied on the infield lands. The infield-171 

outland system was functional until ca. 1800-1850 (Emanuelsson et al., 2002). Outland area gradually 172 

reduced in extent with the increasing demand for arable land due to continuous population increase since 173 

the 1700s. Based on cadastral maps (mainly spanning the period 1730-1870) at the final phase of this land 174 

use system, (https://historiskakartor.lantmateriet.se/historiskakartor/search.html), we classified 23 plots as 175 

‘Outland’ (i.e. plots on former outland), and 39 plots as ‘Infields’ (i.e. plots on former infields) (Appendix 176 

S3). According to the cadastral maps, none of the infield plots has been used as arable field since at least 177 

ca. 1800. The majority of the stands are semi-natural, and developed from semi-open conditions to closed 178 

stands when livestock grazing (outland) or wooded meadow/coppice management (infield) ceased. In some 179 

sites (both infield and outland), oak was planted after felling of the previous stand. The evidence of 180 

continuous presence of trees on the historical maps varies, but all plots have been wooded since at least 181 

1900. 182 

In the area, forests are or have been managed for timber production, comprising felling practices with 183 

different levels of intensity. In this study, we made a rough distinction between 31 plots that were more 184 

intensively managed over the period 1983-2014 (referred to as ‘High’ management), and 31 plots that were 185 

less intensively managed (referred to as ‘Low’ management). We combined the different management 186 

classification approaches applied during the three surveys to reach this final management category 187 

(Appendix S2). We gave the most weight to the 1993 classification, because (i) it had a higher level of detail 188 

as the surveyors were explicitly interested in vegetation responses to management, and (ii) management 189 

intensity in the area was at its highest level around 1993, so differences between more and less intensively 190 

managed plots should have been most clear during this survey. Counts of the number of stumps, available 191 

in a subset of 35 plots in 2014, confirmed our management classification, as we found significantly 192 

(p=0.005) more stumps in the more intensively managed plots (17.97 stumps on average), compared to the 193 

less intensively managed plots (6.17 stumps on average) (see Appendix S2 and S3). 194 
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Soil and overstorey characterization 195 

During the 1983 and 2014 surveys, samples were taken from the upper 5 cm of the mineral soil (i.e. after 196 

removal of the litter layer). For 1983, we have data on clay content and pHKCl (see previous papers, such as 197 

Brunet et al., 1996, Diekmann et al., 1999) for details on soil sampling and chemical analyses). For 2014, we 198 

have data on soil total carbon (C), nitrogen (N) and phosphorus (P) (see Appendix S4 for details on soil 199 

sampling and chemical analyses in 2014). Plots on former infields had a higher clay and total P content in 200 

the soil, compared to former outland. Since texture is an intrinsic property of the soil, the differences in 201 

clay content suggest that when the infield-outland agricultural system was established, richer and more 202 

clayey soils were often chosen deliberately for infield use, given their potential for higher yields. The higher 203 

total P concentrations in former infields are likely a result of their fertilization history, which can leave 204 

imprints for at least a century after abandonment of agricultural use (Compton & Boone, 2000; Dupouey, 205 

Dambrine, Laffite, & Moares, 2002; Fraterrigo, Turner, Pearson, & Dixon, 2005; Koerner et al., 1997). 206 

Overall, the differences in soil chemistry between infield and outland plots are probably partly related to an 207 

initial preference for richer clay soils for infield use (Flinn, Vellend, & Marks, 2005), after which the more 208 

intensive land use on infields has probably reinforced the higher fertility and productivity that these soils 209 

exhibit. Plots with a lower recent management intensity had significantly higher soil pH values and total P 210 

content, likely caused by a higher degree of protection of richer oak forests, which are therefore less 211 

intensively managed. There were no significant differences in total C and N content between either the 212 

recent management or the past land-use categories (see Appendix 5 for soil data). 213 

