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Abstract. In this note we announce our investigation on the Lp properties
for periodic and discrete multilinear pseudo-differential operators. First, we
review the periodic analysis of multilinear pseudo-differential operators by
showing classical multilinear Fourier multipliers theorems (proved by Coifman
and Meyer, Tomita, Miyachi, Fujita, Grafakos, Tao, etc.) in the context
of periodic and discrete multilinear pseudo-differential operators. For this,
we use the periodic analysis of pseudo-differential operators developed by
Ruzhansky and Turunen. The s-nuclearity, 0 < s ≤ 1, for the discrete and
periodic multilinear pseudo-differential operators will be investigated. To do
so, we classify those s-nuclear, 0 < s ≤ 1, multilinear integral operators on
arbitrary Lebesgue spaces defined on σ-finite measures spaces. Finally, we
present some applications of our analysis to deduce the periodic Kato-Ponce
inequality and to examine the s-nuclearity of multilinear Bessel potentials
as well as the s-nuclearity of periodic Fourier integral operators admitting
suitable types of singularities.
Keywords: Pseudo-differential operator, discrete operator, periodic operator,
nuclearity, boundedness, Fourier integral operator, multilinear analysis.
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Análisis multilineal para operadores pseudodiferenciales

periódicos y discretos en espacios Lp

Resumen. En esta nota anunciamos los resultados de nuestra investigación
sobre las propiedades Lp de operadores pseudodiferenciales multilineales pe-
riódicos y/o discretos. Primero, revisaremos el análisis multilineal de tales
operadores mostrando versiones análogas de los teoremas clásicos disponibles
en el análisis multilineal euclidiano (debidos a Coifman y Meyer, Tomita,
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Miyachi, Fujita, Grafakos, Tao, etc.), pero, en el contexto de operadores pe-
riódicos y/o discretos. Se caracterizará la s-nuclearidad, 0 < s ≤ 1, para
operadores multilineales pseudodiferenciales periódicos y/o discretos. Para
cumplir este objetivo se clasificarán aquellos operadores lineales s-nucleares,
0 < s ≤ 1, multilineales con núcleo, sobre espacios de Lebesgue arbitrarios
definidos en espacios de medida σ-finitos. Finalmente, como aplicación de los
resultados presentados se obtiene la versión periódica de la desigualdad de
Kato-Ponce, y se examina la s-nuclearidad de potenciales de Bessel lineales
y multilineales, como también la s-nuclearidad de operadores integrales de
Fourier periódicos admitiendo símbolos con tipos adecuados de singularidad.
Palabras clave: Operador pseudo-diferencial, operador discreto, operador pe-
riódico, nuclearidad, continuidad, operador integral de Fourier, Análisis mul-
tilineal.

1. Introduction

The goal of this note is to announce the main results about the Lp-multilinear analysis
developed by the authors in [10] for periodic and discrete pseudo-differential operators.
These operators can be defined by using the multilinear Fourier transform as follows. If
m : Tn × Znr → C, Tn ∼= [0, 1)n is a suitable function, then the periodic multilinear-
pseudo-differential operator associated to m is the operator defined as

Tm(f)(x) =
∑

ξ∈Znr

ei2πx·(ξ1+ξ2+···+ξr)m(x, ξ)(FTnf1)(ξ1) · · · (FTnfr)(ξr), x ∈ T
n, (1)

where f = (f1, · · · , fr) ∈ D(Tn)r, and

(Ff)(ξ) :=

r∏

j=1

(FTnfj)(ξj) =

r∏

j=1

∫

Tn

e−i2πxjξjfj(xj)dxj , ξ = (ξ1, · · · , ξr) ∈ Z
nr

is the periodic multilinear Fourier transform of f. We have denoted by D(Tn) the space of
smooth functions on the torus C∞(Tn) endowed with its usual Fréchet structure. On the
other hand, if a : Zn × Tnr → C is a measurable function, then the discrete multilinear-
pseudo-differential operator associated to a is the multilinear operator defined by

