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Abstract

Neuroinflammation and neurodegeneration often result from the
aberrant deposition of aggregated host proteins, including
amyloid-b, a-synuclein, and prions, that can activate inflamma-
somes. Inflammasomes function as intracellular sensors of both
microbial pathogens and foreign as well as host-derived danger
signals. Upon activation, they induce an innate immune response
by secreting the inflammatory cytokines interleukin (IL)-1b and
IL-18, and additionally by inducing pyroptosis, a lytic cell death
mode that releases additional inflammatory mediators. Microglia
are the prominent innate immune cells in the brain for inflamma-
some activation. However, additional CNS-resident cell types includ-
ing astrocytes and neurons, as well as infiltrating myeloid cells from
the periphery, express and activate inflammasomes. In this review,
we will discuss current understanding of the role of inflamma-
somes in common degenerative diseases of the brain and highlight
inflammasome-targeted strategies that may potentially treat
these diseases.
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Introduction

The innate immune system is a rapid and coordinated cellular

defense response that aims to eliminate the threat posed by both

sterile and infectious insults. Recognition of these pathogenic agents

is mediated by pattern recognition receptors (PRRs) that sense

pathogen-associated molecular patterns (PAMPs) and host- or envi-

ronment-derived danger-associated molecular patterns (DAMPs). In

the central nervous system (CNS), these PRRs are primarily

expressed by microglia, astrocytes, and macrophages, but also

oligodendrocytes, neurons, and endothelial cells express a repertoire

of PRRs (Lampron et al, 2013; Walsh et al, 2014). PRRs can either

be membrane-bound, as is the case for the Toll-like receptors

(TLRs), to sense signals in the extracellular environment or in the

endosome, or they can be intracellular, as with the nucleotide-

binding domain and leucine-rich repeat-containing receptors (NLRs)

and AIM2-like receptors (ALRs). An important subgroup of cytosolic

PRRs that includes members of the NLR and ALR families as well as

the tripartite motif (TRIM) family member pyrin critically contri-

butes to the innate immune response by assembling so-called

“inflammasomes”.

General concepts of inflammasome biology

Inflammasomes are cytosolic multiprotein complexes which upon

assembly activate the pro-inflammatory caspase-1 (see Glossary)

that is responsible for the maturation and secretion of the inflamma-

tory cytokines IL-1b and IL-18, and additionally induce pyroptosis

(Lamkanfi & Dixit, 2014; Broz & Dixit, 2016). Briefly, inflamma-

some-inducing stimuli trigger the oligomerization of PRR proteins

and the recruitment of pre-existing procaspase-1 zymogens into the

complex, leading to their proximity-induced autoactivation to gener-

ate active caspase-1. Consequently, caspase-1 will cleave the biolog-

ically inactive pro-peptides pro-IL-1b and pro-IL-18 into mature

cytokines which are then secreted by the cell. Next to its role in the

maturation of pro-IL-1b and pro-IL-18, caspase-1 can also induce a

pro-inflammatory form of cell death, pyroptosis, that features early

plasma membrane rupture, thereby releasing the soluble intracellu-

lar fraction that fuels the inflammatory response (Lamkanfi & Dixit,

2012, 2014). Central in this process is the executioner protein

gasdermin D (GSDMD)—a substrate of murine caspase-1 and

caspase-11, and human caspase-1, caspase-4, and caspase-5—the

amino-terminal domain of which upon cleavage oligomerizes and

perforates the plasma membrane to induce cell swelling and osmotic

lysis (Shi et al, 2017) (Fig 1).

One way to classify inflammasome complexes is based on the

receptor that initiates signaling (Lamkanfi & Dixit, 2012). The core

inflammasome components consist of the cytosolic NLR, ALR, and
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pyrin receptors, the adaptor apoptosis-associated speck-like protein

containing a caspase recruitment domain (ASC) and procaspase-1.

ASC is composed of a pyrin domain (PYD) and a caspase recruit-

ment domain (CARD) and functions as an adaptor that links the

PYD of the NLR or pyrin and the CARD of procaspase-1 (Fig 2).

Some inflammasomes, such as NLRC4 and NLRP1b, do not require

ASC and may directly recruit procaspase-1 through their respective

CARDs, although under wild-type conditions ASC does contribute

to optimal caspase-1 activation and efficient secretion of IL-1b and

IL-18 (Broz et al, 2010; Guey et al, 2014; Van Opdenbosch et al,

2014). Assembly and activation of inflammasomes requires detec-

tion of specific signals: Murine Nlrp1b responds to Bacillus

anthracis lethal toxin (LeTx) (Boyden & Dietrich, 2006); NLRC4

detects intracellular flagellin and components of type III secretion

systems (T3SS) of bacterial pathogens (Franchi et al, 2006; Miao

et al, 2006, 2010); AIM2 physically binds cytosolic double-

stranded DNA (dsDNA) (Hornung et al, 2009); and pyrin indirectly

responds to toxins that covalently inactivate the small GTPase

RhoA (Xu et al, 2014). NLRP3, the most widely studied inflamma-

some, responds to a broad spectrum of activating stimuli that

includes a suite of bacterial, fungal, and viral PAMPs, DAMPs

such as ATP and uric acid crystals, and crystalline and aggregated

substances such as asbestos, silica, and amyloid-b fibrils

(Lamkanfi & Dixit, 2012). NLRP3 activation is unique in the sense

that it involves a two-step process. A first signal, or priming

signal, results in the NF-jB-dependent transcriptional upregulation
of NLRP3 and pro-IL-1b, but also controls post-translational modi-