Regarding the overstorey characterization, plots with high and low intensity management had similar tree 214 

cover values in 1983 and 2014, while more intensively managed plots had a significantly lower tree cover 215 

during the intermediate survey in 1993, reflecting the peak in forest management activity in the region at 216 

the time of the intermediate survey. Dominant tree species were Quercus robur (or Quercus petraea in a 217 

few cases), Carpinus betulus and Corylus avellana (Figure 1b). At the time of the first survey (1983), both 218 

former infield plots and less intensively managed plots were characterized by more Carpinus betulus and 219 

Corylus avellana in the tree layer, and less Quercus robur/petraea, compared to former outland and more 220 

intensively managed plots respectively (Figure 1c/d). The shade-casting ability (SCA) of the tree layer (i.e. a 221 
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cover weighted average of the SCA scores per species, listed in Appendix S6; see also Verheyen et al. 222 

(2012)) was similar between infield and outland plots within the more intensively managed plots, but 223 

clearly higher for infield than outland plots within the less intensively managed plots (see Appendix S7). We 224 

keep these soil and overstorey characteristics in mind when interpreting the results. 225 

Vegetation surveys 226 

In July-August 1983, 135 permanent plots were established by Professor em. Germund Tyler to study the 227 

relationships between soil, macrofungi and tree and herb layer species (e.g. Tyler, 1989). All these plots 228 

were resurveyed a first time in July-August 1993/1994 (further referred to as 1993) and a second time in 229 

August 2014, although only 62 of the plots were relocated at that time. All plots were 500 m² (20 m x 25 230 

m). Criteria for the original plot selection in 1983 included no current livestock grazing and no thinning 231 

during approximately the five years prior to surveying (Brunet et al., 1996; Diekmann et al., 1999). 232 

Vegetation data were expressed as an estimated cover percentage for each individual species present. Two 233 

vegetation layers were distinguished: the understorey and the tree layer, respectively comprising all 234 

vascular plants below 5 m and above 5 m height (see Appendix S1 for details on the vegetation data).  235 

Response variables 236 

For each plot at each survey time, we characterized the understorey diversity by calculating the Shannon-237 

Wiener index (i.e. plot-level diversity), and the Bray-Curtis dissimilarity (Bray & Curtis, 1957) (i.e. diversity 238 

among plots). We quantified the Bray-Curtis dissimilarity of each plot by creating a pairwise dissimilarity 239 

matrix and calculating for each plot the mean of the dissimilarities to all other plots. To further enhance our 240 

understanding of the processes and mechanisms behind possible changes in understorey composition and 241 

diversity due to differences in past land use and recent management intensity levels, we investigated plot 242 

characteristics related to the soil and light conditions. As a proxy of the prevailing plot-specific soil 243 

properties and light conditions, we calculated mean Ellenberg indicator values for soil fertility (N) and light 244 

(L), based on presence/absence using the individual species’ indicator values (Ellenberg & Leuschner, 2010).  245 

Statistical analyses 246 

To test how contemporary management intensities interact with past land use to alter the plot 247 

characteristics over time, we conducted linear mixed effect modelling with four response variables related 248 
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to the understorey (and described above): Shannon-Wiener index, Bray-Curtis dissimilarity, Ellenberg N, 249 

and L mean values. We confirmed that each response variable is normally distributed, using histograms.  250 

We found the optimal model for each response variable according to the approach described by Zuur, Ieno, 251 

Walker, Saveliev, & Smith (2009), starting from the beyond optimal model (Equation [1]).  252 

Response variable ~ PastLandUse + Management + Year + PastLandUse:Management + PastLandUse:Year + 253 

Management:Year + (1|PLOT ID)                    Equation [1] 254 

We added the variable Year to the model as a fixed effect, because we are interested in how each response 255 

variable has changed over time. We modelled Year as a factor with three levels (i.e. 1983, 1993 and 2014), 256 

rather than a continuous variable, to detect possible shifts in trends between the first period (1983-1993) 257 

and the second period (1993-2014). Management (High or Low) and Past Land Use (Infield or Outland) 258 

were both factors with two levels. To account for temporal pseudoreplication, given the fact that each plot 259 

was surveyed three times, we added PLOT ID to the model as a random intercept. We added the 260 

interaction between past land use and management to the model, to investigate whether the effect of 261 

recent management practices on the response variables is dependent on the past land use category. For 262 

