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We evaluate the spin-3=2 → spin-1=2 electromagnetic transitions of the doubly charmed baryons on
2þ 1 flavor, 323 × 64 PACS-CS lattices with a pion mass of 156ð9Þ MeV=c2. A relativistic heavy quark
action is employed to minimize the associated systematic errors on charm-quark observables. We extract
the magnetic dipole, M1, and the electric quadrupole, E2, transition form factors. In order to make a
reliable estimate of the M1 form factor, we carry out an analysis by including the effect of excited-state
contributions. We find that the M1 transition is dominant and light degrees of freedom (u=d- or s-quark)
play the leading role. E2 form factors, on the other hand, are found to be negligibly small, which in turn,
have a minimal effect on the helicity and transition amplitudes. We predict the decay widths and lifetimes of
Ξ�þ;þþ
cc and Ω�þ

cc based on our results. Finite size effects on these ensembles are expected to be around 1%.
Differences in kinematical and dynamical factors with respect to the Nγ → Δ transition are discussed and
compared to nonlattice determinations while keeping possible systematic artifacts in mind. A comparison
toΩcγ → Ω�

c transition and a discussion on systematic errors related to the choice of heavy quark action are
also given. Results we present here are particularly suggestive for experimental facilities such as LHCb,
PANDA, Belle II, and BESIII to search for further states.
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I. INTRODUCTION

Recently there has been a profound interest in the
spectroscopy and the structure of charmed baryons. Even
though there are many states yet to be confirmed and
discovered by experiments, the charmed baryon sector
holds its theoretical appeal. Binding of two heavy quarks
and a light quark provides a unique view for confinement
dynamics. All of the singly charmed ground-state baryons,
which were predicted by the quark model, have been
experimentally observed [1–5]. Observation of the doubly
charmed baryons, on the other hand, have been challenging
for experiments. The first observation of the doubly
charmed baryon was reported by SELEX Collaboration
in 2002 [6]. The mass of the Ξþ

cc (ccd) baryon was reported
as 3519� 1 MeV=c2. However, none of the following
experiments could confirm this result [7–10], until very
recently LHCb Collaboration discovered the isospin

partner of Ξþ
cc, namely Ξþþ

cc [11], containing two c-quarks
and one u-quark. The mass of Ξþþ

cc reported by LHCb
is 3621.40� 0.72� 0.27� 0.14 MeV=c2, approximately
100 MeV larger than the SELEX finding and in agreement
with lattice QCD predictions. This mass difference between
the two isospin partners has been discussed with various
theoretical approaches [12–15].
Spin-1=2 doubly charmed baryons sit at the top layer of

the flavor-mixed symmetric 20-plet of theSU(4)multiplet. In
this layer,Ξþþ

cc andΞþ
cc are the isospin doublets, I ¼ 1=2, and

Ωcc is the isospin singlet, I ¼ 0. Spin-3=2 doubly charmed
baryonsΞ�þþ

cc ,Ξ�þ
cc , andΩ�

cc sit at the third layer of the flavor-
symmetric 20-plet with the same isospin assignments.
Electromagnetic properties of the baryon transitions

give information about their internal structures and shape
deformations. Examining the radiative transitions of
doubly charmed baryons is a crucial element of under-
standing the heavy quark dynamics. In our previous works,
we have studied the Ωcγ → Ω�

c and Ξcγ → Ξ0
c transitions in

lattice QCD [16,17]. Being motivated by the recent
experimental discovery of the Ξþþ

cc baryon, we extend our
investigations to the spin-3=2 → spin-1=2 electromagnetic
transitions of the doubly charmed baryons. Such transitions
are of particular interest for experimental facilities such as
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LHCb, PANDA, Belle II, and BESIII to search for further
states.
Spin-3=2 → spin-1=2 transitions are governed by three

transition form factors, namely, the magnetic dipole (M1),
the electric quadrupole (E2), and the electric charge
quadrupole (C2). We study the Sachs form factors and
the helicity amplitudes of these transitions and extract the
decay width and the lifetime. Electromagnetic transitions of
the doubly charmed baryons have also been studied within
the heavy hadron chiral perturbation theory [18–20] and
covariant baryon chiral perturbation theory [21], in the
context of the bag model [22,23] and quark models [24–30]
and by QCD sum rules [31,32].
This paper is organized as follows: In Sec. II, we give

the formulation of the transition kinematics. Section III
presents the details of our lattice setup. We present and
discuss our results in Sec. IV, and we summarize the work
in Sec. V.

II. LATTICE FORMULATION

Electromagnetic transition form factors for a Bγ → B�
process is encoded into baryon matrix elements written in
the following form:

hB�ðp0; s0ÞjJ μjBðp; sÞi

¼ i

ffiffiffi

2

3

r

�

mB� mB

EB� ðp0ÞEBðpÞ
�

ūτðp0; s0ÞOτμuðp; sÞ; ð1Þ

where B and B� denote spin-1=2 and spin-3=2 baryons,
respectively. p and p0 denote the initial and final four
momenta, and s and s0 denote the spins. uðp; sÞ is the Dirac
spinor, and uτðp; sÞ is the Rarita-Schwinger spin vector.
Operator Oτμ can be parametrized in terms of Sachs form
factors [33],

Oτμ ¼ GM1ðq2ÞKτμ
M1 þGE2ðq2ÞKτμ

E2 þ GC2ðq2ÞKτμ
C2
; ð2Þ

where GM1, GE2, and GC2 denote the magnetic dipole, the
electric quadrupole, and the electric charge quadrupole
transition form factors, respectively. The kinematical fac-
tors are defined as

Kτμ
M1¼−3ððmB� þmÞ2−q2Þ−1iϵτμανPαqνðmB� þmBÞ=2mB;

ð3Þ

Kτμ
E2 ¼ −Kτμ

M1

− 6Ω−1ðq2ÞiϵτβανPαqνϵμβρθp0ρqθγ5ðmB� þmBÞ=mB;

ð4Þ

Kτμ
C2

¼ −3Ω−1ðq2Þqτðq2Pμ − q · PqμÞiγ5ðmB� þmBÞ=mB:

