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Abstract— In this paper, the shoulder glenohumeral displace-
ment during the movement of the upper arm is studied. Four
modeling approaches were examined and compared to estimate
the humeral head elevation (vertical displacement) and transla-
tion (horizontal displacement). A biomechanics-inspired method
was used firstly to model the glenohumeral displacement in
which a least squares method was implemented for parameter
identification. Then, three Gaussian process regression models
were used in which the following variable sets were employed: i)
shoulder adduction/abduction angle, ii) combination of shoulder
adduction/abduction and flexion/extension angles, iii) overall
upper arm orientation in the form of quaternions. In order
to test the respective performances of these four models, we
collected motion capture data and compared the models’ rep-
resentative capabilities. As a result, Gaussian process regression
that considered the overall upper arm orientation outperformed
the other modeling approaches; however, it should be noted that
the other methods also provided accuracy levels that may be
sufficient depending on task requirements.

I. INTRODUCTION

Rehabilitation robots have improved the therapeutic qual-
ity by enabling longer training sessions and more repetitive
and cyclic stimulus [1]. Multiple number of studies have
contributed to the robotic therapy devices, for instance, Nef
et al. developed an upper limb exoskeleton called ARMin III
with a biomechanics-inspired shoulder mechanism [2]. Otten
et al. proposed a self-aligning upper limb exoskeleton called
LIMPACT [3]. Ergin and Patoglu designed and developed an
upper limb exoskeleton with a special shoulder mechanism
to address the self-alignment capability [4]. Ugurlu et al.
synthesized a controller for upper limb exoskeletons to
achieve sensorless force and impedance control [5].

Ensuring the proper alignment between the robot and user
joints is one of the key challenges in designing and con-
trolling the exoskeleton [6]. A commonly used assumption
in the rehabilitation robotics community is to represent the
shoulder glenohumeral (GH) joint as a ball and socket type
[7]. This assumption may ignore the vertical and horizontal
displacement of the GH joint during the larger motions.
Mechanisms with no alignment capability could lead to
hyperstaticity and parasitic forces, which may cause severe
pain [3], [6], [8].

In order to prevent shoulder joint misalignment, it is
desirable to model the glenohumeral elevation. To that end,
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Nef. et al. devised a mathematical tool that considered
shoulder adduction/abduction angle as the main parameter
[2]. Nikooyan et al. developed the Delft Shoulder and Elbow
Model (DESM), which comprised inverse-forward dynamics
of the shoulder complex [9]. Petuskey et al. defended that
shoulder flexion/extension angle must be taken into account
beside the adduction/abduction angle [10]. Wuelker et al.
stated that the overall upper arm orientation should be
considered [11].

We believe that shoulder misalignment can be prevented
by an additional prismatic joint if only glenohumeral el-
evation is sufficiently modeled. For this purpose, we ex-
amined the following four models: i) A biomechanics-
inspired model in which shoulder elevation is formulated
in terms of shoulder abduction/adduction angle [2]. ii) A
Gaussian Process Regression (GPR) model in which shoul-
der abduction/adduction angle is considered. iii) A GPR
model in which both shoulder flexion/extension and abduc-
tion/adduction angles are considered. iv) A GPR model in
which the whole upper arm orientation is considered using
the quaternions representation.

The paper is organized as follows: section II summarizes
the models and methods we employed. Section III discusses
the results, and section IV concludes the paper.

II. METHODS

A. Biomechanics-inspired Model

Referring to [2], the position of the humeral head (HH)
is expressed as a function of different physical measure-
ments and angles. The model considered the shoulder ab-
duction/adduction movement (the arm elevation angle θ1) in
finding the translation of HH in the x and y directions as
shown in Fig. 1.

Fig. 1: Humeral Head elevation in the frontal plane
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In Eq. 1, lc is the clavicle length and ls is the distance
between the center of the acromioclavicular joint and the
glenohumeral joint. Those two parameters together with
an, am, bn and bm are the coefficients to be estimated in
order to find the translation in the HH in the frontal plane
(xy). Nef et al. explicitly provided these values based on
human biomechanics; however, we used their template model
and implemented the least squares method to estimate the
parameters lc, ls, an, am, bn and bm.

B. Gaussian Process Regression (GPR) Based Models

In supervised learning, it is expected that the points with
similar predictor values xi, naturally have close response
(target) values yi. In Gaussian processes, the covariance
(kernel) function expresses this similarity. It simply specifies
how much does the knowledge of one point xi tell us about
another point xj [13].

Although there are many kernel functions that can be
used in GPR, probably the most commonly used one is
the Squared Exponential Kernel, which we have adopted
in the reported study. To assess the predictive capability of
the models trained, we used k-fold cross-validation method;
which uses models trained on in-fold observations to predict
response for out-of-fold observations1.

The GPR is used in our work to represent the HH transla-
tion in terms of different set of parameters. Three models
are implemented and compared with the previous model.
The first model describes the translation as a function of
the shoulder abduction/adduction angle θ1 as in the previous
case, but with the GPR model.

(XHH , YHH) = f(θ1) (2)

The second model considers the combination of shoulder
abduction/adduction (θ1) and flexion/extension angles (θ2).