fications of NLRP3 as highlighted by the mapped ubiquitin and

phosphorylation sites on NLRP3 (Yang et al, 2017). This is

followed by a second “activation” signal that induces the

oligomerization and activation of the NLRP3 inflammasome

(Fig 1). Besides canonical NLRP3 inflammasome signaling, the

non-canonical NLRP3 inflammasome pathway involves activation

of caspase-11 (or its human orthologs caspase-4 and caspase-5) by

Glossary

Blood–brain barrier (BBB)
a physiological barrier between the blood and the CNS parenchyma. The
BBB is formed by endothelial cells that are joined by complex tight
junctions and coated by a basement membrane and an additional
membrane of astrocytic end-feet, known as the glia limitans.
Caspases
a family of cysteine-dependent aspartate specific proteases that play
a central role in inflammation and programmed cell death.
Cerebrospinal fluid (CSF)
contained in the ventricles of the brain and the cranial and spinal
subarachnoid spaces. It provides a mean for transporting different
molecules, including cytokines, neurotransmitters, and hormones, but
also resides innate immune cells.
CNS macrophages
non-parenchymal macrophages of the CNS that are located in
meninges, choroid plexus, and perivascular spaces.
Creutzfeldt–Jakob disease
fatal degenerative prion disease that can be sporadic, hereditary, or
acquired. The acquired form of the disease is caused by exposure to
the misfolded scrapie form of the PrP protein.
Cuprizone-induced demyelination
an experimental model to study local demyelination of the corpus
callosum, which is induced by the administration of the copper
chelator cuprizone (bis(cyclohexanone)oxaldihydrazone) to the food of
mice during 5 weeks.
Dopaminergic neurons
the main dopamine-producing cells of the CNS and essential for
controlling key functions of the brain, including voluntary movement,
reward processing, mood, and working memory.
Encephalomyelitis
general term to describe inflammation in the brain or spinal cord.
Autoimmune encephalomyelitis is caused by an abnormal immune
response to a self-antigen.
Experimental autoimmune encephalomyelitis (EAE)
the main rodent model of MS. EAE is actively induced by peripheral
immunization with myelin-specific proteins or peptides in
combination with an adjuvant, or passively by transfer of
encephalitogenic T cells.
Familial Mediterranean Fever
the most common monogenic autoinflammatory disease and is
characterized by periodic fevers with childhood onset, and frequently
associated with serositis and joint pain. It predominantly affects
Mediterranean populations.

Grand-mal seizures
or tonic-clonic seizures: seizures that are characterized by the loss
of consciousness and violent muscle contractions. This seizure
comes in two phases: a tonic phase followed by a clonic phase.
The brief tonic phase features loss of consciousness and muscle
stiffening, while in the clonic phase the muscles go into rhythmic
contractions.
Induced pluripotent stem cells (iPSCs)
generated by genetic reprogramming of adult somatic cells. The
advantage over other types of stem cells is that they are not derived
from a human embryo.
Ischemic infarct
an infarct caused by the interruption of the blood flow in the brain
due to occlusion of a cerebral vessel.
Middle cerebral artery occlusion
experimental stroke model that involves the permanent or transient
occlusion of the middle cerebral artery. The middle cerebral artery is
one of the three arteries that supply blood to the cerebrum. In the
“filament model”, a suture filament is (transiently) introduced into the
internal carotid artery and forwarded until the tip occludes the
middle cerebral artery.
Neonatal-onset multisystem inflammatory disease (NOMID)
or chronic infantile neurologic cutaneous and articular (CINCA):
the most severe cryopyrin-associated periodic syndrome (CAPS).
NOMID is characterized by neonatal-onset skin lesions, chronic
aseptic meningitis, and recurrent fever along with joint symptoms.
Sepsis
a life-threatening systemic inflammatory response syndrome (SIRS)
caused by the body’s response to an infection.
Spatial memory
an important cognitive function that allows us to recall three-
dimensional objects or places.
Steatohepatitis
a type of fatty liver disease and is characterized by the accumulation
of lipids and the infiltration of inflammatory cells in the hepatic
parenchyma.
Striata
dopamine neurons from the substantia nigra pars compacta project
to the caudate and the putamen of the basal ganglia, together
referred to as the striatum.
Substantia nigra pars compacta
structure in the brainstem that contains most of the dopamine-
producing neurons.
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cytosolic LPS, and the induction of pyroptosis through the cleav-

age of GSDMD and the release of high mobility group box 1

protein (HMGB1) and IL-1a (Lamkanfi & Dixit, 2014; Shi et al,

2017). Apart from AIM2 and the NAIP/NLRC4 complexes, the

common secondary messengers or physical ligands that bind and

trigger inflammasome assembly await discovery.

Inflammasomes and the central nervous system

IL-1b and IL-18 have important functions in the CNS, and many cell

types in the brain express their cognate receptors that initiate

inflammatory signaling cascades that may contribute to neuronal

injury and cell death (Allan et al, 2005; Alboni et al, 2010). Hence,

increased levels of IL-1b and IL-18 are often observed upon CNS

infection, brain injury, and neurodegenerative diseases (Heneka

et al, 2014, 2018). IL-1b and IL-18 are also important for physiologi-

cal functions in the CNS and have been shown to participate to

processes of cognition, learning, and memory (Tsai, 2017). Pyropto-

sis additionally contributes to inflammasome-driven pathology

through the release of other inflammatory mediators and DAMPs.

Apoptosis and necroptosis are additional cell death modes that have

been shown to promote neuroinflammation and neuronal degenera-

tion in several neurodegenerative pathologies, including multiple

sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease, and

Alzheimer’s disease (Zhang et al, 2017; Yuan et al, 2019).
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Figure 1. Inflammasome activation and signaling.

Inflammasomes assemble in a stimulus-specific manner. Different DAMPs and PAMPs are able to induce NLRP3, while NLRP1b responds to Bacillus anthracis lethal toxin,
NLRC4 recognizes bacterial flagellin and/or the type III secretion system of bacterial pathogens, AIM2 is specifically activated by dsDNA, and pyrin recognizes the inactivation
of RhoA by toxins and effector proteins. Activation of the NLRP3 inflammasome involves a two-step mechanism. The priming signal is detected by membrane-bound PRRs,
including TLRs and C-type lectin receptors (CLRs) and induces NF-jB-dependent transcription of NLRP3 and pro-IL-1b precursor protein, and controls post-translational
modifications that license NLRP3 activation. The second activation signal is necessary for inflammasome formation, depending on the oligomerization and subsequent
activation of procaspase-1. Active caspase-1 then cleaves pro-IL-1b and pro-IL-18 to their mature forms IL-1b and IL-18which get secreted. In addition, caspase-1 can cleave
gasdermin D, releasing its N-terminal fragment which translocates to the plasma membrane inducing pore formation and pyroptotic cell death. In contrast to NLRP3, other
inflammasome receptors do not need this initial priming signal to induce inflammasome activation and cytokine release.
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Although inflammasome signaling in the CNS is mainly attrib-

uted to microglia, the key innate immune cells of the brain, expres-

sion of inflammasome components has also been reported in other

cell types of the CNS, including neurons (Kaushal et al, 2015),

astrocytes (Freeman et al, 2017), perivascular CNS macrophages

(Kawana et al, 2013), oligodendrocytes (Mckenzie et al, 2018), and

endothelial cells (Gong et al, 2018) (Fig 3). However, current under-

standing of inflammasome activation in microglia and its role in

CNS inflammation and disease is still fragmentary and primarily

based on in vitro studies with primary microglia and microglial cell

lines, and in vivo studies with transgenic knockout mice that lack

expression of specific inflammasome components throughout the

body. More appropriate research tools that allow CNS-specific

inflammasome targeting are needed to investigate the relative

contribution of local inflammasome signaling in specific brain cell

types to overall CNS pathology. Furthermore, evidence for

inflammasome activation in patients with neurodegenerative disease

often relies on detection of higher IL-1b transcript levels and/or

increased gene and protein expression of inflammasome compo-

nents. However, increased expression levels of these NF-jB respon-

sive genes are largely indicative of an ongoing inflammatory

response rather than direct support for inflammasome engagement.