ð5Þ

Here q ¼ p0 − p is the transferred four–momentum, P ¼
ðp0 þ pÞ=2, and

Ωðq2Þ ¼ ððmB� þmBÞ2 − q2ÞððmB� −mBÞ2 − q2Þ: ð6Þ

The Rarita-Schwinger spin sum for the spin-3=2 field in
Euclidean space is given by
X

s

uσðp;sÞūτðp;sÞ

¼ −iγ ·pþmB�

2mB�

�

gστ −
1

3
γσγτ þ

2pσpτ

3m2
B�

− i
pσγτ −pτγσ

3mB�

�

;

ð7Þ
and the Dirac spinor spin sum by

X

s

uðp; sÞūðp; sÞ ¼ −iγ · pþmB

2mB
: ð8Þ

To extract the form factors we use the following two- and
three-point correlation functions:

hGB�B�
στ ðt;p;Γ4Þi¼

X

x

e−ip·xΓαα0
4 ×hvacjT½ηασðxÞη̄α0τ ð0Þ�jvaci;

ð9Þ

hGBBðt;p;Γ4Þi¼
X

x

e−ip·xΓαα0
4 × hvacjT½ηαðxÞη̄α0 ð0Þ�jvaci;

ð10Þ
hGB�J μB

σ ðt2; t1;p0;p;ΓÞi
¼−i

X

x2;x1

e−ip·x2eiq·x1Γαα0 hvacjT½ηασðx2Þjμðx1Þη̄α0 ð0Þ�jvaci;

ð11Þ
where the spin projection matrices are given as

Γi ¼
1

2

�

σi 0

0 0

�

; Γ4 ¼
1

2

�

I 0

0 0

�

: ð12Þ

Here, α and α0 are the Dirac indices, σ and τ are the Lorentz
indices of the spin-3=2 interpolating field, and σi are the
Pauli spin matrices. The spin-1=2 state is created at t ¼ 0,
and it interacts with the external electromagnetic field at
time t1 while it propagates to fixed-time t2 where the final
spin-3=2 state is annihilated.
We choose the interpolating fields similar to those of Δ

and N as

ημðxÞ ¼
1
ffiffiffi

3
p ϵijkf2½cTiðxÞCγμljðxÞ�ckðxÞ

þ ½cTiðxÞCγμcjðxÞ�lkðxÞg; ð13Þ

ηðxÞ ¼ ϵijk½cTiðxÞCγ5ljðxÞ�ckðxÞ; ð14Þ
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where c denotes a charm quark and i, j, k are the color
indices. Since we study the Ξþþ

cc , Ξþ
cc, andΩþ

cc baryons, l is
selected as u-, d-, and s quarks, respectively. The charge
conjugation matrix is defined as C ¼ γ4γ2. The interpolat-
ing field in Eq. (13) has been shown to have minimal
overlap with spin-1=2 states and therefore does not need
any spin-3=2 projection [34].
To extract the form factors, we calculate the following

ratio of the two- and three-point functions:

Rσðt2; t1;p0;p;Γ;μÞ ¼ hGB�J μB
σ ðt2; t1;p0;p;ΓÞi
hδijGB�B�

ij ðt2;p0;Γ4Þi

×

�

δijGB�B�
ij ð2t1;p0;Γ4Þi

GBBð2t1;p;Γ4Þi
�1=2

: ð15Þ

In the large Euclidean time limit, t2 − t1 ≫ a and t1 ≫ a,
time dependence of the correlators are eliminated so that
the ratio in Eq. (15) reduces to the desired form

Rσðt2; t1;p0;p;Γ; μÞ ⟶
t1≫a

t2−t1≫a
Πσðp0;p;Γ; μÞ: ð16Þ

We choose the ratio in Eq. (15) from among several other
alternatives [35–38] as it leads to a good plateau region and
signal quality [16].
Sachs form factors can be singled out by choosing

appropriate combinations of Lorentz direction μ and
projection matrices Γ. Similar to our work in Ref. [16],
we fix the kinematics for Bγ → B� (spin-3=2 at rest) as

GC2ðq2Þ ¼ Cðq2Þ 2mB�

q2
Πkðq; 0; iΓk; 4Þ; ð17Þ

GM1ðq2Þ¼Cðq2Þ 1

jqj
�

Πlðqk;0;Γk; lÞ−
mB�

EB�
Πkðqk;0;Γl; lÞ

�

;

ð18Þ

GE2ðq2Þ¼Cðq2Þ 1

jqj
�

Πlðqk;0;Γk; lÞþ
mB�

EB�
Πkðqk;0;Γl; lÞ

�

;

ð19Þ

where

Cðq2Þ ¼ 2
ffiffiffi

6
p EBmB

mB� þmB

�

1þmB

EB

�

1=2
�

1þ q2

3m2
B�

�

1=2

:

ð20Þ

Here, k and l are two distinct indices running from 1 to 3.
For real photons, only GM1 and GE2 contribute. GC2 does
not play any role since it is proportional to the longitudinal
helicity amplitude. In this work, we focus on the M1 and
E2 transition form factors only due to a poor signal-to-
noise ratio of the C2 form factor with a limited number of
gauge configurations.

III. LATTICE SETUP

A. Gauge configurations

We have run our simulations on gauge configurations
generated by the PACS-CS Collaboration [39] with the
nonperturbatively OðaÞ-improved Wilson quark action
and the Iwasaki gauge action. Details of the gauge configu-
rations are given in Table I. Simulations are carried out with
near physical u, d sea quarks of hopping parameter
κseaud ¼ 0.13781. This corresponds to a pion mass of approx-
imately 156 MeV [39]. The hopping parameter for the sea
s-quark is fixed to κseas ¼ 0.13640. It has been shown that it
is feasible to carry out simulations involving charm quarks
on ensembles with physical light dynamical quarks [40].
Since the ensemble we employ has almost-physical quark
masses, we omit an extrapolation to the physical light quark
mass point. A comparison of our previous mΩc

results from
Ref. [41] [extrapolated value: 2.740(24) GeV] and Ref. [16]
[this ensemble: 2.750(15) GeV] along with a more recent
chiral perturbation theory formextrapolation onmΣc

[extrapo-
lated: 2.487(31) GeV vs this ensemble: 2.486(47) GeV] from
Ref. [42] indicates that almost-physical ensemble values
agree with extrapolated results. Therefore, we consider the
extracted values on this ensemble as final, which eliminates
one source of systematic error.