Ta(g)(ℓ) =

∫

Tnr

ei2πℓ·(η1+···+ηr)a(ℓ, η)(FZng1)(η1) · · · (FZngr)(ηr)dη, ℓ ∈ Z
n, (2)

where g = (g1, · · · , gr) ∈ S (Zn)r, and (FZngi)(ηi) =
∑

ℓi∈Zn

e−i2πℓiηigi(ℓi), ηi ∈ T
n is

the discrete Fourier transform of gi. For r ≥ 2, these operators have been studied by
V. Catană in [12]. If r = 1, these quantization formulae can be reduced to the known
expressions

Tm(f)(x) =
∑

ξ∈Zn

ei2πx·ξm(x, ξ)(FTnf)(ξ), x ∈ T
n (3)
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and

Ta(g)(ℓ) =

∫

Tn

ei2πℓ·ηa(ℓ, η)(FZng)(η)dη, ℓ ∈ Z
n. (4)

Periodic pseudo-differential operators (see (3)) were defined by Volevich and Agranovich
[1]. The subsequent works of McLean [29], Turunen and Vainikko [47], and Ruzhansky
and Turunen [44] developed a periodic analysis from Hörmander classes to applications to
periodic equations, although the symbolic calculus was consistently developed by Ruzhan-
sky and Turunen [44]. Nevertheless, the references Ruzhansky and Turunen [44], [45],
Cardona [6], [7], [8], Delgado [15] and Molahajloo and Wong [34], [35], [36] provide some
complementary results for the subject. Mapping properties for more general operators as
periodic Fourier integral operators appear in Ruzhansky and Turunen [45] and Cardona,
Messiouene and Senoussaoui [11].

In a more recent approach, pseudo-differential operators on Zn (discrete pseudo-
differential operators) were introduced by Molahajloo in [36], and some of its proper-
ties were developed in the last years in the references [9], [17], [28], [38], [39], [40], [41],
[43]. However, only the fundamental work L. Botchway, G. Kibiti, and M. Ruzhansky
[5] includes properties about a discrete pseudo-differential calculus and applications to
difference equations. The reference [9] discusses those relations of the theory of discrete
pseudo-differential operators with important problems in number theory as the Waring
problem and the hypothesis K∗ by Hooley.

An overview to the mapping properties for pseudo-differential operators on Rn provides
the expected results in the discrete and periodic setting. On Rn these operators have the
form

Af(x) =

∫

Rn

ei2πx·ξa(x, ξ)f̂(ξ)dξ, f ∈ D(Rn), (5)

with f̂ the euclidean Fourier transform of f (see Hörmander [25]). The nuclearity of
pseudo-differential operators on Rn has been treated in Aoki and Rempala [2], [42].
In a context closely related to our work, multilinear pseudo-differential operators have
been treated in Bényi, Maldonado, Naibo, and Torres, [3], [4], Michalowski, Rule and
Staubach, Miyachi and Tomita [30], [31], [32], [33] and references therein. The multilinear
analysis for multilinear Fourier multipliers

Ta(f)(x) =

∫

Rnr

ei2πx·(η1+···+ηr)a(η)f̂1(η1) · · · f̂r(ηr)(ηr)dη, x ∈ R
n (6)

born with the works of Coifman and Meyer [13], [14], where the condition

|∂α1

η1
∂α2

η2
· · ·∂αr

ηr
a(η1, η2, · · · , ηr)| ≤ Cα(|η1|+ |η2|+ · · ·+ |ηr |)

−|α|, (7)

for sufficiently many multi-indices α = (α1, α2, · · · , αr), was proved to be sufficient for
the boundedness of Ta from Lp1(Rn) × Lp2(Rn) × · · · × Lpr(Rn) into Lp(Rn) provided
that 1/p = 1/p1 + 1/p2 + · · ·+ 1/pr, and 1 ≤ pi, p < ∞. A generalization for this result
was obtained by Tomita in [46], where it was proved that the multilinear Hörmander
condition

