IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 16, 2017, accepted February 24, 2018, date of publication March 8, 2018, date of current version March 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2813887

A Novel Runtime Verification
Solution for loT Systems

KORAY INCKI™ AND ISMAIL ARI

Department of Computer Science, Ozyegin University, 34794 Istanbul, Turkey

Corresponding author: Koray Incki (koray.incki@ozu.edu.tr)

ABSTRACT Internet of Things (IoT) systems promise a seamless connected world with machines integrating
their services without human intervention. It’s highly probable that the entities participating in such
autonomous machine to machine interactions are to be provided by different manufactures. Thus, integrating
such heterogeneous devices from many providers complicates design and verification of IoT systems at an
unprecedented scale. In this paper, we propose a novel runtime verification approach for IoT systems. The
contributions of our proposed solution include: exploiting the interactions in message sequence charts (MSC)
to specify message exchanges of constrained application protocol-based IoT systems in terms of events,
a novel event calculus for formally describing [oT system constraints specified by means of MSCs, and an
event processing algebra that uses complex-event processing techniques for detecting failures in the system
by monitoring the runtime event occurrences with respect to the system constraints defined by event calculus.
We further demonstrate the viability of proposed solution with case studies.

INDEX TERMS Internet of Things, runtime verification, event calculus, complex-event processing, message

sequence charts.

I. INTRODUCTION

Considering the complexity of modern computers [1], com-
prehensive verification techniques, such as model checking
and theorem proving, can not practically analyze the system’s
correctness. On the other hand, functional testing can be con-
sidered the most suitable method for determining correctness,
which is examined only by a subset of systemic behaviors.
Nevertheless, functional tests may not reveal extraordinary
cases that complicated software might exhibit during exe-
cution. Runtime verification (RV) [2] is a method in which
monitors oversee the run of a system under test (SUT) in
order to detect whether it meets a specific constraint, which is
defined by a correctness property. Should the monitor notice
that the system is in violation of the property, then it can
activate the management mode, and therefore the system also
leads to safe behavior. The capability of a monitor to assess
the system’s properties during execution and to take into
account all system runtime properties and inputs from the
surrounding domain promotes RV as the best method to make
sure a computing system behaves as expected, especially in
the field of IoT systems.

The main goal of our study is to facilitate the research
and practice in IoT domain by enabling them to seamlessly
conceptualize the system under development in terms of
events occurring in it. Event Calculus (EC) provides tools for

describing such systems in terms of events [3]-[5]. For an EC
to specify a particular domain we need to (i) specify simple
events in the system; (ii) specify the algebra that correlate
those simple events in order to deduce complex conclusions;
(iii) define time-varying properties of the system. An EC
devised particularly for [oT domain would not only help spec-
ify the expected behavior of a system in a human-readable
form, but it also would facilitate utilization of various event-
processing engines for monitoring and verification of system
behavior at runtime.

The contributions of this research extend our initial results
in [6] such that a domain-specific event calculus is proposed
for facilitating system specification and RV of IoT systems;
thereby enabling specification of correctness properties as
used for describing monitors in RV. IoT systems are hetero-
geneous systems such that each system may have different
computing, memory, power, networking, sensing and actu-
ating capabilities. A plethora of application layer protocols
(e.g., CoAP, MQTT) are utilized for facilitating application
development with such heterogeneous devices. Each protocol
exhibits unique interaction model; so, the choice of appli-
cation layer protocol determines the design and develop-
ment phases of an IoT system. Thus, the application layer
choice also alters the event calculus to be used for specify-
ing an IoT system. In this research, we adopt CoAP as the

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission.

13501

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3579-1108

IEEE Access

K. Incki, I. Ari: Novel Runtime Verification Solution for loT Systems

application layer protocol, because it allows RESTful appli-
cation development framework, and promotes IoT prolif-
eration by means of its service-oriented messaging model.
The proposed solution can be tailored for other protocols by
following the steps explained in the paper.

Contributions of this paper are threefold; first, we present
a domain-specific EC for CoAP-based IoT systems;
second, we develop an EC-to-EPL statement mapping,
in order to facilitate utilization of Esper CEP engine. Then,
we demonstrate the applicability of this solution by case
studies.

Section II gives a succinct literature review on runtime
verification solutions proposed for IoT systems, embedded
systems, or those using complex-event processing. Section I11
describes the case scenario that we will be referring to
throughout the paper. In Section IVintroduces the techniques
and methodologies used, so that the paper provides a thor-
ough reading experience; and Section V explains how IoT
interactions are expressed with EC, then in Section VI gives
the event processing statements. Section VII details both the
implementation and results of the experiment on the running
example.