(XHH , YHH) = f(θ1, θ2) (3)

The last model takes the overall upper arm orientation
into account in finding the translation values. To represent
the orientation, the quaternions were used. The equation is
written using three quaternion parameters only (qx, qy, qz);
the fourth parameter is not used since it depends on the other
three.

(XHH , YHH) = f(qx, qy, qz) (4)

The left arm and right arm will have the same equations
(Eqs. 1-4), but with different parameters sets.

1www.mathworks.com/help/stats/fitrgp.html

C. Data Collection

For proof of the concept, a single able-bodied male
volunteer (aged 35) participated. The internal ethics review
board of Ozyegin University approved the study. To obtain
the required position/orientation variations, an OptiTrack2

motion capture marker-based system was used. It utilizes
retro-reflective markers on pre-designated locations of the
body as shown in Figs. 2 and 3. An array of eight cameras
were used to track those markers during the movement of
the subject. A collection of arm movements via the sole use
of the shoulder joint was performed, i.e., elbow and wrist
joints remained locked as much as possible. The movements
included 3D trajectories within the shoulder joint ranges and
engaged all shoulder joint axes. The data was recorded using
a sampling rate of 250 Hz, and for each experiment, 240 sec-
onds long data was collected. The software platform (Motive)
reliably provided marker positions and limb orientations for
the subject; see [12].

Fig. 2: Front view of the markerset.

Fig. 3: Back view of the markerset.

III. RESULTS AND DISCUSSION

The translation of the human shoulder humeral head was
estimated in our work by considering four approaches. In
the first one, only the shoulder adduction/abduction angle
θ1 was taken into account to find the vertical and horizontal
translational of the HH as in Fig. 1. In doing so, the template
model provided by Nef et al. was used as a reference [2], an
estimation of its parameters was done with the least squares
method, based on Eq. 1. The curve fit was done and validated
using 7-fold cross-validation method. Fig. 4 shows the fitting
result for translation along the x and y axes. We can see
from the figure that the model did not fulfill the best fit
curve to the measured translation, hence the mean squared
error (MSE) gave a value of 2.919e− 01 [m2] in predicting

2http://optitrack.com/
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Fig. 4: Humeral Head translation in x & y directions using Biomechanics-inspired model considering θ1
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Fig. 5: Humeral Head translation in x & y directions using GPR model considering θ1
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Fig. 6: Humeral Head translation in x & y directions using GPR model considering θ1, θ2
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Fig. 7: Humeral Head translation in x & y directions using GPR model considering qx, qy, qz



XHH and 5.279e − 02 [m2] in predicting YHH as shown
in Table 1; the BioMech. approach (Biomechanics-inspired
model approach).

The second approach made use of the GPR model to
represent the HH translation, again with the shoulder ab-
duction/adduction elevation (θ1), as shown in the Fig. 5.
The k-fold cross-validation technique was used to validate
the result. Comparing to the previous model, using Gaussian
process in this approach relatively improved the fitting per-
formance in terms of the prediction error value; referring to
Table 1.

As mentioned previously, the shoulder flexion/extension
angle can contribute to the humeral head displacement;
thus, a combination of shoulder adduction/abduction and
flexion/extension angles appears as the third approach. The
regression was done again with GPR model and k-fold
validation. Fig. 6 displays the fitting result along the x and
y axes. In this case, although the error value is similar to
the case of using θ1 alone, there are many undesired peaks
which cannot be ignored and should be eliminated using a
technique such as median filtering.

Taking the overall upper arm rotation into account is
logically the most sensible choice to obtain a comprehensive
model that represents the shoulder elevation. Implementing
the fourth approach of our study (GPR with quaternions) led
to the best prediction result so far. From Fig. 7, we can see
that the modeled translation in y-axis is almost matching the
measured ones, which is also reflected in the negligible value
of the error (in the order of micro); see Table 1. A similar
result was obtained for the left shoulder, thus not plotted, but
its error values are displayed in Table 2.

Approach MSE XHH [m2] MSE YHH [m2]

BioMech. (θ1) [2] 2.919 e-01 5.279 e-02

GPR (θ1) 5.873 e-04 3.575 e-04

GPR (θ1, θ2) 1.909 e-04 1.385 e-04

GPR (qx, qy , qz) 8.111 e-06 2.015 e-06

TABLE 1: Prediction error for the right shoulder

Approach MSE XHH [m2] MSE YHH [m2]

BioMech. (θ1) [2] 2.797 e-01 5.092 e-01

GPR (θ1) 4.246 e-04 2.634 e-04

GPR (θ1, θ2) 1.224 e-04 6.037 e-05

GPR (qx, qy , qz) 1.955 e-05 3.808 e-06

TABLE 2: Prediction error for the left shoulder

IV. CONCLUSION

In this work, we presented a comparative study to rep-
resent shoulder glenohumeral elevation. Although the GPR
model using quaternions outperformed the other modeling
approaches, they all provided a fairly accurate fitting. In
terms of the error values, some applications have a big
tolerance to error, so a reduction to an error less than

millimeter may be good enough. In terms of the smoothness,
the first three approaches can give a promising result by the
addition of certain filters.

This study provides a proof of concept results and the re-
sults were obtained from a single able-bodied subject. More
experiments will be conducted to see whether a statistical
significance arises between these approaches. In our future
work, we will employ the GPR-based approach with a low-
cost IMU module that is attached to the user upper arm for
controlling our upper limb exoskeleton.
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