We here review the current knowledge on the relevance of

inflammasome activation for the most common neurodegenerative

pathologies (Fig 3 and Table 1) and highlight emerging strategies

for the treatment of inflammasome-driven diseases. Although

inflammasome activation is also central to the pathology of many

CNS infectious diseases, such as Zika, HIV, and West Nile virus,

and bacterial infections that induce meningitis (Walsh et al, 2014;

Mamik & Power, 2017; Heneka et al, 2018), these conditions are

outside the scope of this review.

Inflammasome activation in multiple sclerosis and
experimental autoimmune encephalomyelitis

Multiple sclerosis (MS) is the most common chronic inflammatory

disease of the CNS. MS is characterized by a compromised blood–

brain barrier (BBB) that leads to immune cell infiltration from the

periphery and local microglia and astrocyte activation, which

together promote inflammation, demyelination, and neurodegenera-

tion (Baecher-Allan et al, 2018). Experimental autoimmune

encephalomyelitis (EAE) is a widely used rodent model of MS

(Ransohoff, 2012), and both IL-1b and IL-18 were shown to critically

contribute to EAE (Sutton et al, 2006; Gris et al, 2010; Lévesque

et al, 2016). Most studies on the involvement of inflammasomes in

MS have focused on the peripheral immune response that is shaped

by lymphocytes and macrophages that enter the CNS during MS

pathology. Caspase-1, IL-18, and IL-1b are upregulated in peripheral

blood mononuclear cells (PBMCs) and cerebrospinal fluid (CSF) of

MS patients, as are levels of the NLRP3 inflammasome-activating

DAMPs ATP and uric acid (Inoue & Shinohara, 2013; Mamik &

Power, 2017). Moreover, caspase-1 expression was shown to be

elevated in acute and chronic demyelinating lesions (Voet et al,

2018), and caspase-1 and ASC have recently been proposed as

candidate biomarkers for MS onset (Keane et al, 2018).

The role of the NLRP3 inflammasome in EAE-associated T-cell

priming and trafficking into the CNS is supported by the analysis

of NLRP3, caspase-1, and ASC knockout mice (Furlan et al, 1999;

Gris et al, 2010; Inoue et al, 2012a). Moreover, the pharmacologi-

cal NLRP3 inflammasome inhibitor MCC950/CRID3 was shown to

suppress IL-1b production and attenuate EAE severity in wild-type

mice (Coll et al, 2015). Similarly, pharmacological blockade of

NLRs

AIM2ALR

Pyrin

ASC

Caspase-1

Adaptor

Effector

PYD HIN200

PYDCARD

CARD
Caspase
domain

NLRP1
Human

NLRP1
Mouse

NLRP3

NLRC4

PYD NACHT FIIND CARDLRR

NACHT FIIND CARDLRR

PYD NACHT LRR

CARD NACHT LRR

Pyrin
Human

Pyrin
Mouse

PYD B B CC B30.2

PYD B B CC

©
 E

M
B

O

Figure 2. Domain structure of inflammasomes.

A subset of NLRs and ALRs can trigger the formation of inflammasomes. NLR
family members have a nucleotide-binding and oligomerization domain
(NACHT/NBD), as well as leucine-rich repeat (LRR) motifs, typically located in the
center and carboxy terminus of the NLR proteins, respectively. The NACHT motif
is usually flanked by an additional amino-terminal domain, either CARD or PYD,
and these domains are used for further sub-classification of inflammasomes.
These domains allow the recruitment of adaptor and effector proteins to the
inflammasome signaling complex. The NLR gene family consists of 22 human
members and 34 murine members, many of which the function is not always
clear (Lamkanfi & Dixit, 2012; Broz & Dixit, 2016). In addition to the NLR-
containing inflammasomes, the ALR family member AIM2 can also assemble an
inflammasome complex. AIM2 is characterized by an amino-terminal PYD
domain and one or two DNA-binding HIN200 domains (Hornung et al, 2009).
Pyrin, also known as TRIM20, features a PYD domain, two B-boxes, and a coiled-
coil domain, whereas the human pyrin also has an additional C-terminal B30.2
domain. ASC is the critical adaptor protein for many inflammasome complexes
and is composed of CARD and PYD domains, the latter being necessary for
homotypic interaction with a PYD-containing inflammasome sensor (NLRP3,
AIM2). Procaspase-1 features a CARD domain, in addition to its caspase domain,
and homotypic CARD interactions result in direct or indirect (via ASC)
recruitment of procaspase-1 to the inflammasome complex. Inflammasome
activation involves ASC and procaspase-1 recruitment, resulting in ASC
oligomerization into a macromolecular aggregate, known as an ASC speck (Broz
& Dixit, 2016).
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caspase protease activity with Z-Val-Ala-DL-Asp-fluoromethylke-

tone or the inflammatory caspase prodrug VX-765 reduced EAE

symptoms in mice (Furlan et al, 1999; Mckenzie et al, 2018).

Interestingly, IFNb, the first line treatment for MS, is only effective

in an NLRP3 inflammasome-dependent EAE subtype, whereas

NLRP3-independent EAE could not be reversed by IFN-b therapy

(Inoue et al, 2012b, 2016). We recently provided direct genetic

evidence for the relevance of inflammasome signaling in microglia

and border-associated macrophages during EAE (Voet et al, 2018).

The anti-inflammatory protein A20 has been shown to negatively

regulate NLRP3 inflammasome activation (Vande Walle et al,

2014), and deletion of A20 in microglia and CNS macrophages

exacerbated EAE in mice due to NLRP3 hyperactivation that

resulted in increased IL-1b secretion and CNS inflammation (Voet

et al, 2018). CNS-intrinsic inflammasome activation was further

reported in another study that showed caspase-1- and GSDMD-

mediated pyroptosis in microglia, as well as in myelin-forming

oligodendrocytes in the CNS of MS patients and EAE mice

(Mckenzie et al, 2018).

The relevance of the NLRP3 inflammasome to MS has also been

demonstrated in the model of cuprizone-induced demyelination, in

which NLRP3-deficient mice presented delayed demyelination,
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Figure 3. Inflammasome activation in neurodegenerative disease.