B. Strange quark mass retuning

We have been unable to reproduce the experimental Ω
mass in our previous studies with κs ¼ 0.13640 as tuned by
the PACS-CS Collaboration to physical strange quark mass
with respect to the mass of theΩ baryon. Our determination
of the mass of Ω on the κseaud ¼ 0.13781 ensemble with

TABLE I. Details of the gauge configurations that we employ [39]. We list the spatial and temporal sizes of the lattice (Ns and Nt),
number of flavors (Nf), the lattice spacing (a), and inverse lattice spacing (a−1), spatial extent of the lattice (L), inverse gauge coupling
(β), Clover coefficient (csw), hopping parameter of the quark with flavor f (κseaf ), and the corresponding pion mass (mπ). We make our
measurements on 163 and 194 configurations, respectively, for Ξcc and Ωcc.

Ns × Nt Nf a [fm] a−1 [GeV] L [fm] β csw κseaud κseas mπ [MeV]

323 × 64 2þ 1 0.0907(13) 2.176(31) 2.90 1.90 1.715 0.13781 0.13640 156(7)(2)
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κvals ¼ 0.13640 is mΩ ¼ 1.790ð17Þ GeV, which overesti-
mates the experimental value by ∼6% [43]. It is, however,
in agreement with the PACS-CS value reported from the
same ensemble, mΩ ¼ 1.772ð7Þ GeV [39]. A crude analy-
sis of the mΩ values reported by PACS-CS is shown in
Fig. 1. We employ a linear and a χPT form [44] for
extrapolation, both of which overestimate the experimental
value. This issue with the tuning of κs has been raised in
some works in the literature as well [45,46]. Therefore we
opt in to use a partially quenched strange quarkmval

s ≠ msea
s

and adopt the value κvals ¼ 0.13665 reported in Ref. [45]
while keeping a−1 ¼ 2.176ð31Þ GeV. We find mΩ ¼
1.674ð30Þ GeV with the retuned κs value.

C. Heavy quark action and quark mass tuning

It is well known that the Clover action has OðmQaÞ
discretization errors that might become significant for
charm quarks. Although we have successfully utilized
the Clover action for charm quarks in our previous works
while accounting for the associated errors, in this work we
improve our simulations with a relativistic heavy quark
action. We employ the so-called Tsukuba action, proposed
by Aoki et al. [47], which is designed to remove the leading
cutoff effects of order ðmQaÞn and reduce it to
OðfðmQaÞðaΛQCDÞ2Þ where fðmQaÞ is an analytic func-
tion around the mQa ¼ 0 point and can be removed further
by tuning the parameters of the action nonperturbatively.
As a result, onlyOððaΛQCDÞ2Þ discretization errors remain.
The action is

SΨ ¼
X

x;y

Ψ̄xDx;yΨy; ð21Þ

where Ψs are the heavy quark spinors and the fermion
matrix is given as

Dx;y ¼ δxy

− κQ
X

3

μ¼1

½ðrs − νγμÞUx;μδxþμ̂;y þðrsþ νγμÞU†
x;μδx;yþμ̂�

− κQ½ð1− γ4ÞUx;4δxþ4̂;y þð1þ γ4ÞU†
x;4δx;yþ4̂�

− κQ

�

cB
X

μ;ν

FμνðxÞσμνþ cE
X

μ

Fμ4ðxÞσμ4
�

δxy: ð22Þ

Here, the parameters rs, ν, cB, and cE should be tuned in
order to remove the discretization errors appropriately.
We adopt the perturbative estimates for rs, cB, and cE
[48] and the nonperturbatively tuned ν value [49]. We
retune κQ nonperturbatively so as to reproduce the rela-
tivistic dispersion relation,

E2
1SðpÞ ¼ E2

1Sð0Þ þ c2eff jpj2; ð23Þ

for the 1S spin-averaged charmonium state. We extract the
energies of the pseudoscalar and vector charmonium states
from the two-point correlation functions of the interpolat-
ing fields

χðxÞ ¼ c̄γ5c; χμðxÞ ¼ c̄γμc: ð24Þ

The values of the parameters and extracted charmonium
masses are given in Table II. Masses of the charmonium
states are in very good agreement with the experimental
results. We give the extracted static masses, E2

1Sð0Þ,
and effective speed of light, c2eff , in Table III, and Fig. 2
shows the dispersion relation. Hyperfine splitting is a
simple prediction one can get from this exercise and is
also a good indicator for the severeness of the discretiza-
tion errors. Experimental V−PS hyperfine splitting is
ΔEðV−PSÞ ¼ 113 MeV where our results yield ΔEV−PS ¼
116ð4Þ MeV. We do not include disconnected diagrams in

FIG. 1. m2
π dependence of mΩ values. Black lattice data points are taken from Ref. [39]. The red curve is a linear, aþ bm2

π , fit form
while the blue curve is Eq. (15) of Ref. [44]. Empty diamonds show the extrapolated values, and the black star is the experimental mΩ.
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this calculation; hence the effects of the possible annihi-
lation of ηc and J=ψ into light hadrons are neglected. This
mechanism would mainly affect the ηc meson and lead to
a mass shift of ΔMηc ¼ −3 MeV [50]. Considering this
correction, our hyperfine splitting estimate increases by
3 MeV in good agreement with the experimental result.

D. Simulation details

We make our simulations at the lowest allowed lattice
momentum transfer q ¼ 2π=L, corresponding to the three-
momentum squared value of q2 ¼ 0.183 GeV2, where L ¼
Nsa is the spatial extent of the lattice. We use a simple
scaling method as in Ref. [35] in order to estimate the
values of the form factors at zero momentum. We assume
that the momentum-transfer dependence of the transition
form factors is the same as the momentum dependence of
the Ω�

cc and Ξ�
cc baryon’s charge form factors. Such a

scaling was used in previous analyses [35] and was also

suggested by the experimental analysis of the proton form
factors. The scaling method provides a more precise
determination of the form factor values at zero momentum
since extrapolations in finite momentum have to build on a
functional form that suffers from large statistical errors.
With the aid of this simple scaling, GM1ð0Þ is estimated by

Gs;c
M1ð0Þ ¼ Gs;c

M1ðq2Þ
Gs;c

E0ð0Þ
Gs;c

E0ðq2Þ
: ð25Þ

We consider quark contributions separately due to the fact
that their charge form factor contributions scale differently.
We have observed that [41,51] the light-quark contribution
produces a soft form factor while that of the heavy quark
is harder, which falls off more slowly with increasing
momentum transfer squared. Since we found similar results
for different kinematics in our previous works [16], we fix

FIG. 2. Relativistic dispersion relation of the 1S charmonium state. Black data points are E1SðpÞ extracted from fits to Eq. (27). Lines
show the fits to Eq. (23) where c2eff is considered as a free parameter. The barely visible dashed blue line is Eq. (23) with c2eff ¼ 1.