both past land use and management, we also added the interaction with Year to the model; to study 263 

whether the response variables exhibit different temporal trends for different past land use or recent 264 

management categories. To detect possible multicollinearity among the explanatory variables, we 265 

calculated variance inflation factors (VIF) according to Zuur et al. (2009). VIF values were very low (<1.1), 266 

indicating low collinearity. 267 

Next, we performed backwards elimination of the explanatory variables using maximum likelihood-fitted 268 

models at a 5% level of significance (Zuur et al., 2009), leading to the optimal model. For each response 269 

variable, we refitted the optimal model with restricted maximum likelihood (REML). For the final (optimal) 270 

model of each response variable, we inspected model diagnostic plots to check validity; all were 271 

satisfactory. For each model, we calculated the marginal and conditional R², representing the variance 272 

explained by fixed factors and the variance explained by both fixed and random factors, respectively 273 

(MuMIn package; (Nakagawa & Schielzeth, 2013)). Given the high number of parameters in the beyond 274 
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optimal model, compared to a sample size of 62 plots, there is a possibility of overfitting. Therefore, we also 275 

performed a model comparison based on information criteria (AIC), which resulted in the same final 276 

(optimal) model for each response variable (Appendix S8). Additionally, we repeated the backwards 277 

elimination procedure for separate models for each year, which reduces the number of explanatory 278 

variables and thus the risk of overfitting. This additional analysis led to identical qualitative findings for all 279 

response variables except Ellenberg N, where an effect of recent management was identified in 2014 that 280 

was absent in other analysis approaches (Appendix S9). 281 

To evaluate differences in understorey community composition in each survey year, between former infield 282 

plots and former outland plots, and between plots with high and low levels of management intensity, we 283 

conducted a permutational multivariate analysis of variance (PERMANOVA; vegan package; Anderson, 284 

2001) using Bray-Curtis dissimilarities with 999 permutations (based on abundance data; Bray & Curtis, 285 

1957). A significant PERMANOVA can result from differences among groups in their mean (centroid) values 286 

or the dispersion (i.e. spread) of values around the centroid of each group (Anderson, Ellingsen, & McArdle, 287 

2006; Brudvig, Grman, Habeck, Orrock, & Ledvina, 2013). The Bray-Curtis dissimilarity as described above 288 

(and used in the linear mixed effect modelling) on the other hand, only contains information on the 289 

dispersion. Hence, a PERMANOVA analysis can reveal compositional differences among groups resulting 290 

from differences in their mean (centroid) values, which would be overlooked when only focussing on the 291 

Bray-Curtis dissimilarity. We followed the PERMANOVA with a test for homogeneity of multivariate 292 

dispersion (PERMDISP), which evaluates the mean distance of each plot to the group centroid (Brudvig et 293 

al., 2013). We used nonmetric multidimensional scaling (NMDS) to visualize the compositional differences 294 

in the understorey vegetation. To identify species that typified the different plot groups (i.e. former infields 295 

vs. outland, and high vs. low intensity management), we also conducted an indicator species analysis 296 

(Dufrêne & Legendre, 1997) for the understorey data in each survey year, with the infield/outland and the 297 

high/low management distinction as classification variables (function multipatt; indicspecies package; 298 

Ampoorter et al., 2015; De Cáceres & Legendre, 2009). We performed t-tests to compare the mean 299 

Ellenberg N and L values of the indicator species. 300 
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To visualize changes in the understorey composition over time, for the different land-use and management 301 

categories, we made a NMDS plot showing the mean and standard error of the NMDS coordinates of the 302 

plots for each of the 12 plot groups, i.e. all possible combinations of survey year, past land use and recent 303 

management. To facilitate interpretation, we added the following variables to the NMDS-plot: Ellenberg N 304 

and L, tree cover, shade-casting ability, soil total P and clay content, and soil pH. All data analyses were 305 

performed in R version 3.4.3 (R Core Team, 2017). 306 

Results 307 

For all four models, marginal R² (R²m) was quite low (between 0.06 and 0.17) (Figure 2; Appendix S10), 308 

suggesting that the fixed effects Year, Past Land Use and Disturbance only explained a small part of the 309 

variance. Values for conditional R² (R²c) were higher (between 0.48 and 0.86), indicating that a high 310 

proportion of the variance can be explained by the random effect PLOT ID. This suggests that other 311 