Inflammasomes can be activated in the CNS in response to acute injury (traumatic brain injury and stroke), autoimmune-mediated injury (multiple sclerosis), and
accumulation of misfolded or aggregated proteins in the brain (Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, and prion disease). Inflammasome
activation has been demonstrated in CNS-resident cell types, including microglia, astrocytes, and neurons, but also in CNS-infiltrating cells, such as in infiltrating
macrophages. Although most research on neurodegenerative diseases has focused on the importance of the NLRP3 inflammasome, also other inflammasome types can be
activated in the brain and have been demonstrated in neurodegenerative disorders. Overall, inflammasome activation results in caspase-1-mediated cleavage of pro-IL-1b
and pro-IL-18, and the subsequent release of themature cytokines. High levels of IL-1b and IL-18 can be detected inmany neurodegenerative conditions and are considered to
be crucial for the establishment of a chronic inflammatory environment, leading to neuronal dysfunction and eventually neurodegeneration.
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oligodendrocyte loss, and neuroinflammation (Jha et al, 2010).

Additional support was provided by similar observations in caspase-

1 and IL-18 knockout mice, which unlike IL-1b knockout mice

showed protection (Jha et al, 2010). Moreover, IL-1b and IL-18 had

a differential effect on the process of remyelination after cuprizone

treatment, demonstrating a delay in remyelination in IL-1b knockout

mice, whereas accelerated remyelination was seen in IL-18 knock-

outs (Jha et al, 2010).

Inflammasome activation in stroke

Neuroinflammation plays a crucial pathological role in stroke, and

IL-1b has been identified as a key cytokine in stroke pathology. So

far, four distinct inflammasomes have been implicated in stroke,

viz. NLRP1, NLRP3, NLRC4, and AIM2 (Barrington et al, 2017).

Additionally, early studies implicated caspase-11 in middle cerebral

artery occlusion (MCAO), a mouse model of stroke (Kang et al,

Table 1. Overview of the described neurodegenerative disease models.

Disease model Description

Multiple sclerosis

EAE EAE is actively induced by peripheral immunization with myelin-specific proteins or peptides in combination with an
adjuvant, or passively by transfer of encephalitogenic T cells

Cuprizone Administration of the copper chelator cuprizone will induce local demyelination of the corpus callosum

Stroke

Permanent MCAO Permanent occlusion of the middle cerebral artery is obtained using an intraluminal suture

Transient MCAO Intraluminal suture MCAO utilizes a suture inserted into the middle cerebral artery to interrupt the blood flow for a specific
duration and is afterward removed. Embolic stroke MCAO uses an autologous blood clot injected into the MCA to occlude
the vessel

Intracerebral hemorrhage (ICH) Stroke condition provoked by injection of autologous arterial blood into the basal ganglia

TBI and SCI

Controlled cortical impact (CCI) A mechanical model of traumatic brain injury. Following craniotomy, the CCI device mechanically transfers energy onto the
dura mater damaging the cortex, and sometimes the subcortical structures

Impact acceleration model The exposed skull is covered with a steel disk and a weight is dropped onto the steel disk

Contusion model of spinal cord
injury

A transient force is applied by either an electromagnetic device or a weight-drop to displace and damage the spinal cord

Alzheimer disease

APP/PS1 Mouse model expressing human APP695 with the Swedish double mutation (K670N/M671L) and a mutant human presenilin
1 (PS1-dE9)

3xTgAD Mouse model expressing human APP695 with the Swedish double mutation (K670N/M671L), human PS1 with the M146V
mutation, and human Tau with the P301L mutation

Tg2567 Mouse model expressing human APP695 with the Swedish double mutation (K670N/M671L) at the b-secretase cleavage site

5xFAD Mouse model expressing human APP and PSEN1 transgenes with a total of five AD-linked mutations: the Swedish (K670N/
M671L), Florida (I716V), and London (V717I) mutations in APP, and M146L and L286V mutations in PSEN1

Amyotrophic lateral sclerosis

TgSOD1-G93A Mouse model expressing a G93A mutant form of human SOD1

hSOD1 G37R Mouse model expressing a G37R mutant form of human SOD1

hSOD1 G85R Mouse model expressing a G85R mutant form of human SOD1

Parkinson disease

A53T Mouse model expressing the mutant human A53T alpha-synuclein.

LPS-induced PD Injection of LPS in the left substantia nigra pars compacta

6-hydroxydopamine-induced PD Injection of 6-hydroxydopamine in the medial forebrain bundle

MPTP-induced PD Intraperitoneal injection of MPTP five times at 2-h intervals

Prion disease

Scrapie-infected Intracerebral infections with brain homogenate of scrapie strain 139A-infected mice or intracerebral injection with RML6
(passage 6 of Rocky Mountain Laboratory strain mouse-adapted scrapie prions)

Tg(CJD) Mouse model expressing a misfolded mutant PrP (D177N/V128)

Huntington disease

R6/2 Transgenic mice expressing exon 1 of human huntingtin with expanded CAG/polyglutamine repeat
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2000). Expression levels of NLRP3 and NLRP1, as well as cleavage

products of caspase-1, IL-1b, and IL-18, were shown to be elevated

in postmortem brain tissue of stroke patients (Fann et al, 2013).

Studies with pharmacological inhibitors of inflammatory caspases

and analysis of caspase-1-deficient mice—that were later shown to

also lack caspase-11 expression (Kayagaki et al, 2011)—showed

protection in experimental models of stroke (Friedlander et al, 1997;

Hara et al, 1997; Schielke et al, 1998; Rabuffetti et al, 2000; Ross

et al, 2007). In agreement, mice deficient in both IL-1a and IL-1b
exhibited dramatically reduced ischemic infarct volumes in transient

MCAO (Boutin et al, 2001), whereas IL-18-deficient mice did not

show protection in this model (Wheeler et al, 2003). NLRP3 defi-

ciency in mice, treatment with the NLRP3 inflammasome inhibitor

MCC950/CRID3, and intracerebroventricular injection of NLRP3

siRNAs all ameliorated clinical outcomes in experimental models of

stroke (Ma et al, 2014; Yang et al, 2014; Yuan et al, 2015; Ismael

et al, 2018b). Also, NLRC4- and AIM2-deficient mice were shown to

have significantly smaller infarct volumes compared to wild-type

mice subjected to tMCAO, with was associated with strongly

reduced microglia cell activation and leukocyte recruitment to the

infarct site (Denes et al, 2015). Finally, an expression analysis in the

peri-infarct zone of transient MCAO rats revealed elevated levels of

the inflammasome components NLRP1, NLRP3, AIM2, NLRC4, and

ASC (Lammerding et al, 2016), consistent with the potential activa-

tion of multiple inflammasomes in stroke.