Il. RELATED WORK

Chen et al. [7] have proposed a methodology for interoper-
ability testing of CoAP implementations. As for the CoAP
specifications [8], a set of interoperability tests was selected.
They favored passive testing for two reasons: First, the pas-
sive test does not interfere with the execution of the SUT.
That’s why, it is best suited for testing interoperability at
runtime. Second, passive tests do not introduce additional
costs in network communication, so they are more suitable
for resource-constrained domains such as IoT. Packets that
are interchanged amongst CoAP endpoints are caught by
a network sniffer and logged. Recorded execution logs are
examined offline against the test scenarios by utilizing a test
tool to determine if the runtime behavior complies with the
expected behavior. Our approach also employs packet sniffer
component, but we present a novel solution for online and
non-intrusive testing of an IoT system.

Medhat et al. [1] present a novel RV methodology for real-
time cyber-physical systems (CPS) that are real-time sensitive
and have constrained physical resources such as memory.
Their proposed solution relies on two concepts: (i) The run-
time monitor is executed in certain periods. Events that hap-
pen between two monitor calls are buffered and handled later
by the monitor when it’s called. (ii) The monitor is assumed to
be flawless, meaning that, it does not generate false outputs
(neither positive, nor negative). Therefore, no event can be
missed. The buffer for recording events that occur between
successive monitor runs is assumed to be of a bounded-size.
Their research deals with individual embedded system verifi-
cation, and relies on code instrumentation in order to enable
runtime monitoring of the system. Thus, it incurs memory
overhead and possibly behavior alterations due to running
monitoring threads.

13502

Gaaloul et al. [5] propose an online RV technique that
relies on certain mediation techniques, and use Complex-
Event Processing (CEP) [9] to catch and mitigate invalid
calls. The approach tries to make sure that IoT entities are
requested with services that they are built for. The proposed
architecture is composed of a mediation platform that pro-
cesses services calls, by which they aim to prevent invalid
service calls using CEP. Their proposed solution automati-
cally produces the necessary components to verify the service
calls at runtime. Nevertheless, the proposed solution depends
on a mediation platform that is deployed as a special CoAP
entity in the same network where the SUT reside. In such an
approach, SUT does not exhibit the same execution trace as
it would when it is deployed at the customer site without a
mediation platform, which modifies how the service calls are
handled.

Yu et al. [10] propose a predictive runtime verifica-
tion solution for CPS. CPS generally consist of embedded
IoT systems. The main purpose of the solution is to pre-
vent any failure before it happens by means of prediction.
The programs on CPS devices must be instrumented in
order to generate runtime events. Predictive monitors trigger
controlling operations such as stopping or repair for tun-
ing the application behavior whenever they detect or pre-
dict a failure. Their approach doesn’t deal with behavior
of system of IoT devices that is composed of more than
one IoT device. Moreover, the SUT must be instrumented
in order to generate runtime verification data, which is
known to incur performance, behavior and memory footprint
overheads.

Kane [11] proposes an runtime monitoring architecture
for observing safety-critical vehicular systems through their
black-box components. The proposed solution consists of a
passive bus-monitor that addresses particularly the CAN net-
work used in vehicles. The bus-monitor can analyze system
properties that are observable on the bus. Such monitor imple-
mentations manage all SUT components as black-box. Note
that aforementioned monitor implementations are crucial for
such systems that are composed of several sub-components
provided by various manufacturers. Thus, the intrinsic behav-
ior of those components cannot be attained easily. The
monitor observes the CAN bus communication amongst the
system components by attaching itself directly on the system
bus. This connection is associated with a semi-formal inter-
face that tracks the bus and generates atomic projections for
a monitor based on the observed bus status, which reflects
the recorded image of the monitor. The execution trace is a
sequence of those recorded images. Our runtime verification
approach for IoT systems assumes a system of black-box
IoT entities as the problem domain, just as this monitoring
approach treats the system of CAN bus attached devices as
a system of systems and attacks the RV of such system of
systems as black-boxes. It depends on the formal specifica-
tion of component communication amongst those devices.
On the other hand, we present an event calculus framework
for formally specifying IoT system interaction and runtime

VOLUME 6, 2018

K. Incki, 1. Ari: Novel Runtime Verification Solution for loT Systems

IEEE Access

monitor constraints, and consequently facilitating use of CEP
techniques for RV purposes.