(unmeasured or unmodelled) variables could be important. We did not investigate such variables as the 312 

focus of our study was to detect main and interactive effects of past land use intensity and recent 313 

management. 314 

For both the Bray-Curtis dissimilarity (beta diversity) and the Shannon-Wiener index (alpha diversity), the 315 

only significant predictor that was retained after model selection was the factor Year (Figure 2; Appendix 316 

S10). Hence, these diversity measures changed significantly over time, but the changes were not related to 317 

either the past land use or recent management category. The Shannon-Wiener biodiversity index increased 318 

significantly between 1983 and 1993 (+0.27 on average), but then decreased again to a level not 319 

significantly different from the original 1983 level. Bray-Curtis dissimilarity only started to increase 320 

significantly after the second survey, but the increases were minor (+0.042 on average between 1993 and 321 

2014).  322 

Ellenberg N values were significantly affected by past land use, with values being 0.46 units higher in 323 

former infield plots compared to former outland plots. In addition, during 1983-2014, we observed a small 324 

(+0.16) but significant increase in Ellenberg N values (Figure 2; Appendix S10); there was no evidence for 325 

interactions. 326 



14 
 

We observed a small but significant increase in Ellenberg L values (+0.14) between 1983 and 1993. After 327 

1993, Ellenberg L values decreased again to a level not significantly different from the original 1983 level. 328 

Over the entire period, we found a significant interactive effect between past land use and recent 329 

management disturbances on Ellenberg L values. For the plots with low recent management, Ellenberg L 330 

values were on average 0.48 units higher in outland compared to infields. For the plots with more intensive 331 

recent management, Ellenberg L values of infield and outland plots were closer to each other (Figure 2; 332 

Appendix S10).  333 

With PERMANOVA, we found a significant difference in the understorey composition between infield and 334 

outland plots in each survey year (Figure 3). The permutational test for homogeneity of multivariate 335 

dispersion (PERMDISP) indicated that this difference was driven by different mean multivariate 336 

composition between infield and outland plots, and not the degree of multivariate dispersion (Figure 3). 337 

This explains why no significant effects of past land use on the Bray-Curtis dissimilarity were found with the 338 

linear mixed effect modelling approach. Differences in the understorey composition between plots with 339 

high and low levels of management intensity were also significant in each survey year, although significance 340 

was often marginal and R² values were lower compared to the infield/outland PERMANOVA tests (Figure 3). 341 

Differences in community composition between infield and outland plots can be related to the richer clay 342 

soils and the higher tree cover and SCA found in infield plots, compared to the outland plots (Figure 3). 343 

Compositional differences between less and more intensively managed plots can also be related to the 344 

richer clay soils and the higher tree cover and SCA, which occur in the plots with lower management 345 

intensity. 346 

Typical species on former infields were Convallaria majalis and Poa nemoralis, while typical former outland 347 

species included Dryopteris carthusiana, Juncus effusus and Carex pilulifera (but these species were not 348 

indicators in 2014). Mercurialis perennis, Melica nutans and Hepatica nobilis (not in 2014) were indicative 349 

of a less intensive management, while Betula pubescens/pendula was indicative of a higher management 350 

intensity (Figure 3, Appendix S11). The following commonly prevailing herbaceous species seemed 351 

indifferent for both past land use and recent management intensities, and were found in all plot groups: 352 

Oxalis acetosella, Maianthemum bifolium, Viola spp., Rubus idaeus, and Galeopsis spp.. Comparison of 353 
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mean Ellenberg N and L values between indicator species groups only revealed significant differences in 354 

Ellenberg N values in 1983 (infield indicators: 6.14; outland indicators: 3.71; t9.98 = 2.69; p = 0.023). 355 