‖a‖l.u.,Hs
loc

(Rnr) := sup
k∈Z

‖a(2kη1, 2
kη2, · · · , 2

kηr)φ‖Hs < ∞, φ ∈ D(0,∞), s >
nr

2
, (8)
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implies the boundedness of Ta from Lp1(Rn) × Lp2(Rn) × · · · × Lpr (Rn) into Lp(Rn)
provided that 1/p = 1/p1+1/p2+ · · ·+1/pr, and 1 ≤ pi, p < ∞. The case r = 1 is known
as the Hörmander-Mihlin theorem. These multilinear theorems have been generalized to
Hardy spaces Hp(Rn) for suitable values of 0 < pi, p < ∞, in the works of Grafakos,
Torres, Miyachi, Fujita, Tomita, Kenig, Stein, Muscalo, Thiele and Tao [19], [21], [22],
[23], [24], [27], [37]. The main novelty of this work is that we provide discrete and periodic
analogues for these works in the multilinear setting.

This note is organized as follows. In section 2 we provide those results on the boundedness
of pseudo-differential operators on Zn and the torus. Later, in Section 3 we classify those
s-nuclear multilinear integral operators on arbitrary σ-finite measure spaces and we apply
this classification to periodic and discrete multilinear pseudo-differential operators.

2. Boundedness of pseudo-differential operators on Tn and Zn

In this section we explain in detail the main results of our investigation on the bounded-
ness of the multilinear operators considered. Our starting point is the following multi-
linear version of the Stein-Weiss multiplier theorem (see Theorem 3.8 of Stein and Weiss
[48]). Sometimes we denote (x, ξ) := (x, ξ1, · · · , ξr) = x · (ξ1 + · · ·+ ξr).

Theorem 2.1. Let 1 < p < ∞ and let a : Rnr → C be a continuous bounded function. If
the multilinear Fourier multiplier operator

Tf(x) =

∫

Rnr

ei2π(x,ξ1,ξ2,··· ,ξr)a(ξ1, ξ2, · · · ξr)f̂1(ξ1) · · · f̂r(ξr)dξ

extends to a bounded multilinear operator from Lp1(Rn)× Lp2(Rn)× · · · × Lpr (Rn) into
Lp(Rn), then the periodic multilinear Fourier multiplier

Af(x) :=
∑

ξ∈Znr

ei2π(x,ξ1,ξ2,··· ,ξr)a(ξ1, ξ2, · · · , ξr)(FTnf1)(ξ1) · · · (FTnfr)(ξr)

also extends to a bounded multilinear operator from Lp1(Tn) × Lp2(Tn)× · · · × Lpr(Tn)
into Lp(Tn), provided that

1

p1
+ · · ·+

1

pr
=

1

p
, 1 ≤ pi < ∞.

Moreover, there exists a positive constant Cp such that the following inequality holds:

‖A‖B(Lp1(Tn)×Lp2(Tn)×···×Lpr (Tn),Lp(Tn)) ≤ Cp‖T ‖B(Lp1(Rn)×Lp2(Rn)×···×Lpr (Rn),Lp(Rn)).

Remark 2.2. Theorem 2.1 can be proved in the following way. By the density of the
trigonometric polynomials, we can prove that under the conditions of this theorem, we
have the estimate

‖A(P1, P2, · · · , Pr)‖Lp(Tn)) ≤ C
r∏

j=1

‖Pj‖Lpj (Tn), (9)
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where the constant C does not dependent of every trigonometric polynomial Pi. For this,
we will prove that

lim
ε→0

εn/2
∫

Rn

(T (P1wα1ε, P2wα2ε, · · · , Prwαrε))(x)Q(x)wεβ(x)dx

= cn,r,p

∫

Tn

A(P1, P2, · · · , Pr)Q(x)dx, wδ(x) = e−δ|x|2, δ > 0, (10)

for some positive constant cn,r,p > 0. We will assume that

r∑

j=1

αj + β = 1, αi, β > 0.

