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Abstract. Experimental investigations of the free-stream turbulence impact on the tip-vortices 

generated in wind turbine blades have been performed. The investigation is done by exposing 

an efficient laboratory scale wind turbine to different turbulence levels generated by two static 

grids installed in the cross section of a wind tunnel. Different winglet configurations to figure 

out the optimum design that can prevent the tip induced flow are studied. The power gained 

when adding different winglets is measured when exposing the turbine to turbulence. It is 

found that the strength of the vortices is reduced depending on the turbulence levels. 

Furthermore, higher power extraction associated with more expansion of wake and wake-

border is shown. This is an indication for increasing of the mixing between the free-stream and 

the wake. Tip-vortex analysis of high turbulence levels has shown additional interaction of 

large-eddy scales contained in the free-stream turbulence. The turbulence helps to suppress the 

tip vortices, and thus, reduces the tip losses. Further investigations of the near and far wake-

surrounding intersection are performed to understand the energy exchange and the free stream 

entrainment that help in wake recovery. 

1.  Introduction 

Wind turbines normally operate under stochastic environments. Nevertheless, they are designed using 

the aerodynamic theory for a uniform ideal flow without turbulence. Hansen and Madsen [1] described 

the development of the aerodynamic tools that estimate the loads on wind turbines. As a result, the 

operating performance predicted will in general not correspond to the real performance. Wake 

characteristics and tip-vortices are two important parameters affected the performance of the wind 

turbines. Understanding the impact of the different levels of turbulence on the tip-vortices can deliver 

useful information for the design and performance prediction of efficient predicting of the Horizontal 

Axis Wind Turbines (HAWTs). Several researchers have studied the impact of the atmospheric 

turbulence on the performance of wind turbines. It has been shown that both power output and loads 

on turbine blades increase with increasing turbulence intensity levels, [2–3]. For a better prediction of 

the total power output of a HAWT, the evolution and the stability of the tip-vortex were investigated 
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experimentally [4]. The tip-vortex behavior at a high tip speed ratio was investigated, Whale and 

Anderson [5], whereas Wood [6] was showed that the fundamental behavior of the helical vortex wake 

is insensitive to blade chord Reynolds number, when the tip speed ratio is in dynamical similarity. Tip-

vortices have a major importance in wake investigations since they behave as a shield preventing the 

wake from mixing with the free stream flow. Thus, changing their structures has a strong influence on 

the wake, and hence on the power output of a HAWT.  The effects of winglets in wind turbines have 

been investigated with CFD-RANS simulations in order to enhance the aerodynamic performance of 

the wind turbine [7, 8].  

In the present study the impact of turbulence on the tip-vortices as well as the interaction of 

different turbulence scales with the tip-vortices were investigated. The influence of turbulence on the 

breaking down and hence mitigation of the wake border was studied in order to understand the effect 

of the mixing between the free-stream and the wake on the performance of a HAWT. The 

investigation was done by exposing an efficient wind turbine model to different turbulence levels 

generated by two static grids installed in the cross section of a wind tunnel. 

 

2.  Experimental Investigations 

For the experimental investigation of the impact of the free-stream turbulence on the tip-vortices of the 

HAWT blades, an optimized laboratory scale wind turbine was developed by using the TMASO 

method. TMASO is an optimization method that changes the blade shape in order to capture the 

maximum power from the wind under the torque-rotational speed constraint of the drive unit. The 

method is called as Torque Matched Aerodynamic Shape Optimization (TMASO) [9]. The TMASO 

method delivers feasible results for an efficient turbine that can also be up-scaled to the size of a large 

scale HAWT. The measurements were conducted in the closed loop wind tunnel of the Institute of 

Fluid Mechanics of the University of Erlangen-Nuernberg (LSTM) by exposing the wind turbine to 

turbulence of various levels and length scales. Details of the wind turbine setup that consists of rotor, 

generator, mechanical tower, nacelle and electrical circuitry are explained in [10, 11]. 

The turbulence is generated by using two static grids with a fine (8mm) and coarse (40mm) 

spacing, Figure 1. Hence, two completely different turbulence scales are obtained at the inlet of the 

wind tunnel. The turbulence is nearly isotropic and decays in the flow direction, Figure 2. The 

turbulence isotropy was measured in prior investigations for the same wind tunnel and the same grids 

[12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Optimized wind-turbine exposed to two grids (fine and coarse grids) in the wind tunnel. 
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Figure 2: Intensity of grid-generated turbulence 

along the test section for the three cases (no grid, 

fine and coarse grids). 