For all outland plots, and for the infield plots with high management intensity, the direction of 356 

compositional change indicated by the mean NMDS (Figure 4) showed similar patterns, first going down 357 

along the second axis, and then going up along the same axis. For the infield plots with low management 358 

intensity, we observed an initial small upwards shift along the second axis between 1983 and 1993, 359 

followed by a bigger shift in the same direction between 1993 and 2014. The understorey compositions of 360 

more intensively managed infield and outland plots are converging over time, compared to the less 361 

intensively managed plots. As Ellenberg L values are negatively related to the second axis of variation, it 362 

seems that the compositional shift over time is partly related to an initial increase in light-demanding 363 

species between 1983 and 1993, followed by a decrease in these species after 1993. All former outland 364 

plots had negative means along the first axis of variation, while means for former infields were centred 365 

around zero or had positive values. This shows that compositional differences between former infields and 366 

outland can mainly be seen along the first axis. Also, the first axis of variation was strongly correlated with 367 

Ellenberg N and to a lesser extent shade-casting ability and tree cover, which indicates that more nutrient-368 

demanding understorey species and more shade casting overstorey species have a higher affinity for 369 

infields compared to outland. 370 

Discussion 371 

This is the first study, to our knowledge, investigating both the main and interactive effects from legacies of 372 

a historical infield/outland system and recent management intensity levels on contemporary understorey 373 

compositions and their trajectories over time. We found that plot-level understorey diversity (i.e. alpha 374 

diversity) depended mainly on recent management intensities, and not on past land use. Higher levels of 375 

disturbance due to management positively affected alpha diversity. We found dissimilarities in species 376 

composition (i.e. beta diversity) among plots with different past land uses, and (to a lesser extent) different 377 

recent management intensities. Legacies from the former infield/outland agricultural system clearly 378 

persisted in the nutrient-demanding signature of the understorey. Interestingly, we also found an indirect 379 
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effect of past land use on the light levels at the forest floor, through its effect on the soil nutrient 380 

availability. The more nutrient-rich soils of former infields seemed to result in forest canopies casting a 381 

deeper shade. However, recent management activities overruled this effect of past land use on the light-382 

demanding signature of the understorey, resulting in similar indicator values for light regardless of past 383 

land use when plots were intensively managed. 384 

Research question 1: Land-use legacies in the understorey 385 

We found clear compositional differences in the understorey between former infields and former outland 386 

(Figure 3). Compositional differences in the forest understorey due to past land use have been consistently 387 

reported in the literature (e.g. Brudvig et al., 2013; Hermy & Verheyen, 2007), and can be related to 388 

fragmentation, dispersal limitations, and recruitment limitations due to differences in soil properties 389 

(Baeten et al., 2009). While fragmentation and dispersal limitations are outside the scope of this study, we 390 

present evidence that at least part of the compositional differences in our study plots are related to the 391 

higher soil nutrient contents in the infield plots. Both the direction of the environmental variables on the 392 

NMDS-plots (Figure 3) and the significantly higher amount of nutrient-demanding species in the 393 

understorey of former infields suggest that nutrient availability drives compositional differences between 394 

infield and outland plots. Similar findings have been noted where more extreme land use comparisons (i.e. 395 

ancient vs. recent forest) have been made (e.g. Dupouey et al., 2002; Koerner et al., 1997). 396 

Research question 2: impact of recent management on the understorey 397 

We found that different levels of recent management intensity affected the community composition of our 398 

study plots, in terms of their mean position in the ordination figures. We also observed an increase in plot-399 

level diversity between 1983 and 1993, followed by an overall decrease between 1993 and 2014 across all 400 

past land use/management combinations. These changes are probably related to the overall management 401 

intensity trajectory for the entire region. Overall management intensity in the region increased after the 402 

ratification of the Swedish Broadleaves Act in 1984, which prescribed that oak/hornbeam stands larger than 403 

0.5 ha must not be converted to coniferous plantations, but regenerated with oak or other temperate 404 

hardwoods, and which stimulated interest in active management of hardwood forests. After 1993, 405 

management intensity decreased again due to changes in the Swedish forest policy that now gave more 406 
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importance to the environmental goal of forests whereby biodiversity was to be secured and ecosystems 407 

conserved (Simonsson, Gustafsson, & Östlund, 2015). This suggests that management intensity and alpha 408 

diversity are positively correlated. Several other studies reported similar findings, where forest 409 

management has a positive effect on species richness of the understorey vegetation (e.g. Brunet, 410 