Inflammasome activation in traumatic brain and spinal
cord injury

Patients with traumatic brain injury (TBI) have significantly higher

levels of inflammasome markers in their CSF, including ASC,

caspase-1, NLRP1, and NLRP3 (Adamczak et al, 2012; Wallisch

et al, 2017). However, NLRP1b and ASC knockout mice did not

show any improvement in motor recovery or lesion volume in

conditions of TBI, compared to control mice, although their levels of

IL-1b were reduced (Brickler et al, 2016). NLRP3 expression localiz-

ing to neurons, microglia, and astrocytes was also detected in exper-

imental TBI (Liu et al, 2013a), and NLRP3-deficient mice as well as

pharmacological blockade of NLRP3 activation were shown to

improve recovery from TBI (Irrera et al, 2017). Treatment with IL-

1b neutralizing antibodies also was shown to improve the cognitive

outcome following TBI (Clausen et al, 2009). In contrast to IL-1b
levels, which rapidly increase after TBI, IL-18 levels gradually

increase over several days, suggesting that IL-1b may be involved in

the early phase of TBI, while IL-18 may contribute to pathogenesis

at later phases of the disease. In agreement, IL-18 inhibition resulted

in improved neurologic recovery after 7 days with little effect on the

early response being observed immediately after injury (Yatsiv et al,

2002).

Similar to TBI, spinal cord injury (SCI) induced higher levels of

NLRP1, ASC, caspase-1, IL-1b, and IL-18 in mice, and therapeutic

neutralization of ASC was proposed to result in tissue sparing and

functional improvement due to reduced inflammasome activation in

neurons (de Rivero Vaccari et al, 2008). Furthermore, expression of

heme oxygenase-1 was shown to suppress NLRP1 inflammasome

activation and neuronal cell death, and lead to improved functional

recovery after SCI (Lin et al, 2016). Also, enhanced NLRP3

expression can be demonstrated in SCI, predominantly in neurons,

but also in microglia and astrocytes (Zendedel et al, 2016).

Inflammasome activation in Alzheimer’s disease

Alzheimer’s disease (AD) is the most common age-related neurode-

generative disorder and is characterized by progressive memory

deficits and cognitive impairment (Sala Frigerio & De Strooper,

2016). AD pathology is dominantly explained by the amyloid

hypothesis, which suggests that the increasing extracellular deposi-

tion of misfolded amyloid-beta (Ab) is the primary cause of the

disease. Although there is overwhelming evidence for a pathogenic

role for Ab in AD, neuroinflammation is increasingly regarded as

another key component that actively contributes to AD pathology

(De Strooper & Karran, 2016; Sala Frigerio & De Strooper, 2016).

Neuroinflammation in AD is primarily driven by the CNS-resident

microglia population (Sarlus & Heneka, 2017; Shi & Holtzman,

2018). Although it is recognized that microglia may exert benign

and reparative activities in AD through the phagocytic removal of

Ab deposits, the accumulation of Ab may also prime microglial cells

and promote their activation and production of inflammatory medi-

ators. Moreover, upon Ab accumulation, microglial cells may

become progressively impaired in their ability to phagocytose Ab
(Sarlus & Heneka, 2017; Shi & Holtzman, 2018). Furthermore, a

microglial inflammatory state would also impact on other CNS-resi-

dent cells and result in synaptic dysfunction and neuronal damage.

Many recent studies have implicated inflammasomes in the

development of AD. Elevated expression of IL-1b has been reported

in microglia that surround Ab plaques of AD patients (Griffin et al,

1989; Simard et al, 2006). Additionally, gene expression analysis of

cultured PBMCs from AD patients revealed higher expression of

NLRP3, ASC, caspase-1, and caspase-5 as well as the cytokines IL-

1b and IL-18 (Saresella et al, 2016). The expression levels of NLRC4

and ASC were also found significantly elevated in brain samples of

a subgroup of sporadic AD patients (Liu & Chan, 2014). Finally,

genetic variants of NLRP1 have been associated with AD risk

(Pontillo et al, 2012), and the amount of NLRP1 immunopositive

neurons was strongly increased in AD brain (Kaushal et al, 2015).

In vitro studies have shown that fibrillar Ab activates the

NLRP3 inflammasome when phagocytosed by microglia, leading to

activation of caspase-1 and release of IL-1b (Halle et al, 2008).

NLRP3 inflammasome activation has also been documented in vivo

in the transgenic APP/PS1 mouse model of AD, and deficiency in

NLRP3 significantly ameliorated spatial memory deficits and hyper-

active behavior in these mice, which was associated with reduced

hippocampal and cortical Ab deposition, smaller plaque volumes,

decreased levels of pro-inflammatory cytokines, and improved

microglial phagocytic ability (Heneka et al, 2013). Similar results

were obtained in APP/PS1 mice that were deficient in caspase-1

(Heneka et al, 2013). Inhibition of the NLRP3 inflammasome by

MCC950/CRID3 also promoted amyloid-b clearance and amelio-

rated cognitive function in APP/PS1 mice (Dempsey et al, 2017).

Indirect inhibition of NLRP3 inflammasome activation by clinically

approved fenamate non-steroidal anti-inflammatory drugs that

target cyclooxygenase enzymes and volume-regulated anion chan-

nels (VRAC) also was shown to suppress microglia-mediated

neuroinflammation and memory loss in 3×TgAD mice (Daniels
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et al, 2016). Finally, pharmacological inhibition of caspase-1 activ-

ity by VX-765 reduced amyloid-b accumulation, brain inflamma-

tion, and cognitive impairment (Flores et al, 2018). Collectively,

these findings suggest that misfolded Ab activates the microglial

NLRP3 inflammasome, which triggers the release of pro-inflamma-

tory factors that perpetrate a chronic neuroinflammatory environ-

ment and promote AD pathology. In addition, NLRP3

inflammasome activity also results in the extracellular release of

micrometer-sized ASC particles that may function as danger signals

and alert surrounding macrophages (Baroja-Mazo et al, 2014).

These ASC specks were shown to physically bind to Ab to seed

and spread Ab pathology in a prion-like manner by promoting

misfolded protein aggregation and plaque formation in the APP/

PS1 AD model (Venegas et al, 2017).

A pathogenic role for IL-1b in AD has been demonstrated in mice

with a deficiency in IL-1 receptor antagonist (IL-1ra), which resulted

in increased vulnerability to intracerebroventricular injection with

human oligomeric Ab1–42 (Craft et al, 2005). Another study

showed that IL-1b injection in the cerebral hemisphere increases

Ab-APP protein levels in wild-type mice (Sheng et al, 1996). In

contrast, sustained hippocampal IL-1b overexpression in APP/PS1

mice was shown to reduce plaque pathology, an observation that

might be explained by the increased phagocytic activity of microglia

and macrophages (Shaftel et al, 2007). Similar observations were

done in 3xTgAD mice, but tau phosphorylation was also increased

in these mice, demonstrating the complex role of IL-1 signaling in

AD (Ghosh et al, 2013). IL-1R1 deficiency in mice had no effect on

Ab deposition in Tg2567 AD mice (Das et al, 2006). Similarly, IL-18

deletion did not confer a protective effect in APP/PS1 mice (Tzeng

et al, 2018). However, these mice were shown to be highly suscepti-

ble to grand-mal seizures and exhibited increased excitatory synap-

tic proteins and dendritic spine density, an imbalance which leads

to a higher basal excitatory synaptic transmission (Tzeng et al,

2018). Therefore, IL-18 may have an unexpected role in controlling

neuronal activity.