Ill. RUNNING EXAMPLE

In case when the network needs to be self-healed, self-
organized and be deprived of any centeralized features,
the Wireless Token Ring Protocol (WTRP) is applied [12].
WTRP features high quality provisions for networks of lim-
ited bandwidth and bounded latency situations. WTRP is best
suited for resource constraint networks such as IoT, because it
supports constructing ad-hoc networks dynamically, provides
energy saving measures and efficient transport mechanisms.
Token ring protocol dictates observance of a predetermined
order of messaging between participating endpoints. The
sequential order in such a system might be broken due to sev-
eral reasons, such as endpoints’ power shortage or movement
of endpoints to out of reach. WTRP relies on individual nodes
to employ specific algorithms to bring back a functioning
network whenever a failure occurs; we assume that the sensor
nodes are non-byzantine [13], but they might fail due to ran-
dom system failures due to poor programming skills. Thus,
in order to overcome such failures at runtime, our proposed
passive sniffing solution would ensure the robustness of the
network.

FIGURE 1. Cooja simulation of WTRP.

Fig.1 demonstrates a simulation of WTRP network in
Cooja [14]. We will use the event calculus proposed in this
paper to express sequential relations between request and
response events. Note that, the token ring protocol is assumed
to pass around the token in increasing order of mote ids in the
network.

IV. BACKGROUND

A. CoAP-BASED IoT SYSTEMS

Many of the Internet utilities have proliferated thanks to
the utilization of web services that are architected according
to RESTful APIs [15]. The special IETF working group
on CoRE (Constrained RESTful Environments) was formed
particularly to outline a viable RESTful framework for the
resource constrained devices and networks in IoT domain.

VOLUME 6, 2018

They generated an application layer (OSI layer 7) protocol
called Constrained Application Protocol (CoAP) for facil-
itating utilization of RESTful APIs. CoAP introduces an
easy to use application phenomenon for resource constrained
devices, primarily for those devices with limited battery, low
memory footprint, and limited computation power.

CoAP adopts a Client-Server based communication pattern
as in other RESTful services. A CoAP client sends a Request
Message to a CoAP Server, stating the required action with
a special Method Code on a resource of the Server. Those
resources resident on servers are identified by URIs (unified
resource identifier). Should the Server accomplish to process
the corresponding Request, then it sends a Response Message
back to the originating Client with a proper Response Code.
It’s noteworthy that any CoAP device (entity) can behave both
as a client and a server in M2M interactions.

The messaging model of CoAP is an asynchronous inter-
action model. The messages are exchanged over UDP
packets [8]. There are four different message types: Con-
firmable (CON), Non-confirmable (NON), Acknowledge-
ment, Reset (RST). Even though the communication is based
on UDP, an optional reliability is provided with exponential
back-off. Thus, those four message kinds are exchanged in
a Request/Response type of interaction model. A Request
can be conveyed via both a CON and NON message; and,
the Response of a Request might be separately sent in a
CON/NON message, as well as piggybacked in an ACK
message.

e
uDP uDP
IPvE/6LowPAN IPvE/6LowPAN
MAC MAC
PHY PHY
Endpoint A Endpoint B

FIGURE 2. CoAP OSI layering.

Request and Response semantic of CoAP interactions
enables us to consider the protocol layer as consisting
of two intrinsic logical layers (Fig.2). This logical repre-
sentation allows us to manage request/response messaging
by means of matching Method Code and Response Code
(i.e., Request/Response layer), while the communication
layer details of UDP and asynchronous messaging are han-
dled in a different logical layer (i.e., Message layer).

An entity participating in a CoAP network is called an
endpoint (which can be both Client and Server). A message
is uniquely identified by a MessagelD field contained in
the message format of protocol. MessagelD field is utilized
for removing duplicate messages, as well as for providing
optional reliability. If a message is to be transmitted reliably,

13503

IEEE Access

K. Incki, I. Ari: Novel Runtime Verification Solution for loT Systems

then it has to be sent in a CON message. If an endpoint
does not receive an ACK message for a CON message in
a predefined timeout, then several re-transmissions might
be issued with exponential back-off, until a valid ACK is
received with the same MessagelD. Note that, an endpoint
might respond with a RST message, if it is not capable of
processing a CON message.

Inference on CoAP behavior can be elaborated by using
Message Sequence Charts (MSC), which is a formal descrip-
tion technique developed by ITU-T [16] for providing a
trace language for the specification and description of the
communication behavior of system components and their
environment by means of message interchange. Since in
MSCs the communication behavior is presented in a very
intuitive and transparent manner, particularly in the graphical
representation, the MSC language is easy to learn, use, and
interpret. Therefore, we can obtain an event-based represen-
tation of CoAP interactions. We will elaborate on this concept
in Section-V.