 

 

A Pitot-static tube was fixed on a 3-D traversing system alone for the velocity measurements, and 

beside a hotwire probe for calibration. The velocity measurements were performed by measuring the 

difference in static and total pressure with a SETRA differential-pressure transducer connected to the 

Pitot-static tube and by applying the Bernoulli equation.  

To measure the velocity fluctuations and hence the turbulence level, a single normal hot-wire 

connected to an anemometer unit with a constant-temperature bridge CTA was employed. The wire 

has a length of 1mm and a diameter of 5μm. A velocity calibration of the employed hot-wire probe 

was performed at the test section near the inlet of the wind tunnel test section. During the calibration 

and the measurements, the temperature of the flow was measured with a PT100 temperature sensor to 

correct the measured data for temperature drifts. The hot-wire signals, the pressure transducer signal 

and the temperature signal were acquired by a 16-bit A/D converter (NI 6059E DAQ card) installed in 

a personal computer. The data were recorded for further analyses of spectra and autocorrelation. The 

sampling rate (SR) for the measurements was chosen in such a way that wide scales of fluctuations 

can be acquired. The sampling rate SR was set to 20 kHz, with an overall measuring time period of 

t=120s. Thus, the acquired 2.4 million data can provide a wide range of turbulence scales and a 

certainty of the turbulence intensity (TI) measurement, which is determined experimentally in the 

present study by increasing the SR until convergence of the TI. Those measurements were conducted 

with hot-wire anemometry in the absence of the wind-turbine. The facility allows exposing the wind 

turbine to turbulence with various energy and length scale levels. 

 The reference wind speed was set to the free-stream velocity of v1=12m/s, which is the design 

speed for the turbine model. Measurements of velocity were taken in an area around the tips at the 

normalized axial distances of x/D=0.2, 0.4 and 0.6. For each x/D, the radial direction with the highest 

fluctuation in velocity was chosen and directly compared to the corresponding y/D for different 

turbulence levels. Figure 3 shows the non-dimensionalised upwind velocities. It is clear from the 

figure 3 that the required distance to measure the reference upwind velocity is function of turbulence 

level (since the rotational speed and hence the blockage effect of the wind turbine is different for the 

three investigated cases). The distance lies in the range of -1.3, -1.1 and -0.9 (x/D: upwind distance to 

diameter ratio), for the three cases without grid, with fine grid and with coarse grid, respictively. The 

measurement for the power coefficient will be taken when the wind turbine model is mounted at 120 

cm distance from the wind-tunnel test-section entrance (For the worst case: 1,3*50 cm (diameter)=65 

cm). Figure 4 shows the measurement positions within the total experimental setup. 
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Figure 3: Upwind velocity distribution (non dimensionalized to v1=12 m/s) (a) without grid, (b) with 

fine grid, (c) with coarse grid 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Experimental set-up and the measurement positions. 

 

The energy spectrum at a hot-wire probe distance from the grid of x=120cm at the design free-

stream wind velocity is depicted in Figure 5. The position of x=120cm was selected since it satisfies 

both the isotropy of the free-stream turbulence and a sufficient down-stream distance for wake and 
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hence tip-vortices development. Furthermore, the turbulence length scale of the freestream turbulence 

is shown in Figure 6 for both cases, for the fine and for the coarse grid. 

 

 

 

 

 

 

 

 

 

 

 

3.  Tip Vortex Analysis 

As shown in Figure 7(a), the maximum fluctuation for the free-stream low turbulence (without grid) 

happens at an axial distance of x/D=0.2 and a radial distance of y/D=0.52. Here, the influence at 

medium (with fine grid) and high turbulence (with coarse grid) levels are not at their maximum yet. 

With increasing turbulence intensity, the downstream velocity decreases. Thus, the wake becomes 

wider, which indicates a higher power extraction. Measured velocities are less than the reference 

velocity v1=12 m/s for all cases, because the measurements were taken inside the wake of the turbine. 

There is a second kind of fluctuation recognizable; it can be clearly seen for the coarse grid case, 

which is due to the high turbulent scale eddies.  

