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Abstract—This paper focuses on the development of a 

physics-based diagnostic tool for alternating current (AC) 

solenoid valves which are categorized as critical components of 

many machines used in the process industry. Signal processing 

and machine learning based approaches have been proposed in 

the literature to diagnose the health state of solenoid valves. 

However, the approaches do not give a physical explanation of 

the failure modes. In this work, being capable of diagnosing 

failure modes while using a physically interpretable model is 

proposed. Feature attribution methods are applied to CNN on a 

large data set of the current signals acquired from accelerated 

life tests of several AC solenoid valves. The results reveal 

important regions of interest on current signals that guide the 

modeling of the main missing component of an existing physical 

model. Two model parameters, which are the shading ring and 

kinetic coulomb forces, are then identified using current 

measurements along the lifetime of valves. Consistent trends are 

found for both parameters allowing to diagnose the failure modes 

of the solenoid valves. Future work will consist of not only 

diagnosing the failure modes, but also of predicting the 

remaining useful life. 

Keywords—alternating current solenoid valve, convolutional 

neural network, feature attribution methods, shading ring force, 

condition monitoring 

NOMENCLATURE 

ϕ(t) Magnetic flux 

N Number of main coil windings 

V(t) Input voltage 

i(t) Output current 

R Coil resistance 

m Mass of the plunger 

c Damping coefficient 

k Return spring stiffness 

Fp Return spring pretension force 

Fs Force applied by the solenoid on the plunger 

mmf Magnetomotive force 

Hk Magnetic field intensity through k 

lk Length of k 

μ0 Air permeability 

Axx Cross-sectional area of xx 

I. INTRODUCTION 

Fault diagnosis of critical components of a production 
machine is paramount importance to avoid the machine 
breakdowns that can lead to production losses. Solenoid valves 
are critical components of many machines and used in many 
industrial applications, like heavy duty gas turbine engines, to 
regulate the fluid and gas flow. Therefore, condition 
monitoring and diagnosis of solenoid valves plays an important 
role in many industrial applications. Signal processing [1] and 
machine learning based approaches [2] have been proposed in 
the literature to diagnose the state of solenoid valves resulting 
in the development of a sensor to detect anomalies [3] or a 
method to cluster failures [2]. None of these approaches give a 
physical explanation of the failure modes nor their end of 
useful life. The physical models of valves are derived from first 
principles allow to predict the current signal in a valve [4,5] or 
qualitatively explain current signals [1]. In this work, being 
capable of diagnosing failure modes while using a physically 
interpretable model is proposed. To reach our goal, machine 
learning techniques applied to a large data set of current 
measurements (section II) reveal important regions in current 
signals (section III). This way, the highlighted regions in the 
current signals have guided us to identify the main missing 
components from the existing physical models [4,5] of AC 
solenoid valves (section IV). Expertise is applied to update the 
physical model with two additional forces, namely shading and 
kinetic Coulomb friction forces. The forces are then identified 
using the current signal measurements along the lifetime of 
valves. The identification results show consistent trends 
observed for both forces allowing to diagnose the failure 
modes of the solenoid valves. Therefore, the new physical 
model proposed in this paper can be used to diagnose AC 
solenoid valves. 
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II. EXPERIMENTAL MEASUREMENT CAMPAIGN 

A setup was built in order to age valves from new to their 
end of useful life. The solenoid valves that were tested are 
direct acting 3/2 way normally closed solenoid valves. The 
endurance test consisted of 12000 acquisitions per valve of 10 
on-off switches (~4s) performed every 3 minutes. Each valve 
was supplied with an input voltage of 110V AC at 50Hz. For 
every test, the currents were measured. Piezo patches were 
placed on the top of the valves to measure when the plunger 
would hit the stopper, see figure 1. 
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Fig. 1. New solenoid valve (left) vs. used one (right). During valve opening, 

plunger impacts lower stop. 

The behavior of the valves could be classified into three 
distinct classes, based on the measurements of the 
accelerometer signals. A sample of each class is shown in 
Figure 2. At the beginning of its lifetime, it is observed that 
closing the valve results in one isolated hit of the plunger. This 
is the expected behavior of a healthy valve (class 0). After this 
healthy period, a second regime is observed in the 
accelerometer signal where multiple hits are visible (class 1). 
The last regime is when no hits are observed in the vibration 
signal anymore (class 2). During its lifetime, it is observed that 
a valve sporadically goes back from class 1 to class 0. 
However, once the valve shows no hits anymore, it consistently 
remains in this regime. 

 

Fig. 2. Samples of the current and accelerometer signals given per class 

III. FINDING THE UNMODELLED COMPONENT USING MACHINE 

LEARNING 

A. Regions of importance from current signals 

At the start of this study, the physical origin of the 
anomalous plunger behavior was unknown. In order to gain 
insight into this problem, we formulate the classification of the 
three classes as a supervised machine learning task. Each 
current signal is labelled based on its corresponding 
accelerometer signal, which the learning algorithm should be 
able to predict based on the current signal alone. Subsequently, 
the prediction model of the classifier is analyzed. An overview 
of the size and dimensionality of the dataset is given in Table I. 
Note that the number of instances for all three classes is 
balanced, which means that the classification accuracy is an 
appropriate metric for evaluation. All current signals are 
normalized to a zero mean and a standard deviation of one 
(calculated from the training set). 