Although the focus has been on the role of NLRP3 in AD, the role

of other inflammasomes has also been characterized in the context

of AD. The AIM2 inflammasome was shown to increase Ab deposi-

tion, microglia activation, and cytokine production, but does not

affect behavior or memory in transgenic 5xFAD mice (Wu et al,

2017). NLRP1 knockdown in APP/PS1 mice was shown to result in

significantly reduced neuronal pyroptosis and to rescue cognitive

impairments (Tan et al, 2014). Finally, the NLRC4 inflammasome

was shown to enhance neuronal Ab levels through activated pro-

inflammatory astrocytes (Liu & Chan, 2014).

Inflammasome activation in amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

disease that is caused by the progressive loss of upper and lower

motor neurons and leads to muscle weakness and wasting (Taylor

et al, 2016). Twenty percent of familial ALS cases are caused by

mutations in the gene that encodes superoxide dismutase 1 (SOD1),

and many experimental models of ALS rely on expression of mutant

SOD1. Deficiency in caspase-1 and IL-1b, as well as treatment with

the recombinant IL-1 receptor antagonist anakinra, all significantly

extended the lifespan of mutant SOD1 transgenic animals (Meissner

et al, 2010). Consistently, the expression of NLRP3, NLRC4, AIM2,

and caspase-1 activation has been demonstrated in neural tissue of

mutant SOD1 transgenic animals (Pasinelli et al, 1998; Johann et al,

2015; Gugliandolo et al, 2018), and mutant SOD1 was shown to

activate caspase-1 and IL-1b in microglia (Meissner et al, 2010;

Lehmann et al, 2018). Increased caspase-1 levels have also been

detected in serum of ALS patients (Ił _zecka et al, 2001), and analysis

of postmortem spinal cord tissue showed increased NLRP3, ASC,

caspase-1, and IL-18 expression levels, with spinal cord astrocytes

identified as the main NLRP3 inflammasome-expressing cell type

(Johann et al, 2015). However, clinical studies with anakinra in ALS

patients have not shown a significant reduction in disease progres-

sion (Maier et al, 2015), suggesting that inflammasome activation

does not play a major role in ALS, or that the pathology is driven by

IL-18 or by DAMPs via pyroptosis.

Inflammasome activation in Parkinson’s disease

Parkinson’s disease (PD) is a progressive neurodegenerative disor-

der caused by the loss of dopaminergic neurons in the substantia

nigra pars compacta. Lewy bodies are pathological hallmarks of

the disease that predominantly consist of intra-neuronal aggregates

of fibrillar a-synuclein (Przedborski, 2017). Analysis of the serum

of PD patients revealed increased levels of IL-1b and caspase-1

(Zhou et al, 2016), and elevated IL-1b levels were observed in the

striata of PD patients (Mogi et al, 1994). The midbrain of A53T

transgenic mice, which model PD based on the overexpression of

mutant human A53T a-synuclein, also contained increased IL-1b
concentrations (Zhou et al, 2016). Chronic expression of IL-1b in

the substantia nigra of rats by a recombinant adenovirus express-

ing IL-1b was shown to induce progressive death of dopaminergic

neurons and resulted in motor impairments (Ferrari et al, 2006).

However, most of the evidence linking PD to inflammasome signal-

ing comes from in vitro studies, and the importance of inflamma-

somes for the disease is not completely understood. a-Synuclein
was shown to trigger activation of the NLRP3 inflammasome in

human monocytes and BV2 microglial cells (Codolo et al, 2013;

Gustot et al, 2015; Zhou et al, 2016), but not in primary microglia

(Gustin et al, 2015). In vivo, microinjection of the caspase-1 inhi-

bitor Ac-YVAD-CMK was shown to reduce the expression of

NLRP3 inflammasome signaling proteins and improve the number

of dopaminergic neurons in LPS-induced and 6-hydroxydopamine-

induced PD in rats (Mao et al, 2017). In agreement, NLRP3 knock-

out mice were resistant to the loss of nigral dopaminergic neurons

induced by treatment with the neurotoxin 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), which was associated with a

reduction in caspase-1 activation and IL-1b and IL-18 secretion

(Yan et al, 2015). Recently, caspase-1 was shown to cleave a-synu-
clein in vitro, generating an aggregation-prone protein that was

toxic to cultured neurons (Wang et al, 2016). Finally, mutations in

Parkin, PARK2, PARK6, and PINK1 have been identified in patients

with autosomal recessive early-onset PD, and microglia and macro-

phages from PARK2 and PINK1 knockout mice and patients with

PARK2 mutations have been shown to display an exacerbated

NLRP3 inflammasome response, possibly due to impaired expres-

sion of the anti-inflammatory protein A20 that negatively regulates

NLRP3 inflammasome activation (Mouton-Liger et al, 2018).
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Inflammasome activation in prion disease

Prion diseases are a group of rapidly progressive neurodegenerative

disorders caused by misfolded aggregated infectious prion proteins

(PrP) (Sigurdson et al, 2018). IL-1b levels are increased in the CSF

of patients with Creutzfeldt–Jakob disease (CJD) (Van Everbroeck

et al, 2002), and IL-1b and cleaved caspase-1 levels were reported

to be upregulated in the brains of scrapie-infected mice (Schultz

et al, 2004). Stimulation of microglia with an amyloidogenic PrP

peptide induced NLRP3 activation and IL-1b secretion in vitro (Shi

et al, 2012). Stimulation of microglia with PrP fibrils was also

shown to induce toxicity in neurons (Hafner-Bratkovi�c et al, 2012).

Mechanistically, NLRP3 inflammasome activation was suggested to

negatively regulate autophagy in microglia, thereby contributing to

neurodegeneration (Lai et al, 2018). Inhibition of IL-1R signaling

with anakinra was shown to reduce seizure susceptibility in a CJD

mouse model (Bertani et al, 2017). However, genetic ablation of

NLRP3 or ASC in mice did not affect prion pathogenesis, suggesting

that the NLRP3 inflammasome does not play a significant role in

prion disease (Nuvolone et al, 2015).

Inflammasome activation in Huntington’s disease

Huntington’s disease (HD) is an autosomal dominant progressive

neurodegenerative disease that is caused by the expansion of a trin-

ucleotide CAG repeat in the 50 coding region of the huntingtin gene,

leading to the expression of an abnormal protein that gradually

damages cells in the brain (Caron et al, 2018). Caspase-1 activation

can be detected in the brains of HD patients and in mouse models of

HD, and inhibition of caspase-1 was shown to slow down disease

progression in the R6/2 mouse model of HD (Ona et al, 1999).