As can be seen in Figure 7(b), when moving in the radial direction of Δy/D = 0.01 to reach 

y/D=0.53, there is an enormous jump in velocity. This position is outside the wake for the low 

turbulence case, but still inside for medium and high turbulence levels. This means, the medium and 

high turbulent wakes are wider than the low turbulent one. Counting 32 maximums peaks within a 

period of t=1s leads to an angular speed of w=200rad/s, which indicates that these fluctuations is 

directly related to the rotor tips. At this position, the fluctuation is at maximum for the fine grid case. 

At a radial distance of y/D=0.54, there is maximum fluctuation for the high turbulence case with the 

coarse grid. The result is shown in Figure 7(c). Here, it is not exactly clear, if the high turbulence 

measurement was taken inside or outside of the wake since the accuracy of the traversing system is 

limited to 5mm. It is possible that it was somewhere in between, but for low and medium turbulence 

cases it is very clear. Again, here the influence of the tips is still. While with the use of the fine grid, 

there is an explicit influence of the mixing of the turbulence eddies and there is no influence at all for 

the low turbulence case.  

 

Figure 5: Distribution of Spectra E(f) with 

eddies frequencies f when using the coarse-

grid at the design free-stream wind velocity 

of v1=12 m/s, turbulence intensity of 

TI=0.039 and hot-wire position of x=120 cm 

with the absence of wind turbine. 

Figure 6: Turbulence length scales 

distribution along the test section when using 

fine grid and coarse grid (Lg: Integral scale, 

λg: Taylor scale). 
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At the axial position of x/D=0.4, the radial position with maximum fluctuation for the low 

turbulence case is at y/D=0.56, as shown in Figure 8(a). In comparison to the x/D=0.2, the steam tube 

is wider. This is true since we have moved in the downstream direction. The absolute fluctuation 

decreases a bit and there is more mixing inside the wake, since there are different eddy scales mixing 

themselves with the tip vortices. The same situation happens in a more pronounced way as shown for 

the fine and the coarse grid. Here, the Pitot-tube was again placed inside the wake. In contrast, for the 

distance of y/D = 0.57, the low turbulence vortices are outside the wake, as shown in Figure 8(b). The 

number of maximum peaks counted hare about 33. This means, the angular velocity w=206rad/s, 

which is higher than in the case without grid. For the high turbulent case, the number is even higher. 

This indicates an increase of the angular speed with the increment of turbulent levels. 

It can be seen in Figure 9(a) that the mixing area is wider. The velocity in the low turbulent case 

drops to an average of approximately 11m/s. For the fine and the coarse grid, a substantial influence of 

the mixing with the surrounding wind is shown. The gap between the expansions of the stream tube 

becomes wider with higher x/D distances from the rotor plane. Moving with Δy/D=0.02 outside, 

Figure 9(b), the maximum fluctuation of the fine grid is the same as the coarse grid. The difference 

between both in mixing and velocity is more pronounced. 

 

 

 

 

 

 

Figure 7: Tip vortices at x/D=0.2 for 

different turbulence levels (a) y/D=0.52, 

maximum fluctuation without grid, (b) 

y/D=0.53, maximum fluctuation with 

fine grid, (c) y/D=0.54, maximum 

fluctuation with coarse grid. 
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Figure 8: Tip vortices at x/D=0.4 for different 

turbulence levels (a) y/D=0.56, maximum 

fluctuation without grid, (b) y/D=0.57, 

maximum fluctuation with fine and coarse 

grids. 

Figure 9: Tip vortices at x/D=0.6 for different 

turbulence levels (a) y/D=0.58, maximum 

fluctuation without grid, (b) y/D=0.6, 

maximum fluctuation with fine and coarse 

grids. 

Figure 10: Comparison of the tip vortex 

for a single revolution of the rotor at 

varying x/D and turbulence level 
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The one revolution maximum tip vortex is obtained by splitting the tip-vortices into the 

corresponding frequency values which is known from the angular speed ω of the three cases (where, 

f=ω/2π). Then, the set of data were averaged to obtain only one rotational averaged vortex. The 

velocity is normalized by its mean value to simplify the comparison. For a full revolution, three tips 

are expected to be seen. Each minimum appears when a rotor blade is passing in front of the Pitot-

tube, Figure 10. It can be clearly seen that not only the tip vortices are damped in amplitude with 

increasing turbulence, but also the revolution speed increases (less time). At the same time the mixing 

with the surrounding increases. Figure 10(b) shows that vortices are suppressed for the case of the fine 

grid, despite that, the peaks of the vortex are still appearing. In contrast, the coarse grid case Figure 

10(c), the additional damping delays until the distance of 0.4, where there are no clear vortex peaks. 