Observe that by linearity, we only need to prove (10) when Pi(xi) = ei2πmixi and Q(x) =
ei2πkx for k and mi in Zn, 1 ≤ i ≤ r. The main step in our proof (see Cardona and
Kumar [10]) is to show (10) and how it implies (9).

With the help of the previous result we prove the following fact. We use the notation

〈ξ〉 := max{1, |ξ1|+ · · ·+ |ξr|},

for all ξ ∈ R
nr. Now, we provide the following discrete version of the known result of

Coifman and Meyer mentioned in the introduction.

Theorem 2.3. Let Tm be a periodic multilinear Fourier multiplier. Under the condition

|∆α1

ξ1
· · ·∆αr

ξr
m(ξ1, ξ2, · · · , ξr)| ≤ Cα〈ξ〉

−|α1|−···−|αr|, |α| ≤ [
nr

2
] + 1,

the operator Tm extends to a bounded multilinear operator from Lp1(Tn) × Lp2(Tn) ×
· · · × Lpr(Tn) into Lp(Tn), provided that

1

p1
+ · · ·+

1

pr
=

1

p
, 1 ≤ pi < ∞.

If we consider Fourier integral operators (FIOs) with periodic phases, we can recover the
following multilinear version for FIOs of the multiplier theorem of Stein and Weiss.

Theorem 2.4. Let 1 < p < ∞ and let φ be a real valued continuous function defined on
Tn × Rnr. If a : Tn × Rnr → C is a continuous bounded function, and the multilinear
Fourier integral operator

Tf(x) =

∫

Rnr

eiφ(x,ξ1,ξ2,··· ,ξr)a(x, ξ1, ξ2, · · · , ξr)f̂1(ξ1) · · · f̂r(ξr)dξ

extends to a bounded multilinear operator from Lp1(Rn)× Lp2(Rn)× · · · × Lpr (Rn) into
Lp(Rn), then the periodic multilinear Fourier integral operator

Af(x) :=
∑

ξ∈Znr

eiφ(x,ξ1,ξ2,··· ,ξr)a(x, ξ1, ξ2, · · · , ξr)(FTnf1)(ξ1) · · · (FTnfr)(ξr)

Vol. 36, N◦ 2, 2018]



156 D. Cardona & V. Kumar

also extends to a bounded multilinear operator from Lp1(Tn) × Lp2(Tn)× · · · × Lpr(Tn)
into Lp(Tn), provided that

1

p1
+ · · ·+

1

pr
=

1

p
, 1 ≤ pi < ∞.

Moreover, there exists a positive constant Cp such that

‖A‖B(Lp1(Tn)×Lp2(Tn)×···×Lpr (Tn),Lp(Tn)) ≤ Cp‖T ‖B(Lp1(Rn)×Lp2(Rn)×···×Lpr (Rn),Lp(Rn)).

Now, we present some results about the boundedness of periodic multilinear pseudo-
differential operators where explicit conditions on the multilinear symbols are considered.

Theorem 2.5. Let us assume that m satisfies the Hörmander condition of order s > 0,

‖m‖L∞(Tn,l.u.,Hs
loc

(Rn)) := ess sup
x∈Tn

‖m(x, ·)‖l.u.,Hs
loc

< ∞. (11)

Then the multilinear periodic pseudo-differential operator Tm associated with m extends
to a bounded operator from Lp1(Tn)×Lp2(Tn)× · · ·×Lpr(Tn) into Lp(Tn) provided that
s > 3nr

2 and
1

p
=

1

p1
+ · · ·+

1

pr
, 1 ≤ p < ∞, 1 ≤ pi ≤ ∞.