TABLE II. Parameter values of the relativistic heavy quark action and masses of pseudoscalar, vector, and 1S charmonium states as
well as the V − PS hyperfine splitting.

κQ rs ν cB cE mηc [GeV] mJ=ψ [GeV] m1S [GeV] ΔEðV−PSÞ [MeV]

0.10954007 1.1881607 1.1450511 1.9849139 1.7819512 2.984(2) 3.099(4) 3.071(4) 116(4)

TABLE III. Extracted static masses, E1Sð0Þ, in lattice and physical units, and effective speed of light, c2eff , from the dispersion relation
analysis with different momenta. The jpj2 column indicates the number of momentum units used for the analysis.

jpj2 E1Sð0Þ [a] E1Sð0Þ [GeV] c2eff
2 1.41111� 0.00150591 3.07058� 0.00327686 1.00818� 0.0159342
3 1.41113� 0.00150235 3.07063� 0.00326911 1.00538� 0.0169947
4 1.41117� 0.00149903 3.07071� 0.00326189 1.00186� 0.0175885
5 1.41122� 0.00149308 3.07082� 0.00324894 0.998545� 0.0185763
6 1.41127� 0.00148551 3.07092� 0.00323247 0.995832� 0.0197037
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the kinematics to where the spin-3=2 baryon is produced at
rest and the spin-1=2 has momentum −q.
In order to increase statistics, we insert positive and

negative momenta in all spatial directions and make a
simultaneous fit over all data. We consider current insertion
along all spatial directions. The source-sink time separation
is fixed to 12 lattice units (1.09 fm), which has been shown
to be enough to avoid excited-state contaminations for
electromagnetic form factors of singly charmed baryons
[41]. We have computed various source-sink pairs by
shifting them by 12a. We perform 880 and 600 measure-
ments for the Ωcc and Ξcc systems, respectively, and bin
the data with a bin size of 20 in order to account for
autocorrelations. To study the excited state effects, we
make calculations with 14a (1.27 fm) and 15a (1.36 fm)
separations on a subset of the gauge configurations also. All
statistical errors are estimated by a single-elimination
jackknife analysis. The vector current we utilize in our
simulations is the point-split lattice vector current

jμ ¼
1

2
½q̄ðxþμÞU†

μð1þ γμÞqðxÞ− q̄ðxÞUμð1− γμÞqðxþμÞ�;
ð26Þ

which is conserved by Wilson fermions and thus eliminates
the need for renormalization.
In order to improve the ground-state coupling, nonwall

smeared source and sink are smeared in a gauge-invariant
manner using a Gaussian form. In the case of light and
strange quarks, we choose the smearing parameters so as to
give a rms radius of rl;srms ∼ 0.5 fm. We have measured the
size of the charm-quark charge radius to be small compared
to the light and strange quarks, both in mesons [52] and
baryons [41]. Therefore, we adjust the smearing parameters
to obtain hrcrmsi ¼ hrl;srmsi=3. We use the wall-source/sink
method [52], which provides a simultaneous extraction
of all spin, momentum, and projection components of
the correlators. The wall source/sink is a gauge-dependent
object that requires fixing the gauge. We fix the gauge to
Coulomb, which gives a somewhat better coupling to the
ground state. Note that using different smearing operators
on source and sink leads to different overlap factors, hence
different ground-state coupling characteristics. This is
visible as an asymmetric signal in our case.
The effects of disconnected diagrams are neglected in

this work since they are noisy and costly to compute.
Furthermore contributions of disconnected diagrams to
isovector electromagnetic form factors are usually sup-
pressed [53]. We also expect the sea-quark effects to be
suppressed in our results.

IV. RESULTS AND DISCUSSION

A. Baryon masses

We extract the masses of spin-1=2 and spin-3=2 Ωcc and
Ξcc baryons using their respective two-point correlation

functions defined in Eqs. (9) and (10). In case of spin-3=2
baryons, an average over spatial Lorentz indices is taken.
Two-point correlation functions reduce to

hGBBðt;p;Γ4Þi≃ZBðpÞZ̄BðpÞe−EBðpÞtð1þOðe−ΔEtÞÞ;
ð27Þ

where the mass of a baryon is encoded into the leading
order exponential behavior and can be identified for the
p ¼ ð0; 0; 0Þ case when the excited states are properly
suppressed. We perform an effective mass analysis,

meff

�

tþ 1

2

�

¼ ln
GBBðt; 0;Γ4Þ

GBBðtþ 1; 0;Γ4Þ
; ð28Þ

in order to estimate a suitable fit window, ½ti; tf�, for the
correlation functions and extract the masses by performing
a nonlinear regression analysis via Eq. (27). It is possible to
take the contributions of first excited states into account as
correction terms to Eq. (27) to enhance the analysis;
however, we find it to be an excessive treatment consid-
ering the precision and agreement of our results. Initial time
slice ti is chosen by intuition where the data start to form a
plateau while the fit window is extended to the time slice
until the signal is deemed to be lost. Effective mass plots are
shown in Fig. 3. Fit regions are determined to be ½ti; tf� ¼
½17; 23�, [17, 23], [14, 30], and [18, 30] for Ξcc, Ξ�

cc, Ωcc,
and Ω�

cc baryons, respectively. Our results are given in
Table IV and shown in Fig. 4 in comparison to other
determinations by various lattice collaborations and the
experimental values where available. Note that our results
are obtained at a pion mass ofmπ ≈ 156 MeV and compare
well to those from other lattice collaborations, which either
are on physical quark mass point or extrapolated to physical
quark mass and consider the continuum limit.