Mechanistically, caspase-1 was shown to cleave mutant and wild-

type huntingtin in vitro (Wellington et al, 1998) and in vivo (Ona

et al, 1999), potentially contributing to the neurodegeneration seen

in HD. Similarly, treatment with the tetracycline derivative mino-

cycline was shown to delay disease progression by inhibition of

caspase-1 and caspase-3 expression (Chen et al, 2000).

Pharmacological targeting of inflammasomes

The central role of inflammasomes in neuroinflammatory responses,

in particular NLRP3, makes it an attractive drug target for neurode-

generative diseases. Currently approved therapies in the clinic target

the downstream effector cytokines released by inflammasome acti-

vation, such as anakinra (IL-1 receptor antagonist), canakinumab

(IL-1b neutralizing antibody), and rilonacept (soluble decoy recep-

tor for IL-1b and IL-1a) (Dinarello et al, 2012). While valuable in

treating autoinflammatory diseases (Van Gorp et al, 2019), these

IL-1 inhibitors do not prevent pyroptosis and IL-18-driven immune

activation. The need for subcutaneous administration of these

biological agents represents another drawback of these biological

agents (Moran et al, 2013; Rossi-Semerano et al, 2015), especially

in the case of anakinra, which requires daily injections due to a

short half-life of around 4–6 h (Granowitz et al, 1992). Moreover,

constitutive neutralization of IL-1b-driven signaling increases the

risk for infections, as observed in the recent CANTOS trial (Ridker

et al, 2017). Finally, the concentration of anakinra in CSF of healthy

non-human primates did not surpass 0.2–0.3% of the peripheral

serum concentration, demonstrating poor penetration of the BBB

(Fox et al, 2010). These observations urge for the development of

small molecule inflammasome antagonists with improved pharma-

cokinetic properties and efficacy, and that are able to cross the BBB.

Several small molecule inhibitors that target the inflammasome

components caspase-1, NLRP3, and GSDMD have been reported

(Table 2). Since caspase-1 activation is common to all inflamma-

some complexes, caspase-1 inhibition would serve as a pan-inflam-

masome inhibitory strategy, while compounds targeting NLRP3

have a narrower selectivity profile. Targeting the inflammasome

adaptor ASC would have an intermediate selectivity profile;

however, compounds that target ASC have not been reported to date

(Mangan et al, 2018). A number of NLRP3 inhibitory compounds

have been identified and validated in a suite of disease models

(Table 2). However, for most agents it is not known whether they

directly target NLRP3 or indirectly act on the pathway via other

mechanisms, hampering clinical development of these molecules

(Mangan et al, 2018). To date, only very few compounds targeting

NLRP3 or caspase-1 have entered clinical trials. RP-1127, an intra-

venous formulation of the NLRP3 inflammasome inhibitor glyburide

(Lamkanfi et al, 2009), is being tested in a clinical trial for stroke

(EudraCT 2017-004854-41) after a positively evaluated pilot study

(ClinicalTrials.gov: NCT01268683) (Sheth et al, 2014). RP-1127 is

also being tested in a clinical trial for TBI (ClinicalTrials.gov:

NCT01454154). In addition, the caspase-1 inhibitor VX-765 entered

a phase II clinical trial for use in epilepsy (ClinicalTrials.gov:

NCT01048255) and psoriasis (ClinicalTrials.gov: NCT00205465),

but further development has been discontinued (Mackenzie et al,

2010). The encouraging activity of small molecule NLRP3 inflamma-

some antagonists in preclinical studies warrants the development of

inflammasome-targeting therapies for clinical use.

Pyroptosis is emerging as another key mechanism that contri-

butes to inflammasome-driven pathology in metabolic, autoim-

mune, and neurodegenerative diseases. Cleavage of GSDMD by the

inflammatory caspase-1 and caspase-11 (mouse), or caspase-1,

caspase-4, and caspase-5 (human) releases an amino-terminal pore-

forming GSDMD domain that oligomerizes and inserts in the plasma

membrane, inducing membrane rupture and leakage of the cytosolic

contents (Vande Walle & Lamkanfi, 2016). Hence, GSDMD inhibi-

tion has been proposed as a novel therapeutic strategy to prevent

inflammasome-driven pathology in different diseases. Pyroptosis

has recently been shown to be the critical mechanism of IL-1b-
mediated systemic pathology in the autoinflammatory disease

Familial Mediterranean Fever (FMF), which is caused by missense

mutations in Mefv that activates the pyrin inflammasome

(Kanneganti et al, 2018). Similarly, GSDMD was shown to control

inflammasome-driven pathology in neonatal-onset multisystem

inflammatory disease (NOMID), which is caused by activating muta-

tions in the inflammasome sensor NLRP3 (Xiao et al, 2018). Indeed,

FMF knockin mice and NOMID mice were shown to be fully

protected from developing the respective autoinflammatory

syndromes when crossed into a Gsdmd-deficient background

(Kanneganti et al, 2018; Xiao et al, 2018). GSDMD was also demon-

strated to play a key role in the pathogenesis of steatohepatitis by

controlling cytokine secretion, and Gsdmd knockout mice exhibit

decreased severity of steatosis and inflammation in a high-fat
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Table 2. Overview of pharmacological compounds targeting inflammasome signaling.

Compounds Benefit (+)/detriment (�) Neurodegenerative disease model

Caspase-1 inhibitors

VX-765 and VX-740 (�) No further development after phase II clinical trial for
use in epilepsy and psoriasis (Mangan et al, 2018)

Alzheimer disease (Flores et al, 2018)
EAE (Mckenzie et al, 2018)

NLRP3 inflammasome inhibitors

Sulfonylurea-based compounds

Glyburide (+) Specific for NLRP3 inflammasomes; significantly delays
LPS-induced mortality (Lamkanfi et al, 2009)
(�) High dosage required (Marchetti et al, 2014);
cardiovascular side effects (Riddle, 2003)

TBI (Simard et al, 2012)
Ischemic stroke (Simard et al, 2012)

CP-412,245 and CP-424,174 (+) Oral administration of CP-424,174 selectively blocks IL-1
production in mice (Perregaux et al, 2001)

CRID1 and CRID2 (�) No in vivo evidence

MCC950 (also known as CRID3 or CP-456,773) (+) NLRP3 inflammasome specific (Coll et al, 2015); inhibits
NLRP3 activation by all known stimuli (Mangan et al, 2018)
(�) Precise molecular target unknown