Remark 2.6. The proof of Theorem 2.5 is based on a suitable Littlewood-Paley decom-
position of the symbol m. Indeed, we decompose m as

m =

∞∑

j=1

mj, supp(mj) ⊂ [2j , 2j+1]. (12)

We prove that by assuming (11), we can decompose the operator Tm as

Tmf =

∞∑

j=1

Tmj
f, f = (f1, · · · , fr) ∈ D(Tn)r, (13)

where every operator Tmj
is associated to the symbol mj, and we prove that the operator

norm of every Tmj
is less than ‖m‖L∞(Tn,l.u.,Hs

loc
(Rn)) multiplied by a factor proportional

to 2−j(s− 3n
2
). We conclude our proof in [10] by observing that ‖T ‖B(Lp1×Lp2×···×Lpr ,Lp) ≤∑

j ‖Tmj
‖B(Lp1×Lp2×···×Lpr ,Lp).

The following theorem is an extension of the Coifman-Meyer result presented above in
the multilinear pseudo-differential framework.

Theorem 2.7. Let us assume that m satisfies the discrete symbol inequalities

sup
x∈Tn

|∆α1

ξ1
∆α2

ξ2
· · ·∆αr

ξr
m(x, ξ1, · · · , ξr)| ≤ Cα〈ξ〉

−|α|, (14)

for all |α| := |α1|+ · · ·+ · · ·+ |αr| ≤ [3nr/2] + 1. Then the periodic multilinear pseudo-
differential operator Tm extends to a bounded operator from Lp1(Tn) × Lp2(Tn) × · · · ×
Lpr (Tn) into Lp(Tn), provided that

1

p
=

1

p1
+ · · ·+

1

pr
, 1 ≤ p < ∞, 1 ≤ pi ≤ ∞.
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Remark 2.8. We prove Theorem 2.7 by observing that (14) implies (11). We develop
this delicate argument in [10] where we use, among other things, the periodic analysis
developed by Ruzhansky and Turunen.

The condition on the number of discrete derivatives in the preceding result can be relaxed
if we assume regularity in x. We show it in the following theorem.

Theorem 2.9. Let Tm be a periodic multilinear pseudo-differential operator. If m satisfies
toroidal conditions of the type

|∂β
x∆

α1

ξ1
· · ·∆αr

ξr
m(x, ξ1, ξ2, · · · , ξr)| ≤ Cα〈ξ〉

−|α1|−···−|αr|,

where |α| ≤ [nr2 ]+1, and |β| ≤ [np ]+1, then Tm extends to a bounded multilinear operator

from Lp1(Tn)× Lp2(Tn)× · · · × Lpr (Tn) into Lp(Tn), provided that

1

p1
+ · · ·+

1

pr
=

1

p
, 1 ≤ pi < ∞.

Example 2.10. Theorem 2.7 applied to the bilinear operator

Bs(f, g) := Js(f · g), (15)

where Js is the periodic fractional derivative operator (L)s/2, or the periodic Bessel po-
tential of order s > 0, (1+L)s/2, implies the (well known) periodic Kato-Ponce inequality:

‖Js(f · g)‖Lr(Tn) . ‖Jsf‖Lp1(Tn)‖g‖Lq1(Tn) + ‖f‖Lp2(Tn)‖J
sg‖Lq2(Tn), (16)

where 1
p1

+ 1
q1

= 1
p2

+ 1
q2

= 1
r , 1 < r < ∞, 1 ≤ pi, qi ≤ ∞, and L = − 1

4π2 (
∑n

j=1 ∂
2
θj
) is

the Laplacian on the torus.

Boundedness of discrete multilinear pseudo-differential operators. Our main
results about the boundedness of discrete multilinear pseudo-differential operators are
stated as follows.