B. Form factors

Since we have all possible Lorentz, momentum, polari-
zation, and current indices, we define an average over
correlation function ratios,

Π1 ¼
Cðq2Þ
jqj

1

6

X

k;l

Πlðqk; 0;Γk; lÞ;

Π2 ¼
Cðq2Þ
jqj

1

6

X

k;l

Πkðqk; 0;Γl; lÞ; ð29Þ

and rewrite Eqs. (18) and (19) as

GM1ðq2Þ ¼ Π1 −
mB�

EB�
Π2; ð30Þ

GE2ðq2Þ ¼ Π1 þ
mB�

EB�
Π2: ð31Þ
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Note that the factor in front of the Π2 term simplifies to
mB�=EB� ¼ 1 since we only calculate the kinematical case
where the spin-3=2 particle is at rest. Also let us remind the
reader that we omit the C2 form factor due to its poor
signal-to-noise ratio.

1. Excited-state contamination
and multiexponential fits

The Π1, Π2 terms and Gðs;lÞ;c
M1 ðq2Þ for Ωþ

ccγ → Ω�þ
cc and

Ξccγ → Ξ�
cc are illustrated in the upper parts of Figs. 5 and 6

as functions of the current insertion time, t1, for both quark
sectors. The Π1 and Π2 contributions have similar magni-
tudes with opposite signs; hence they combine destruc-
tively for GE2, resulting in a vanishing value. Note that we
show the Π1 and Π2 terms for reference since quoted form
factor values are extracted from their proper linear combi-
nations as given in Eqs. (30) and (31). In order to assess the

effect of the excited states, we compare the Gðs;lÞ;c
M1 ðq2Þ

signal for extended source-sink separations. Our investi-
gations give clear indications that the light and strange
quark signals shift significantly, leading us to the con-
clusion that there are considerable excited-state contami-
nations that need to be taken into account. To this end, we
consider employing a multiexponential fit approach to the

whole time range of the signal rather than choosing a
plateau and performing a constant fit. The general form of
the fit function we use is

Rðt2;t1Þ¼GM1ðq2Þþ
X

Ni

i

bie−Δit1 þ
X

Nj

j

bje−Δjðt2−t1Þ: ð32Þ

The first term on the right-hand side corresponds to the
form factor value that we want to extract, and the following
exponentials are there to account for excited-state contri-
butions originating from the source and the sink. bi, bj and
Δi, Δj are the overlap factors and mass gaps, respectively.
Since we have different smearing operators on the source
and the sink, we leave them as independent free fit
parameters. t2 is the fixed sink time slice, and t1 is the
fit variable current insertion time. We have tried different
Ni ¼ 0, 1, 2, 3 and Nj ¼ 0, 1, 2, 3 combinations to find the
simplest fit function that describes the data. Strange and
light quark contributions are contaminated by excited states
on the sink side as expected since a wall-smeared operator
has a worse overlap to ground state compared to that of
Gaussian smeared. We find that two and one exponential
from the sink side is enough to represent the excited states
for the strange and light quark contributions, respectively.

TABLE IV. Extracted Ξcc, Ξ�
cc,Ωcc, andΩ�

cc masses as well as those of other lattice collaborations and experimental values. The errors
in this work are statistical only, while those quoted by other collaborations correspond to statistical and various systematical errors if
given.

This work PACS-CS [49] ETMC [34]
Briceno
et al. [54]

Brown
et al. [50] RQCD [55] Experiment [11]

mΞcc
[GeV] 3.626(30) 3.603(22) 3.568(14)(19)(1) 3.595(39)(20)(6) 3.610(23)(22) 3.610(21) 3.62140(72)(27)(14)

mΞ�
cc
[GeV] 3.693(48) 3.706(28) 3.652(17)(27)(3) 3.648(42)(18)(7) 3.692(28)(21) 3.694(18) � � �

mΩcc
[GeV] 3.719(10) 3.704(17) 3.658(11)(16)(50) 3.679(40)(17)(5) 3.738(20)(20) 3.713(16) � � �

mΩ�
cc
[GeV] 3.788(11) 3.779(18) 3.735(13)(18)(43) 3.765(43)(17)(5) 3.822(20)(22) 3.785(16) � � �

FIG. 3. Effective mass plots for the doubly charmed baryons. Shaded bands show the fit regions. Empty symbols are slightly shifted to
the right for a clearer view.
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Further increasing the number of exponential terms on the
sink or adding terms for the source either aggravates the fit
quality or yields parameters such that the function can be
simplified to the forms that we use. Charm-quark contri-
butions, on the other hand, appear to have a signal that is
free from excited state contamination since an Ni ¼ 2,

Nj ¼ 2 form describes the data with good quality and
yields a value that coincides with the data points.
Multiexponential fits are illustrated in the lower parts

of Figs. 5 and 6. We take the weighted average of the
configuration-by-configuration fit results of GM1ðq2Þ by
considering its parameter error on each configuration as

FIG. 5. (Upper) The correlation function ratios Π1 and Π2 in Eq. (29) as functions of current insertion time, t1, for s- and c-quark
sectors of the Ωccγ → Ω�

cc transition. G
s;c
M1 obtained via Eq. (30) is also displayed. (Lower) G

s;c
M1 form factors shown with configuration-

by-configuration multiexponential-form fits. The red dashed line with shaded region denotes the weighted average and 1 standard
deviation error of the fit results while the blue one is for the average of the results without weighting. Continued dashed curves outside
the fit region are there to guide the eye.

FIG. 4. Visual comparison of our masses to other select lattice collaborations’ results. Our errors are statistical only, whereas other
collaborations’ are statistical and systematical errors combined. See Table IV for references.
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its weight. The red shaded region in Figs. 5 and 6 show the
weighted average with 1σ deviation while the blue shaded
region is for the normal average. Notice that the mean
values of the normal and weighted averages coincide
except for the l-quark sector of Ξcc, for which fits on
some configurations return poorer results with large
parameter errors, and averaging without weighting yields
a larger deviation. We show the superimposed Gs

M1ðq2Þ

signal for extended source-sink separations along with the
multiexponential-form fit result in Fig. 7 to illustrate the
excited state analysis. A clear shift in the signal is visible
for larger source-sink separations. It is crucial to note that
the form factor value we extract via multiexponential fits
agrees nicely with the extended source-sink signals.
Since the value of GE2 is consistent with zero, we do not

perform an excited-state analysis; however, it might be

FIG. 6. Same as Fig. 5 but for the Ξccγ → Ξ�
cc transition. l denotes u and d quarks for Ξ�þþ

cc and Ξ�þ
cc , respectively.