B. EVENT CALCULUS REVISITED

An event is defined as any happening in a context at certain
time, that is irrevocable, which causes the system state to
change. Event calculus allows for generating commonsense
decisions about actions and corresponding changes [17].
The event calculus comprises of events, and time-dependent
attributes, called fluents, and timepoints. The events are
assumed to happen on a single time axis. Commonsense rea-
soning is defined as humans making inferences on everyday
situations [3]. If we can automate the process by which we
derive conclusions about happenings around us, then we can
develop much better user experience. There are two concrete
happenings that rely on these building blocks; (i) an event can
occur in a unique time instance, (ii) a system property is true
only at a single time-point.

According to Mueller [17], some problem domains are
much easily represented with event calculus due to their
very nature, such as partially-ordered events, triggered events,
etc. In order to make use commonsense reasoning for event
calculus, we must first identify the area of interest, and then
provide common knowledge about that area. The resulting
situations that arise after an event happens at some time
are described. For instance, a certain event occurring under
certain conditions might initiate a particular system prop-
erty. That is, if the event happens at a certain point in time
in a given context, then the corresponding system property
becomes true after that very same time instance. Likewise,
yet another event might terminate a certain system property,
so the system property becomes false after that time-point
when the event happens [3].

Event calculus algebra make use of predicate logic for elab-
orating time-varying properties of a system, namely fluents.
Researchers proposed various versions of versions of event
calculus. The event calculus we use conforms to Discrete
Event Calculus (DEC) [17]. The predicate functions and
corresponding descriptions are given in Table-1.

13504

TABLE 1. DEC predicates and meaning.

Predicate Meaning
Initially(f) f is True at timepoint 0
HoldsAt(f;t) f is true at ¢

e occurs at ¢

if e occurs at #, then f is true and not released
from the commonsense of inertia after ¢

if e occurs at ¢, then f is false and not released
from commonsense of inertia after ¢

if e occurs at f, then f is released from
commonsense of inertia after ¢

if f1 is initiated by an event that occurs at
t1, then fo is true at t1 + t2

Happens(e,t)
Initiates(e,f;t)

Terminates(e,f,t)
Releases(e,ft)

Trajectory(f1,t1, f2,t2)

Happens(e,t) states that an event e happens at a timepoint
t. Initiates(e,f,t) (respectively, Terminates(e,f,t)) means that
if an event e happens at time t, then it makes fluent f true
(respectively, false) instantly. HoldsAt(f,t) states that fluent f
is true at timepoint t.

DEC allows us to descriptively specify event-driven
requirements of an IoT system. Our approach aims to pro-
vide an EC formulae to verify IoT interaction behavior. EC
elements facilitates directly representing such computing sys-
tems in terms of events. Therefore, EC allows using the logic
theory for verification of both design artifacts and runtime
system. As pointed out in [5], EC provides a representation
that is very similar to interaction models such as RESTful
APIs. Besides, EC formulae involves a definitive time value;
thus, allowing us to distinguish between events occurring at
the same time in an event-based system, such as IoT.

C. COMPLEX-EVENT PROCESSING

Complex-event processing, CEP for short, provides tech-
niques and tools to reveal complicated reasoning about
large-scale domain-specific software systems. CEP is usually
deployed with the aim of decision making on runtime sys-
tems. Some examples are database systems, network commu-
nication, intrusion detection, etc. Even though those complex
systems of systems produce terabytes of information, only a
fraction of those are necessary for coming up with intelligent
decision. In order to achieve that, CEP engines correlate basic
(or so called simple) events through special transformation
and aggregation functions.

CEP engines, such as Esper [9], allow us to declare event
descriptions with special purpose languages. Event Process-
ing Language (EPL) is used in Esper engine. By using EPL,
you can identify certain event-patterns that you seek for, and
register those EPLs with the engine. Esper engine runs along
the system under inspection, and provided that certain events
of interest occur, it raises a flag for each pattern of interest
(e.g., for detecting failures in a system). The APIs provided by
such engines enable us to design continuous queries and com-
plex causality relationships between disparate event streams
with an expressive EPL. EPL statements are continuously
executed as live data streams are pushed through. Esper has
built-in support for Java language, thus enabling us to use
Plain Old Java Objects (POJO) classes to represent events.