Theorem 2.11. Let σ ∈ L∞(Zn, C2κ(Tnr)). If σ satisfies the discrete inequality

|∂β
ξ σ(ℓ, ξ)| ≤ Cβ , ℓ ∈ Z

n, ξ ∈ T
nr, σ(ℓ, ξ) = σ(ℓ)(ξ),

for all β with |β| = 2κ, then Tσ extends to a bounded operator from Lp1(Zn)×Lp2(Zn)×
· · · × Lpr(Zn) into Ls(Zn), provided that 1 ≤ pj ≤ p ≤ ∞, and

1

s
−

1

p
<

2κ

nr
− 1.

The following result can be derived of the previous result with r = 1 and s = p.

Corollary 2.12. Let σ ∈ C2κ(Zn × Tn). If σ satisfies the discrete inequality

|∂β
ξ σ(ℓ, ξ)| ≤ Cβ , ℓ ∈ Z

n, ξ ∈ T
n,

for all β with |β| = 2κ, then Tσ extends to a bounded operator from Lp(Zn) into Lp(Zn),
provided that 1 ≤ p ≤ ∞, and κ > n/2.
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3. s-Nuclearity, 0 < s ≤ 1, of pseudo-differential operators on Tn and
Zn

In this section we study the s-nuclearity, 0 < s ≤ 1 of multilinear discrete and periodic
pseudo-differential operators. We prove Theorem 3.1 regarding the characterization of
s-nuclear multilinear operators on abstract σ-finite measure spaces, and Theorem 3.2
and Theorem 3.3 regarding the characterization of s-nuclearity of periodic and discrete
pseudo-differential operators. Although these theorems are multilinear extensions of
the results due to Delgado [16], Delgado and Wong [17], JamalpourBirgani [26] and
Ghaemi, JamalpourBirgani and Wong [20], we can recover their results from our results
by considering r = 1. In order to study these multilinear operators admitting s-nuclear
extensions, we prove the following multilinear version of a result by Delgado, on the
nuclearity of integral operators on Lebesgue spaces (see [16], [18]). So, in the following
multilinear theorem we characterize those s-nuclear (multilinear) integral operators on
arbitrary (σ-finite) measure spaces (X,µ).

Theorem 3.1. Let (Xi, µi), 1 ≤ i ≤ r and (Y, ν) be σ-finite measure spaces. Let 1 ≤
pi, p < ∞, 1 ≤ i ≤ r and let p′i, q be such that 1

pi
+ 1

p′
i

= 1, 1
p + 1

q = 1 for 1 ≤ i ≤ r.

Let T : Lp1(µ) × Lp2(µ2) × · · · × Lpr (µr) → Lp(ν) be a multilinear operator. Then T
is a s-nuclear, 0 < s ≤ 1, operator if, and only if, there exist sequences {gn}n with
gn = (gn1, gn2, . . . , gnr) and {hn}n in Lp′

1(µ1) × Lp′
2(µ2) × · · · × Lp′

r(µr) and Lp(ν),
respectively, such that

∑
n ‖gn‖

s

Lp′
1(µ1)×Lp′

2(µ2)×···×Lp′r (µr)
‖hn‖

s
Lp(ν) < ∞, and for all f =

(f1, f2, . . . , fr) ∈ Lp1(µ)× Lp2(µ2)× · · · × Lpr(µr) we have

(Tf)(y) =

∫

X1,X2,··· ,Xr

(
∞∑

n=1

gn(x)hn(y)

)
f(x) d(µ1 ⊗ µ2 ⊗ · · · ⊗ µr)(x)

=

∫

X1

∫

X2

· · ·

∫

Xr

(
∞∑

n=1

gn1(x1) gn2(x2) . . . gnr(xr)hn(y)

)

× f1(x1) f2(x2) . . . fr(xr) dµ1(x1) dµ2(x2) · · · dµr(xr)

for almost every y ∈ Y.

Remark 3.2. The proof of Theorem 3.1 is based on an important lemma proved in [10,
Lemma 4.1]. The proof of the if part of Theorem 3.1 follows using the definition of
nuclear operators, Lemma 4.1 (iv) of [10] and the fact that Lp-convergence of a sequence
implies the convergence of a sequence almost everywhere.