FIG. 7. Comparison of the Gs
M1ðq2Þ signal for extended source-sink separations. The 12a (subset), 14a, and 15a data points are

obtained on a small subset of 44 configurations while the 12a (all) is from the full set of measurements. Points are centered with respect
to the t ¼ 0 time slice for the ease of comparison. The red curves and the red shaded region show the multiexponential-form fits and the
weighted average of the fit results.
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more sensitive to other systematic errors. For one, we
extract GE2 by two numerically differing but analytically
identical procedures. First, we compute it by performing
fits to the Π1 and Π2 terms separately and then combining
the fit results and, second, by combining the Π1 and Π2

terms and then performing a fit to the sum. These two
procedures are identical and should result in the same
values except the numerical fluctuations. We find that these
two approaches are consistent with each other. Another
source of the systematic error might be due to our omission
of the disconnected diagrams. Although their contribution
is suppressed with respect to that of connected diagrams,
they might become significant since the connected diagram
contributions vanish in this case. We expect the electric
quadrupole form factor to be consistent with zero, and the
reason for the high error for GE2 is due to fluctuations of
data between negative and positive axes. We observed that
the mean values and the standard deviation are slightly
changed in further calculations made without using GE2.

2. Results

Total form factors can easily be obtained using the
individual quark contributions according to the formula,

GM1;E2ðQ2Þ ¼ 2

3
Gc

M1;E2ðQ2Þ þ clGl
M1;E2ðQ2Þ; ð33Þ

where cl ¼ −1=3 for the d- and s-quarks and cl ¼ 2=3 for
the u-quark corresponding to Ξþ

cc, Ωþ
cc, and Ξþþ

cc baryons,
respectively. We use the scaling assumption in Eq. (25) to
extract the values of the form factors at Q2 ¼ 0.
Our results for theM1 and E2 form factors are compiled

in Table V. Magnetic dipole (M1) transition form
factor results are given in units of natural magnetons,
μB ≡ e=2mB. Note that the charm-quark contributions
include a factor of 2 accounting for the number of valence
charm quarks. A close inspection of the quark sector
contributions shows that the M1 form factors are domi-
nantly determined by the light quarks, in agreement with
our expectations based on our previous conclusions
[16,17,41]. The l-quark contribution is visibly larger than
the c-quark contribution. This pattern is also consistent

with the hyperon transition form factors [35]: A heavier
quark contribution is systematically smaller than that of the
light quarks. Contributions of s- and l-quark sectors are
similar when switching from a Ωcc baryon to a Ξcc. The
charm-quark contribution is also similar and suppressed as
well, which is in agreement with our previous conclusions
[41,51]. Note that, for the GM1 form factors, the absolute
mean value of the l-quark contribution is larger compared
to that of the s-quark.
Previously, we have calculated magnetic moments and

charge radii of charmed baryons on a wide range of pion
masses changing from mπ ∼ 156 MeV to mπ ∼ 700 MeV
[41,43,51]. We argue in Ref. [43] that the finite size effects
that might be arising due to mπL < 4 are not severe, which
we expect to be the case in this calculation too. Moreover,
the magnetic moments and the charge radii of the Ξcc
and Ωcc baryons were found to be similar. Interestingly,
magnetic moments of the individual s- and l-quark sectors
for Ξcc and Ωcc baryons as well were found to be similar
within their error bars. Both observations are consistent
with the pattern that we see in our current results of GM1

form factors of the Ξþ
ccγ→Ξ�þ

cc and Ωþ
ccγ→Ω�þ

cc transitions.
Sachs form factors can be related to phenomenological

observables such as the helicity amplitudes and the decay
width of a particle. The relation between the Sachs form
factors of a B� at rest and the standard definitions of
electromagnetic transition amplitudes fM1 and fE2 are
given as [56,57]

fM1ðq2Þ ¼
ffiffiffiffiffiffiffiffi

4πα
p

2mB

�jqjmB�

mB

�

1=2 GM1ðq2Þ
½1 − q2=ðmB þmB�Þ2�1=2 ;

ð34Þ

fE2ðq2Þ ¼
ffiffiffiffiffiffiffiffi

4πα
p

2mB

�jqjmB�

mB

�

1=2 GE2ðq2Þ
½1 − q2=ðmB þmB� Þ2�1=2 ;

ð35Þ

where α is the fine structure constant. Helicity amplitudes
A1=2 and A3=2 are defined as linear combinations of the
transition amplitudes as

TABLE V. Results forGM1 andGE2 form factors at the lowest allowed four-momentum transfer and at zero momentum transfer. Quark
sector contributions to each form factor are given separately, weighted with a number of valence quarks. GM1 results are given in units
of natural magnetons (μB ≡ e=2mB).

Q2[GeV2] Gl
M1ðQ2Þ Gc

M1ðQ2Þ GM1ðQ2Þ Gl
E2ðQ2Þ Gc

E2ðQ2Þ GE2ðQ2Þ
Ωþ

ccγ → Ω�þ
cc 0.181 −1.252ð27Þ 0.537(23) 0.775(24) −0.034ð30Þ 0.002(13) 0.013(14)

0 −1.504ð32Þ 0.571(24) 0.882(27) −0.040ð36Þ 0.003(14) 0.015(16)

Ξþ
ccγ → Ξ�þ

cc 0.180 −1.398ð50Þ 0.504(107) 0.774(94) 0.069(301) −0.005ð71Þ −0.026ð108Þ
0 −1.763ð64Þ 0.528(112) 0.906(103) 0.087(380) −0.006ð75Þ −0.033ð133Þ

Ξþþ
cc γ → Ξ�þþ

cc 0.180 −1.398ð50Þ 0.504(107) −0.552ð113Þ 0.069(301) −0.005ð71Þ 0.043(210)
0 −1.763ð64Þ 0.528(112) −0.772ð127Þ 0.087(380) −0.006ð75Þ 0.054(269)
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A1=2ðq2Þ ¼ −
1