Falkengren-Grerup, & Tyler, 1997). The dissimilarity in species composition among plots increased slightly 411 

between 1993 and 2014, and displayed the opposite trend to alpha diversity. This result can be explained 412 

by the dependence of the Bray-Curtis index on alpha diversity, where both measures are inversely 413 

correlated due to the multiplicative definition (alpha x beta = gamma) (Jost, 2007). Hence, a decrease in 414 

alpha diversity due to the disappearance of some species can result in plots becoming more dissimilar and 415 

thus an increase in beta diversity.  416 

The level of recent management intensity, according to our classification, did not affect the nutrient-417 

demanding signature of the understorey. However, we observed an overall eutrophication signal over time 418 

since 1983 over all plot groups. This can be attributed to the closing of the canopy related to an overall 419 

decrease in management activities after 1993 as well as (but probably to a lesser extent) increased 420 

atmospheric N depositions (Verheyen et al., 2012). 421 

The light-demanding signature of the understorey was affected by both the overall change in management 422 

intensity over time due to the Swedish forest policy and the more subtle management differences between 423 

plots. The overall increase in light-demanding species during 1983-1993 is likely the result of the increased 424 

management activity, creating more canopy openings (see Figure 1b), followed by an overall decrease in 425 

light-demanding species once management activity started decreasing again. Additionally, the significant 426 

main positive effect of management intensity on the light requirement of the understorey reflects our 427 

distinction between plots with high and low management intensity. This effect can be related to the higher 428 

share of Carpinus betulus and Corylus avellana in the less intensively managed plots, which cause higher 429 

shade levels at the forest floor (see ‘Soil and overstorey characterization’). 430 
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Research question 3: interactive effects of past land use and recent management on the 431 

understorey 432 

We found a clear interactive effect between past land use and recent management levels on the light 433 

requirement of the understorey. Within the less intensively managed plots, infield plots had fewer light-434 

demanding species than outland plots. This decline is likely associated with the higher soil nutrient content 435 

in infield plots, resulting in a denser (sub)canopy and lower light availability at the forest floor compared to 436 

the less nutrient-rich outland plots. Indeed, when characterizing the overstorey of the study plots (see ‘Soil 437 

and overstorey characterization’) we found that former infield plots had a higher share of Corylus avellana 438 

and Carpinus betulus in their (sub)canopy, which can cause high shade levels. Similar examples of lower 439 

light transmission on richer soils, potentially due to a denser layer of subcanopy trees, have been reported 440 

in other parts of the world (e.g. Coomes & Grubb, 1996; Coomes et al., 2009; Tilman, 1988). Within the 441 

more intensively managed plots however, the understorey light requirements of infield and outland plots 442 

were similar, indicating that recent disturbances in the tree and shrub layer due to management practices 443 

have caused similar light levels at the forest floor, regardless of soil fertility, and thus regardless of the past 444 

land use. In other words: recent management disturbances might have ‘overruled’ differences in light 445 

availability due to past land use. We also observed an overruling effect of recent management disturbances 446 

for compositional differences among plot groups. Across both land-use intensities, the intensively managed 447 

plots have become more similar over time, while this was not the case for the group of less intensively 448 

managed plots, where communities on former infield and outland are still very distinct from each other in 449 

2014. These findings contrast with Jonason et al. (2016), who observed that clear-cutting sustained legacies 450 

from former use as meadowland. However, they observed only small differences in soil nutrients between 451 

land-use types (i.e. forest history vs. meadow history), while soil nutrient content was an important driver 452 

behind land-use legacies (resulting from infield vs. outland use) in our study. 453 

Conclusion 454 

Recent forest management intensity had a positive effect on plot-level diversity. The former infield/outland 455 

agricultural system was an important determinant of both the nutrient- and light-demanding signature of 456 

the understorey composition. The level of disturbance intensity due to recent management practices 457 

interacted with this past land-use effect, but only on the light-demanding signature of the understorey, 458 
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where differences resulting from past land use had disappeared in the more intensively managed plots. Our 459 

results differ from previous studies, where disturbances were found to preserve legacies from past land use 460 