The only if part of Theorem 3.1 is a straightforward using the part (iv) of [10, Lemma 4.1]
and applications of monotone convergence theorem of B. Levi and Lebesgue dominated
convergence theorem.

This criterion applied to discrete and periodic operators gives the following characteri-
zations (for the proof we refer the reader to [10]).

Theorem 3.3. Let a be a measurable function defined on Zn × Tnr. The multilinear
pseudo-differential operator Ta : Lp1(Zn)×Lp2(Zn)×· · ·Lpr (Zn) → Lp(Zn), 1 ≤ pi < ∞,
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for all 1 ≤ i ≤ r, is a s-nuclear, 0 < s ≤ 1, operator if, and only if, the following
decomposition holds:

a(x, ξ) = e−i2πx̃·ξ
∑

k

hk(x)FZnr (gk)(−ξ), ξ ∈ T
nr, x ∈ Z

n,

where x̃ = (x, x, . . . , x) ∈ (Zn)r; {hk}k and {gk}k with gk = (gk1, gk2, . . . , gkr) are two
sequences in Lp(Zn) and Lp′

1(Zn) × Lp′
2(Zn) × · · · × Lp′

r(Zn), respectively, such that∑∞
n=1 ‖hn‖

s
Lp(Zn)‖gn‖

s

Lp′
1(Zn)×Lp′

2(Zn)×···×Lp′r (Zn)
< ∞.

Similarly, we can classify the s-nuclearity of periodic multilinear operators.

Theorem 3.4. Let m be a measurable function on Tn×Znr. Then the mutlilinear pseudo-
differential operator Tm : Lp1(Tn)×· · ·×Lpr(Tn) → Lp(Tn), 1 ≤ pi, p < ∞ for 1 ≤ i ≤ r,
is a s-nuclear, 0 < s ≤ 1, operator if, and only if, there exist two sequences {gk}k with
gk = (gk1, gk2, . . . , gkr) and {hk}k in Lp′

1(Tn)× · · · × Lp′
r (Tn), 1

pi
+ 1

p′
i

= 1 for 1 ≤ i ≤ r

and Lp(Tn), respectively, such that
∑

k ‖gk‖
s

Lp′
1(Tn)×···×Lp′r (Tn)

‖hk‖
s
Lp(T) < ∞ and

m(x, η) = e−i2πx̃·η
∑

k

hk(x) (FTnrgk)(−η), η ∈ Z
nr

where x̃ = (x, x, . . . , x) ∈ Tnr.

Now, we present the following sharp result on the s-nuclearity of periodic Fourier integral
operators.

Theorem 3.5. Let us consider the real-valued function φ : Tn×Znr → R. Let us consider
the Fourier integral operator

Af(x) :=
∑

ξ∈Znr

eiφ(x,ξ1,ξ2,··· ,ξr)a(x, ξ1, ξ2, · · · , ξr)(FTnf1)(ξ1) · · · (FTnfr)(ξr),

with symbol satisfying the summability condition

∑

ξ∈Znr

‖a(·, ξ1, ξ2, · · · , ξr)‖
s
Lp(Tn) < ∞.

Then A extends to a s-nuclear, 0 < s ≤ 1, operator from Lp1(Tn) × · · · × Lpr (Tn) into
Lp(Tn), provided that 1 ≤ pj < ∞, and 1 ≤ p ≤ ∞.