2
½fM1ðq2Þ þ 3fE2ðq2Þ�; ð36Þ

A3=2ðq2Þ ¼ −
ffiffiffi

3
p

2
½fM1ðq2Þ − fE2ðq2Þ�: ð37Þ

The decay width is defined as [58]

Γ ¼ mB�mB

8π

�

1 −
m2

B

m2
B�

�

2

fjA1=2ð0Þj2 þ jA3=2ð0Þj2g; ð38Þ

in terms of the helicity amplitudes where we have used the
constraint q ¼ ðm2

B� −m2
BÞ=2mB� at q2 ¼ 0. An alternative

definition of the decay width in terms of the Sachs form
factors can be written as

Γ ¼ α

16

ðm2
B� −m2

BÞ3
m2

Bm
3
B�

f3jGE2ð0Þj2 þ jGM1ð0Þj2g: ð39Þ

We give our estimates for the helicity amplitudes, decay
widths, and lifetimes in Table VI. Both definitions of the
decay width give consistent results. Since mass splittings
between these baryons kinematically forbid an on-shell
strong decay channel, the total decay rates are almost
entirely determined in terms of the electromagnetic mode.
In comparison to the Nγ → Δ transition [58], we observe
roughly 2 orders of magnitude suppression in the helicity
amplitudes. Considering that the form factors are directly
related to the transition matrix elements and thus to the
interesting internal dynamics, it is desirable to compare the
form factors as well. One can derive the dominantM1 form
factor of the Nγ → Δ transition by inserting the PDG
quoted A1=2 and A3=2 helicity amplitudes into Eq. (36) and
following the calculation steps backwards. This calculation
returns GM1

Nγ→Δð0Þ ¼ 3.063þ0.102
−0.096 , which is approximately 4

times greater than the M1 form factors of the Ω�
cc and Ξ�

cc
transitions. Assuming the u- and d-quarks have the same
contribution within the Δþ baryon, individual quark con-
tributions (without electric charge and quark number
factors) can be deduced as GM1;u

Nγ→Δð0Þ ¼ GM1;d
Nγ→Δð0Þ ¼

GM1
Nγ→Δð0Þ with the help of Eq. (33). In contrast to the

charm-quark contributions, this reveals a suppression of
around 1 order of magnitude in Gc

M1ð0Þ. Decay widths are
smaller by almost 4 orders of magnitude, 3 orders of which
are directly related to the similar decrease in the kinematical
factor of Eq. (39). Ω�

cc, Ξ�þ
cc , and Ξ�þþ

cc have similar decay
widths and lifetimes.

3. Comparison to nonlattice methods

Electromagnetic transitions of the doubly charmed
baryons have also been studied within the heavy hadron
chiral perturbation theory [18–20], covariant baryon chiral
perturbation theory [21], bag model [22,23], quark models
[24–29], and QCD sum rules [31]. Electromagnetic decays
of doubly charmed baryons are found to be suppressed,
which is qualitatively in agreement with our results. Bag
model predictions [22,23] for decay widths are 1 order of
magnitude larger than our results. Quark model predictions
are even larger by 2 orders of magnitude [13,28,30] similar
to those of the chiral perturbation theory [19] and QCD sum
rules [32]. In order to understand the discrepancy between
our and nonlattice results, we compile the masses and the
decay widths of various nonlattice methods as well as the
calculated mass splittings, kinematic factors, and M1 form
factor values relevant to the Ωþ

ccγ → Ω�þ
cc transition in

Table VII for comparison. Kinematic factor (K:F:) is
ðm2

B� −m2
BÞ3=m2

Bm
3
B� in Eq. (39).

As we have discussed in Sec. IV B 2, the decay widths of
the transitions that we consider in this work are narrower
mainly due to the decrease in the kinematic factors in
contrast to that of the Nγ → Δ transition. Comparison of
the kinematic factors suggests that the discrepancy with the
nonlattice methods arises from the M1 form factors. GM1

values of the nonlattice methods are close to or larger than
the Nγ → Δ value, which is highly unlikely since we find
that the heavy quark contribution to the M1 transition is
heavily suppressed and the light quark contribution is not
enhanced enough to compensate for the change. E2
transitions, on the other hand, almost vanish so that they
do not play a significant role. Although it is plausible that
there may be uncontrolled systematic errors affecting our
results, we remind the reader that (i) our results are free
from chiral extrapolation errors since the ensembles we use

TABLE VI. Results for the helicity amplitudes, decay widths and lifetimes. Zero-momentum values are obtained using the simple
scaling assumption given in Equation (25).

Q2 fM1 fE2 A1=2 A3=2 Γ τ

[GeV2] 10−2½GeV−1=2� 10−2½GeV−1=2� 10−2½GeV−1=2� 10−2½GeV−1=2� [keV] [10−18 s]

Ωþ
ccγ → Ω�þ

cc 0.181 0.812(26) 0.013(15) −0.429ð13Þ −0.690ð22Þ � � � � � �
0 0.924(28) 0.016(17) −0.489ð14Þ −0.785ð25Þ 0.0565(4) 11.66(3.83)

Ξþ
ccγ → Ξ�þ

cc 0.180 0.838(101) −0.027ð118Þ −0.419ð51Þ −0.726ð88Þ � � � � � �
0 0.982(111) −0.034ð145Þ −0.491ð56Þ −0.850ð96Þ 0.0648(38) 10.28(3.30)

Ξþþ
cc γ → Ξ�þþ

cc 0.180 −0.597ð123Þ 0.048(229) 0.298(61) 0.517(106) � � � � � �
0 −0.835ð137Þ 0.061(293) 0.417(69) 0.723(119) 0.0518(56) 12.70(2.04)
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are almost at the physical quark point, (ii) any discretization
error arising from the charm-quark action is suppressed and
controlled since we employ a relativistic heavy quark
action, (iii) we have identified and included the effect of
the excited-state contamination in our analysis, and
(iv) based on our analysis in Ref. [43], we expect the
finite size effects on these configurations to be less than
1%. Systematics that might arise from continuum extrapo-
lation, however, remain unchecked. It is intriguing that we
have observed a similar, but less drastic discrepancy, inM1
form factors (or magnetic moments) in our previous works
of the diagonal spin-1=2 → spin-1=2 transitions where our
results [17,41] are smaller compared to those of model
estimations. Discrepancies between lattice and nonlattice

results are still an issue that needs to be understood better
from both sides.