Alzheimer disease (Dempsey et al, 2017)
EAE (Coll et al, 2015)
TBI (Ismael et al, 2018a; Xu et al, 2018)
Stroke (Ismael et al, 2018b; Ren et al,
2018)

16673-34-0 (+) Lacks cyclohexylurea group responsible for
hypoglycemic activity; prevents NLRP-mediated myocardial
injury (Marchetti et al, 2014)

Hybrid molecules (combining MCC950 and
glyburide)

(�) Moderately effective at inhibiting NLRP3 compared to
MCC950 (Hill et al, 2017)

Fenamate classes of NSAIDs

Flufenamic and mefenamic acid (+) Inhibits NLRP3 by blocking VRACs (Daniels et al, 2016)
(�) Lack of specificity, inhibits multiple inflammatory nodes
(Daniels et al, 2016)

Alzheimer disease (Daniels et al, 2016)

Michael acceptors

Parthenolide (�) No suitable pharmacological properties (Baldwin et al,
2016); inhibits NF-jB-dependent signaling (Saadane et al,
2007)

Stroke (Dong et al, 2013)

BAY 11-7082 (�) Not specific; inhibits NF-jB-dependent signaling (Lee
et al, 2012)

TBI (Irrera et al, 2017)

3,4-methylenedioxy-b-nitrostyrene (MNS) (�) Modest potency (Baldwin et al, 2016)

Acrylate and acrylamide derivatives (ex. IFN58,
IFN39)

(+) Oral administration of IFN39 alleviates DNBS-induced
colitis in rats (Cocco et al, 2017)

Novel boron compound series

NBC13 (+) Significantly decreases LPS-induced IL-1b production
in vivo (Baldwin et al, 2017)

Other NLRP3 inhibitors

Fc11a-2 (+) In vivo efficacy in DSS-induced colitis (Liu et al, 2013b)

CY-09 (+) Therapeutic effect in mouse models of CAPS and type 2
diabetes (Jiang et al, 2017)

JC-171 (+) Treatment effective in EAE in both prophylactic and
therapeutic settings (Guo et al, 2017)

EAE (Guo et al, 2017)

OLT-177 (+) No adverse effects in preliminary clinical testing of
healthy humans (Marchetti et al, 2018)

b-hydroxybutyrate (BHB) (�) Not specific for NLRP3; can inhibit HDACs (Youm et al,
2015)

GSDMD inhibitors

Antabuse (+) Efficacious in sepsis models (preprint: Hu et al, 2018)

Necrosulfonamide (+) Efficacious in sepsis models (Rathkey et al, 2018)
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diet-induced model of non-alcoholic steatohepatitis (Xu et al, 2017).

Pharmacologic inhibition of GSDMD by necrosulfonamide also was

efficacious in sepsis models (Rathkey et al, 2018). Finally, antabuse

(disulfiram), a drug used to treat alcohol addiction, was shown to

inhibit GSDMD pore formation and IL-1b secretion in human and

mouse cells, and LPS-induced septic death and IL-1b secretion in

mice (preprint: Hu et al, 2018). Together, these observations suggest

that inhibition of GSDMD-dependent pyroptosis may also hold

promise for the treatment of inflammasome-mediated neuroin-

flammatory pathology.

Concluding remarks and future perspectives

Although only discovered in 2002 (Martinon et al, 2002), inflamma-

somes are now widely regarded as central regulators of innate

immunity playing an indispensable role in the host defense against

stress conditions and pathogens that might be harmful to the host.

However, inflammasome activation leading to excessive or

prolonged inflammation can also contribute to a damaging and

destructive environment resulting in the development of inflamma-

tory diseases, including neurodegenerative diseases (Lamkanfi &

Dixit, 2012).

Most research in the field has focused on the role of the NLRP3

inflammasome, largely neglecting the potential importance of other

inflammasome complexes in CNS disorders. Future research will

have to investigate and characterize less well-known inflamma-

somes and expand the understanding of inflammasome signaling

and its importance for neurodegeneration. The generation of new

mouse models and reagents that allow selective targeting of the

inflammatory mechanisms initiated by these inflammasomes will be

crucial to this end. Also, although the importance of inflammasome

activation has been demonstrated in many neurodegenerative

diseases and experimental model systems, their specific role in the

different CNS cell types is not always clear. Most research has

focused on microglia, but other brain cell types also have functional

inflammasomes which may contribute to disease pathology (Walsh

et al, 2014). Since most studies published so far have investigated

inflammasome activation using conventional “full body” knockout

mice which do not allow to specify the relevant cell types involved,

cell type-specific inflammasome mutant mice will be needed to

address the importance of inflammasome signaling in CNS-specific

cell types, assessing their importance for cytokine production,

pyroptosis, and CNS inflammation. Also, new techniques including

single-cell RNA sequencing and mass cytometry, in combination

with high-resolution microscopy and in vivo cell imaging, should

help to get a better view on the spectrum of inflammasomes that is

expressed in the different CNS-resident cell types in different (patho-

logical) conditions.

Major progress needs to be made in translating findings from

animal studies to humans. However, key differences exist between

human and mouse inflammasomes. Humans have only a single

NLRP1 gene, while mice have three isoforms of Nlrp1. Similarly,

humans have two orthologues for caspase-11, viz. caspase-4 and

caspase-5 (Lamkanfi & Dixit, 2012). More research using human cell

types, eventually based on iPS technology and patient-derived mate-

rial, will be needed to translate findings more effectively from

rodents to the human conditions they model.

Finally, since inflammasome signaling is central to many

neurodegenerative diseases, targeting their activation is regarded as

a potential therapy to treat these diseases. Targeting the down-

stream IL-1b and IL-18 cytokines is probably not the best approach

since these cytokines are needed for optimal immunity in the host.

Moreover, cytokine-targeting biologics have limited capacity to

penetrate the blood–brain barrier. Therefore, modulating the activity

of specific inflammasome sensors and cell type-specific inflamma-

some targeting with small molecules will be vital in this context and

may have better potential as therapies to treat patients that suffer

from neurodegenerative diseases (Guo et al, 2015). Also, pyroptosis

is now being identified as a critical mechanism driving inflamma-

tory pathology, suggesting GSDMD inhibition as a potential anti-

inflammatory strategy (Kanneganti et al, 2018; Mckenzie et al,

2018; Xiao et al, 2018).
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Pending issues

(i) The cell type-specific contribution of inflammasome signaling to
neurodegenerative diseases, both peripheral and CNS resident.

(ii) Direct evidence for inflammasome activation and signaling in
patients with neurodegenerative disease.

(iii) Characterization of the central activation mechanism and high-
resolution structure of inflammasome proteins.

(iv) Development of compounds able to cross the BBB and that selec-
tively inhibits those inflammasomes that contribute to the
pathogenicity.
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