(e.g. Hogan et al., 2016; Jonason et al., 2016).  461 

Our findings suggest that while increasing the management intensity could increase plot-level diversity, it 462 

might reduce diversity in community composition. Especially with regard to light-demanding species, 463 

understoreys in infield and outland plots will become more similar when management intensity increases.  464 
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 657 

Figure 1 (a) Geographical location and distribution of the 62 study plots. The number of plots in each land use category, which is the 658 
combination of past land use and recent management intensity, is shown in the legend. (b) Mean cover (%) of the three most 659 
dominant tree species, as well as the total tree layer in each survey year. (c) Mean cover of the dominant tree species in 1983 for 660 
infield and outland plots. (d) Mean cover of the dominant tree species in 1983 for plots with high and low recent management 661 
intensity. 662 
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 665 

Figure 2 Temporal changes in mean values (and standard errors) of the four response variables representing understorey diversity 666 
and composition. The level of recent disturbance by forest management is indicated by the line color (red = high; blue = low), while 667 
the past land use category is indicated by the line type (continuous = infield; dotted = outland). Below each graph, the significant 668 
predictors that were retained in the final model of the response variable are shown, with their level of significance (‘***’ for 669 
p<0.001; ‘**’ for p<0.01; ‘*’ for p<0.0.5). Interactions between predictors are indicated with ‘:’. The marginal and conditional R² 670 
(R²m and R²c respectively) for the final model of each response variable are also given. See Appendix S10 for the full model results. 671 
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 673 

Figure 3 NMDS of understorey composition for each survey year. In the upper row, red dots represent former infield plots and the 674 
species in red are the indicator species of infield plots; blue dots represent former outland plots and the species in blue are the 675 
indicator species of outland plots. In the lower row, red dots represent plots with high levels of management intensity and their 676 
respective indicator species are shown in red; blue dots represent plots with low levels of management intensity and their respective 677 
indicator species are shown in blue. The arrows indicate the variables characterizing the soil and overstorey of the plots, i.e. soil pH, 678 
soil clay and total P content, tree cover, and shade-casting ability. Species are abbreviated with the first four characters of the genus 679 
and species name. The following species occur on the figure: Acer platanoides, Acer pseudoplatanus, Aegopodium podagraria, 680 
Agrostis capillaris, Anthriscus sylvestris, Athyrium filix-femina, Avenella flexuosa, Betula pendula, Betula pubescens, Carex pilulifera, 681 
Convallaria majalis, Dryopteris carthusiana, Fagus sylvatica, Festuca ovina, Fraxinus excelsior, Hepatica nobilis, Hypericum 682 
perforatum, Juncus effusus, Juniperus communis, Luzula pilosa, Lysimachia europaea, Melica nutans, Mercurialis perennis, Picea 683 
abies, Poa nemoralis, Polygonatum multiflorum, Ribes uva-crispa, Prunus padus, Rubus idaeus, Rubus saxatilis, Salix caprea, 684 
Scrophularia nodosa, Silene dioica, Stellaria holostea, Stellaria media, Taraxacum vulgare, Tilia cordata, Ulmus glabra, Veronica 685 
officinalis (see Appendix S11). 686 
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 688 

Figure 4 (a) Mean and standard error of the NMDS-coordinates for each survey year and for each plot category (resulting in 12 689 
possible combinations of year, past land use and recent management level). The level of recent disturbance by forest management 690 
is indicated by the line colour (red = high; blue = low), while the past land use category is indicated by the line type (continuous = 691 
infield; dotted = outland). The black arrows visualize the trajectories of the understorey compositions over time. (b) Correlation of 692 
relevant plot characteristics (orange arrows: soil clay and total P content, soil pH, cover and shade-casting ability (SCA) of the tree 693 
layer) and community descriptors (green arrows: mean Ellenberg N and L values) with the plot positions on the NMDS ordination 694 
figure. The length of the arrows indicates the degree of correlation.  695 
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