TABLE I SPECIFICATIONS OF THE SOLENOID VALVE DATA FOR THE 

CLASSIFICATION TASK. 

Description Value 

Total # of valves 16 

# of time steps in current sample 2300 

# of valves in training set 12 

# of valves in test set 4 

# of classes 3 

# of samples per class, per valve 20 

Total # of training samples 720 

Total # of test samples 240 

We compare the performance of 3 different classification 
algorithms on the raw current signal: 

1) A support vector machine (SVM) using a radial basis 
function (RBF) kernel [6].  

2) A multilayer perceptron (MLP) with two hidden 
layers containing 64 neurons each [7]. 

3) A convolutional neural network (CNN) architecture 
as designed by Ince et al. [8]. 

The hyperparameters of the SVM are set using a grid 
search with stratified cross-validation on 5 partitions of the 
training set with a validation set of 20% per partition. Both the 
MLP and the CNN are trained with the Adam algorithm, 
optimized on a categorical cross-entropy loss. A dropout rate 
of 0.5 is applied to the hidden layers of the MLP in order to 
prevent overfitting. Every classifier is also evaluated ten times 
on a differently chosen division of 12 training and 4 test valves. 

We employ the CNN architecture of Ince, et al., since the 
classification task for which it was designed is very similar to 
our use case in terms of the dimensionality of the dataset and 
its application domain (motor fault detection based on raw 
current signals). Using a deep architecture such as a CNN 
prevents the need for engineering features from raw sensor data. 
MLPs and SVMs are commonly utilized as baselines to which 
a deep learning approach for fault diagnosis is compared to [9]. 



In order to gain insight into the predictions of the CNN, we 
apply different feature attribution methods (Occlusion, 
DeepLIFT, Layer-wise Relevance Propagation, Integrated 
Gradients, Gradient*Input). These methods aim to highlight 
regions in the input signal of the neural network which 
influence the prediction model the most. Details on the 
heuristics used by these methods to assign importance to the 
input can be found in [10]. In this work, the benefit of these 
insights is that they can be leveraged to update a physical 
model of the valves. This is the topic of discussion in Section 
III. 

 

Fig. 3. Important regions of a current signal as returned  by different feature 

attributions methods applied to a CNN trained  on the classification task. The 

attribution values are scaled  in amplitude and given an offset for visibility. 

   

Fig. 4. Normalized confusion matrices of the test set performance for 3 

different classifiers. The mean and standard deviation are given for 10 

evaluations with a differently chosen set of 4 test valves per evaluation. 

B. Numerical results 

The normalized confusion matrices for the test set 
performance of the three classifiers are given in Figure 3. The 
best result for all three classes is obtained with the CNN, which 
means it has the best accuracy overall (0.99, compared 0.96 for 

the MLP and 0.97 for the SVM). In Figure 4 one example of a 
current sample of class 0 is shown, together with the output of 
different feature attribution methods applied to the CNN 
trained on the classification task. It shows that CNN mainly 
assigns importance to 4 distinct regions of the signal when it 
classifies this current signal. This is observed for all samples in 
the dataset. The physical relevance of these regions will be 
described in detail in the next section. 

IV. UPDATING THE PHYSICAL MODEL 

A. Missing forces in healthy valve models 

Solenoid valve physical models in literature [1,4,5] are 
electro-magneto-mechanical models that can be represented in 
their simplest form using the first equation for the magnetic 
flux (ϕ) and a second one for the plunger motion, see equations 
(1). These models can correctly explain the shape of the current 
in healthy conditions (see class 0 from figure 2). However, 
they cannot explain unhealthy conditions (see classes 1 & 2 
from figure 2), revealing something remains unmodelled. The 
input of such a system is a sinusoidal voltage (V) applied to the 
valve and experimentally only the current (i) is measured. It is 
difficult to measure the plunger motion, but the accelerometer 
placed at the top of the valves still allows one to measure 
plunger hits on the stops, revealing its position instantaneously. 

 
ϕ  = 

1

N
 V - Ri 

x  =
1
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 - cx  - kx - Fp + Fs 
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The magnetic flux and the plunger motion equations are 
coupled through the plunger position (x). Its position changes 
the magnetomotive force (mmf) by varying the ratio air/iron the 
magnetic flux must cross (mainly) axially, see equations (2-4). 
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As explained in the previous paragraph, feature attribution 
methods revealed that important regions of the current signal 
can be found around current extrema, see figure 4. Additionally, 
around these regions and when the valves are degraded, 
accelerometers measured plunger impacts, see class 1 
degradation from figure 2 and 5b. Physically, this could be 
interpreted as the return spring, see figure 1, winning 
temporarily the force balance contest provoking a downward 
movement of the plunger. When the plunger moves down 



temporarily, the sealing of the valve will be temporarily compromised, and the valve will leak. 