There is only a higher mixing with the large eddy scales containing in the incoming turbulence. 

 

4.  Winglet Effect 

To isolate the major influence of the tip-vortex from other factors that possibly contribute to the 

performance increment, winglets were mounted at the tip of the rotor blades. Winglets are supposed to 

reduce the tip losses by preventing the flow across the tip and result in higher power extraction. Thus, 

different designs were tested until reaching a noticeable power increment Figure 11. 

Figure 12 shows the increment of the power coefficient (CP =Pshaft/Pwind=0.5 ρv3A, [13]) when using 

winglet compared to the measurement without winglets at different turbulence levels. The gain when 

adding winglets can be seen very clearly. This difference, however, is still smaller than when exposing 

the turbine to turbulence generated by grids, the fine and the coarse grids. Hence, preventing tip-

vortices is not the sole reason for the increment of CP with the increase of turbulence levels. There 

might be additional possibilities for that increment. Turbulence not only helps in suppressing the tip 

vortex, but there are additional possible effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  Spectrum Analysis 

The spectrum analysis is used to highlight more details of the impact of turbulence on the tip-vortices 

structures, and hence, the free-stream wake interaction at different turbulence levels. Starting with the 

near wake distance at x/D=0.3, Figure 13 shows the case when the turbine is mounted at a test section 

position of x=100cm from the inlet of the test section, where the incoming turbulence intensities (TI) 

are 0.007, 0.013 and 0.046 for the no grid, fine grid and coarse grid cases, respectively. It is possible to 

distinguish between energy developments as a function of eddy frequencies f at a different incoming 

TI. 

Figure 11: Optimum winglet design. Figure 12: The effect of winglet on the CP 

at free flow turbulence in comparison with 

the turbulence. 
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In general, the energy of the most energy containing frequencies (f<100Hz) increases. This 

increment is associated with the penetration of the incoming turbulence through the rotor plane 

(between the blades). Figure 13 also shows three distinguished jumps of the energy at defined 

frequencies (f=34, 66 and 100Hz). These peaks are more apparent at a measurement position of 

y/D=0.4, and they correspond to the three rotor blades and represent the additional increment of TI 

(and thereby turbulent energy) of the rotation of the turbine. As expected, the amplitude decays with 

increasing distance from the tip at y/D in both directions. Here, the mixing is most distinctive. With 

additional incoming grid-generated turbulence, the turbine rotates faster. This fact becomes clear in 

the Figure 13 by the shift of the peaks to higher frequencies. Especially at the maximum fluctuation 

position for the low turbulent case, there is a high intensive mixing over a wide interval of frequencies. 

The effect fades with higher incoming turbulence, for the high turbulent case it disappears nearly 

completely. The fading is also noticeable for increasing measuring distance from the turbine        

Figure 14. Here, the three typical peaks still exist, but tip vortices vanish due to dissipation. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Distribution of Spectra E(f) with 

eddies frequencies f at different radial distance 

y/D in the turbine wake for different free-

stream turbulence levels at hot-wire in 

downwind position of x/D=0.3. 

Figure 14: Distribution of Spectra E(f) with 

eddies frequencies f at different radial distance 

y/D in the turbine wake for different free-

stream turbulence levels at hot-wire in 

downwind position of x/D=1.1. 
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6.  Conclusions 

The present study presents the impact of wind turbulence on the performance of the HAWT via 

investigating the interaction of the free-stream turbulence with the tip-vortices.  Result shows that with 

optimization of the rotor blades and additional tip-winglets there is a high potential of extracting more 

power by the turbine when exposed to higher level of turbulence for the same reference upwind 

velocity. Explanation is that the turbulence helps in suppressing the tip-vortices and therefore, reduces 

the tip losses. Tip-vortices forming barrier cone behind the wind turbine that preventing the mixing 

between the free-stream and the wake. Therefore, suppressing it enhances of the mixing, and hence, 

faster wake recovery is achieved. Furthermore, the study shows a penetration of the free-stream 

turbulence through the rotor plane (between the blades), which helps in energizing the wake with large 

eddies of the upwind flow and hence reduces its adverse pressure effect. Adding winglets to the blade 

tip reduces the tip-vortices and hence isolates a major part of it. The power gain when adding winglets 

is less than when exposing the turbine to turbulence. Hence, preventing tip-vortices is not the sole 

reason for the increment of power. 
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