Remark 3.6. The proof of Theorem 3.5 follows using Theorem 3.1 by considering the
function

hξ(x) := eiφ(x,ξ1,ξ2,··· ,ξr)a(x, ξ1, ξ2, · · · , ξr),

the functional
〈e′ξ, f〉 := (FTnf1)(ξ1) · · · (FTnfr)(ξr)

and their estimates
‖hk‖Lp(Tn) = ‖a(x, ξ1, ξ2, · · · , ξr)‖Lp(Tn

x)

and |〈e′ξ, f〉| ≤
∏r

j=1 ‖fj‖Lp′
j
.
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Example 3.7. In order to illustrate the previous conditions, we consider the multilinear
Bessel potential. This can be introduced as follows. Consider the periodic multilinear
Laplacian denoted by

L := (L, · · · ,L),

acting on f = (f1, · · · , fr) ∈ D(Tn)r by

L f(x) := (Lf1(x)) · · · (Lfr(x)) (17)

=
∑

(ξ1,··· ,ξr)

ei2πx(ξ1+···+ξr)|ξ1|
2 · · · |ξr|

2(FTnf1)(ξ1) · · · (FTnfr)(ξr). (18)

For r = 1, we recover the usual periodic Laplacian

Lf(x) = −
1

4π2
(

n∑

j=1

∂2
θj )f(x) =

∑

ξ∈Zn

ei2πx·ξ|ξ|2(FTnf)(ξ).

The multilinear Bessel potential of order α = (α1, · · · , αr) ∈ N
r
0,

(I + L )−
α
2 := ((I + L)−

α1

2 , · · · , (1 + L)−
αr
2 ),

can be defined by the Fourier analysis associated to the torus as

(I + L )−
α
2 f(x) = (I + L)−

α1

2 f1(x) · · · (1 + L)−
αr
2 fr(x) (19)

=
∑

(ξ1,··· ,ξr)

ei2πx(ξ1+···+ξr)(
r∏

j=1

(1 + |ξj |
2)−

αj

2 )(FTnf1)(ξ1) · · · (FTnfr)(ξr). (20)

From the estimate

a(x, ξ) =
r∏

j=1

(1 + |ξj |
2)−

αj

2 ≤
r∏

j=1

(1 + |ξj |
2)

− min
1≤j≤r

{
αj

2
}
. 〈ξ〉

− min
1≤j≤r

{αj}
,

Theorem 3.5 applied to a(x, ξ) =
∏r

j=1(1 + |ξj |
2)−

αj

2 implies that the multilinear Bessel

potential (I + L )−
α
2 extends to a s-nuclear operator from Lp1(Tn)× · · · × Lpr(Tn) into

Lp(Tn) for all 1 ≤ pj < ∞ and 1 ≤ p ≤ ∞, provided that

κ := min
1≤j≤r

{αj} > nr/s.

This conclusion is sharp, in the sense that if we restrict our analysis to r = 1 and
p1 = p = 2, the operator (I + L)−

α
2 extends to a s-nuclear operator on L2(Tn) if, and

only if, κ := α > nr/s = n/s.

Example 3.8. Now, we consider FIOs with symbols admitting some type of singularity at
the origin. In this general context, let us choose a sequence κ ∈ Ls(Znr). Let us consider
the symbol

a(x, ξ) :=
1

|x|ρ
κ(ξ), x ∈ T

n, x 6= 0, ξ ∈ Z
nr, ρ > 0.
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If we consider the Fourier integral operator associate to a(·, ·),

Af(x) :=
∑

ξ∈Znr

eiφ(x,ξ1,ξ2,··· ,ξr)
1

|x|ρ
κ(ξ1, · · · , ξr)(FTnf1)(ξ1) · · · (FTnfr)(ξr),

the condition
0 < ρ < n/p

implies that the periodic Fourier integral operator A extends to a s-nuclear multilinear
operator from Lp1(Tn)× · · · × Lpr(Tn) into Lp(Tn), for all 1 ≤ pj < ∞ and 1 ≤ p ≤ ∞.
In fact, by Theorem 3.5, we only need to verify that

∑

ξ∈Znr

‖a(·, ξ1, ξ2, · · · , ξr)‖
s
Lp(Tn) =



∫

Tn

dx

|x|p·ρ




s
p ∑

ξ∈Znr

|κ(ξ)|s < ∞.

But, for every ρ > 0, this happens if, and only if, 0 < ρ < n/p.
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