C. Systematic errors on charm-quark observables

Since we switch to a relativistic heavy quark action in
this analysis, while keeping the rest of the setup the same,
we use this opportunity to quantify the systematic errors on
charm observables in comparison to using a Clover action
prescription [16]. To this end, we recalculate the Ωcγ → Ω�

c
transition form factors, which follows the same procedures
described in previous sections. Note that we use the plateau
method in this case to extract the form factors since
extended source-sink separation and 12a signals coincide.
A comparison of our results is given in Table VIII. Note
that the κvals value we use in this and the previous work
differs; therefore the change in Ωc and Ω�

c masses cannot
solely be attributed to the change of the charm-quark
action. Strange quark observables also differ due to the
same reason. Gc

E2ðQ2Þ is not a reliable observable either
since its charmed-sector results are consistent with zero in
both cases. A clear comparison can be made using the
Gc

M1ðQ2Þ form factor forwhichwe see a∼20%deviation.We
provide the full results of the analysis from 730 measure-
ments in Tables IX and X for completeness. The updated

TABLE VII. Comparison to nonlattice methods. We calculate the mass splittings, kinematic factors (K:F:), andM1 form factor values
of other methods by inserting their respective mass and decay width values.

This work Ref. [22] Ref. [23] Ref. [13] Ref. [28] Ref. [30] Ref. [19] Ref. [32]

mΩcc
[GeV] 3.719(10) 3.781 3.815 3.715 3.778 3.778 3.620 3.778

mΩ�
cc
[GeV] 3.788(11) 3.854 3.876 3.772 3.872 3.872 3.720 3.872

mΩ�
cc
−mΩ�

cc
[MeV] 69 73 61 57 94 94 100 94

ΓðΩþ
ccγ → Ω�þ

cc Þ [keV] 0.0565(4) 1.35 0.949 0.82 2.11(11) 6.93 9.45 5.4þ6.9
−3.1

ðK:F:ÞΩcc
× 10−3 [GeV] 0.185 0.212 0.122 0.105 0.449 0.449 0.586 0.449

GΩþ
ccγ→Ω�þ

cc
M1 [μB] 0.882(27) 3.739 4.132 4.139 3.210(732) 5.818 5.945 5.136þ5.389

−3.891

TABLE VIII. Mass of Ωc and Ω�
c as well as the charmed sector

of the Ωcγ → Ω�
c transition form factors at Q2 ¼ 0.180 GeV2.

mΩc
[GeV] mΩ�

c
[GeV] Gc

M1ðQ2Þ [μB] Gc
E2ðQ2Þ

Bahtiyar
et al. [16]

2.750(15) 2.828(15) −0.167ð33Þ −0.008ð26Þ

This work 2.707(11) 2.798(24) −0.209ð30Þ −0.010ð23Þ
Exp. 2.695(2) 2.766(2) � � � � � �

TABLE IX. Results forGM1 andGE2 form factors of theΩcγ → Ω�
c transition at the lowest allowed four-momentum transfer and at the

zero momentum transfer. Quark sector contributions to each form factor are given separately. GM1 results are given in units of natural
magnetons, μB.

Q2 [GeV2] Gs
M1ðQ2Þ Gc

M1ðQ2Þ GM1ðQ2Þ Gs
E2ðQ2Þ Gc

E2ðQ2Þ GE2ðQ2Þ
0.180 1.456(102) −0.209ð30Þ −0.625ð43Þ −0.195ð11Þ 0.010(23) 0.059(43)
0 1.748(122) −0.215ð31Þ −0.725ð50Þ −0.234ð134Þ 0.010(24) 0.071(52)

TABLE X. Results for the helicity amplitudes and the decay width of the Ωcγ → Ω�
c transition. Helicity amplitudes are given at finite

and zero momentum transfer. Zero-momentum values are obtained using the scaling assumption in Equation (25).

Q2 fM1 fE2 A1=2 A3=2 Γ τ

[GeV2] 10−2 [GeV−1=2] 10−2 [GeV−1=2] 10−2 [GeV−1=2] 10−2 [GeV−1=2] [keV] [10−18 s]

0.180 −0.951ð66Þ −0.090ð65Þ 0.341(99) 0.901(85) � � � � � �
0 −1.104ð76Þ 0.109(79) 0.389(119) 1.050(101) 0.096(14) 6.889(997)
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decay width is Γ ¼ 0.096ð14Þ keV, approximately 20%
larger than but still in agreement within errors with the
previous estimation of Γ ¼ 0.074ð8Þ keV [16], leaving the
conclusions unchanged.

V. SUMMARY AND CONCLUSIONS

We have evaluated the radiative transitions of doubly
charmed baryons in 2þ 1-flavor lattice QCD and extracted
the magnetic dipole (M1) and electric quadrupole (E2)
form factors as well as the helicity amplitudes and the
decay widths. We have extracted the individual quark
contributions to the M1 and E2 form factors and found
that M1 form factors are dominantly determined by the
light quarks. The E2 form factor contributions are found to
be negligibly small, and its absence has a minimal effect on
the observables. The helicity amplitudes are observed to be
suppressed roughly by 2 orders of magnitude in compari-
son to the Nγ → Δ transitions. M1 form factors are found
to be suppressed by less than an order with respect to
Nγ → Δ, suggesting that the kinematical factors play a
more important role in suppressing the helicity amplitudes
and the decay widths in the heavy quark systems. Ω�

cc
and Ξ�

cc have roughly the same decay width and lifetime.

Our results qualitatively agree with the predictions of other
approaches; however, there is a quantitative disagreement
of around 1 or more than 1 order of magnitude, which calls
for more investigations to resolve. We have also provided
updated results for the Ωcγ → Ω�

c transition computed with
a relativistic heavy quark action and estimated the system-
atic error due to using a Clover action. Our results are
particularly suggestive for experimental facilities such as
LHCb, PANDA, Belle II, and BESIII to search for further
states.
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