    
(a) (b) (c) (d) 

Fig. 5. Current signal signatures: (a) healthy valve, (b) leakage (large plunger motion), (c) erratic plunger motion and (d) plunger is stuck 

As soon as the current is high enough again, the 
electromagnetic force applied by the coil on the plunger 
becomes high enough to bring the plunger back to the stop and 
recover the sealing. As this temporary loss of force counter 
acting the return spring is not seen in healthy conditions; the 
assumption can be made that a force pulling the plunger up in 
healthy conditions disappears after degradation.  

 
ϕ  = 

1

N
 V - Ri 

x  =
1

m
 - cx  - kx - Fp + Fs +  Fc+ Fsr 

 

 (5) 

Around the region where the unmodelled force plays an 
important role, the current just crossed zero, meaning the 
electromagnetic force applied by the main coil on the plunger 
is null. To avoid the counteracting force on the return spring to 
be null, valve manufacturers use a secondary source of 
electromagnetic force from a shading ring, see figure 1. The 
coil magnetic field induces an electric current in the shading 
ring that produces an induced electromagnetic force that 
delayed of ¼ of a cycle from the coil current allows to avoid a 
null electromagnetic force when the current is null. This 
additional force (Fsr) is introduced to the initial model, see 
equations (5). In this work, it is proposed to simply model the 
shading ring force as a periodic function delayed from the main 

coil force, see figure 6. The fact that this force might decrease 
during the lifetime of a valve is an assumption that is thought 
to be acceptable based on the results from the computed 
tomographies where it can be clearly seen that the zone of 
impact of the plunger is the zone where valve manufacturers 
place the shading ring (see figure 1). More confidence in this 
assumption is also gained by the numerical results of the next 
paragraph, see figure 9. Finally, visual and manual actuation of 
damaged valves revealed the need to add friction, modeled as a 
Coulomb friction force (Fc, containing both static and dynamic 
terms), see equation (5).  

 

Fig. 6. Additional shading ring force 

 

Fig. 7. Model-based solenoid valve condition monitoring. Two parameters (shading ring and dynamic Coulomb friction force)  are identified on experimental 

data using the proposed physics driven model. 



 

Fig. 8. Current and displacement signatures for varying shading ring forces 

fitting factors (ffsr) 

 

Fig. 9. RMS of current residual with respect to shading ring and dynamic 

Coulomb friction forces fitting factors - in healthy conditions 

B. Identification of the missing forces 

Based on the previous analyses and the two additional 
forces that were included in the model, their identification was 
performed. The residual current (see black lines on figure 5) 
between experiments and simulations was computed every 100 
acquisitions per valve and weighted nonlinear least squares 
were used to estimate the best fitting factors for both forces. 
Higher weights were used around the important regions 
highlighted in the previous section. The results for 5 valves 
show consistent trends and similar life episodes, see figure 9 
and figure 5 in the time domain. In addition to the 3 classes 
considered in the machine learning section, the physical model 
exhibits a new class that would have been hard to guess 
without the proposed physical model: when the plunger is not 
moving as intended but not stucked either (called ‘erra  c’ 
plunger motion, see figure 5c). An essential added value of the 
physical model with respect to a pure data driven one is the 
possibility to predict the (unobservable) plunger motion. On 
figure 5b, when the plunger motion is large, and the valve leaks 
one can estimate the plunger displacement (~0.5mm).  

However, a closer look at figure 5a shows that the proposed 
model predicts some plunger motion when it is not supposed to 
in healthy conditions. This is due to an identifiability issue of 
the shading ring force. Figure 8 shows that the local minima of 
the RMS of the residual current are a line. In other words, as 
soon as the shading ring force fitting factor is higher than ~0.6, 
then the current fit is too similar for the optimizer to 
distinguish values above 0.6, see figure 7. However, the 
plunger displacement which is not measured and therefore 

cannot be used for the identification, shows a significant 
difference from the physical point of view. In healthy 
conditions, the plunger displacement after the initial hit should 
be null. Therefore, the shading ring force fitting factor above 
0.8 makes more sense from the physical point of view. 
Unfortunately, the parameters are not totally identifiable by the 
optimizer in healthy conditions. Nevertheless, the trends 
presented in figure 9 are quite consistent and give a good 
physical understanding of the stage of its life at which a given 
valve is. 

V. CONCLUSIONS AND FUTURE WORK 

The variation of two forces during the lifetime of AC 
solenoid valves are found to be sufficient to explain their 
different stages of degradation. This result allows to perform 
model-based condition monitoring of the valves. To achieve 
this, both shading ring and Coulomb forces are included in a 
classic solenoid valve physical model. The idea to add the 
shading ring force to the model is derived from feature 
attribution methods based on a convolutional neural network 
classifier that highlighted main regions of importance on the 
current signals.  

Future work will work towards the prediction of remaining 
useful life of AC solenoid valves. 
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