VOLUME 6, 2018

K. Incki, 1. Ari: Novel Runtime Verification Solution for loT Systems

IEEE Access

Q
|
Actor
A
ACminisrate
P Y .
Events { Esveg \
ey

ogo o
Results
Parttioned
CQuery
Callsack
Quary
/

FIGURE 3. Esper is a container for EPL statements.

Time

000

~

Essentially, Esper acts as a container of EPL statements
Fig.3. EPL statements fundamentally specifies queries that
analyze events and time, and then detect situations. Esper
provides a nest for EPL queries and organizes their lifecycle
and execution.

EPL is a SQL-like declarative language. It is used
for aggregating information and deriving knowledge from
one or more event streams. Those enable also to join and
merge event streams. Events are inserted and processed as
continuous streams of information. The basic syntax for EPL
is as follows:

SELECT < select_list >
FROM < stream_def >
WHERE < search conditions >

The select clause in EPL specifies the event proper-
ties or events to retrieve in select_list. The from clause speci-
fies the event stream definitions and stream names to use. The
where clause specifies search conditions that specify which
event or event combinations to search for. There are other
clauses such as having, group by, order by in the language.
For example, the following statement returns the time-stamp
from a Token-Ring event stream whenever the mote with
id = 1 broadcasts a message.

select timestamp from TokenRing where moteld = 1

V. loT REDEFINED: AN EVENT CALCULUS FOR SYSTEM
SPECIFICATION
A. REPRESENTING IoT WITH EVENTS
In our endeavor for representing IoT systems by using event
calculus, we first need to express the interaction between
endpoints in terms of simple events. In order to achieve this
goal we will utilize Message Sequence Charts (MSC) [16],
a common graphical language derived by ITU for describ-
ing communication scenarios in the industrial applications.
It provides a graphical language that handles asynchronous
interactions in communication systems, such as CoAP.
MSC’s are frequently used in verification of communica-
tion systems in the literature ([18]-[20]). A major difference
in interpretation of MSC with respect to those literature is

VOLUME 6, 2018

that we only deal with Request and Response asynchronous
messages in our approach. Because, we restrict ourselves to
the send message events that are observable from the network
in a black-box fashion, whereas others elaborate on process
level receive message events, which are solely observable via
a process-level code instrumentation.

CUser | | EP1 | [EP2

m4

b |

FIGURE 4. MSC for a CoAP service S.

We will utilize MSC to extract a specification for the SUT
in terms of events occurring in the system. Let’s consider the
MSC of a CoAP system as in Fig.4. The vertical lines in the
figure are lifelines for each endpoint in a CoAP system, which
represent the time axis for each endpoint. The time increases
downwards. Endpoints engage in interaction by sending and
receiving asynchronous messages (i.e., mp, mp, m3, and my).
Each message send action generates an observable event in
the network (i.e., e1, €2, €3, and e4). Note that, in a Request-
Reply interaction model, each Reply message corresponds to
a previous Request message; but, a Request message does not
have to cause a Reply message, as it might be the case that
the Request is issued just as a control function, not a query.
For the sake of simplicity, we’ll assume in Fig.4 that (m1, m4)
and (my, m3) constitute (Request,Reply) pairs of messages.
This example demonstrates a CoAP scenario in which a User
requests a service from an endpoint (EP1), then in turn, EP1
requests some other service from another endpoint (EP2),
such that there is a causal relation between events appearing
on the vertical lines.

Let EP = {EP1, EP», ..., EP,} be a set of endpoints in an
IoT system, and let A be a message alphabet for the network,
where [n] denotes the number of endpoints. We represent
each asynchronous message m with the label send(i, j, msg),
which indicates the event of an endpoint EP; sending a
message msg to an endpoint EP;. We further define the set
E = {send(i,j,msg) | i,j € [n] msg € A} as the set of all
send events. Remember that an EP can behave as both a client
and a server in a CoAP network; thus, a send(i, j, msg event
can be either a Request or a Reply event. Therefore, E can be
partitioned into EX and E” subsets representing set of Request
events and Reply events, respectively. ¢ = eR U &” is the set
of all send events, where e® = {send(i, j, msgreq) | 1,j €
[n] msg € A} and " = {send(i, j, msgrep) | i,j € [n] msg €
A}, respectively. The MSC M then can be described as

1) a set of send events, E, containing two distinct sets of

send events, eX and &”.

13505

IEEE Access

K. Incki, I. Ari: Novel Runtime Verification Solution for loT Systems

2) a mapping function ep that maps each event to an
endpoint, ep : E +— [n]

3) a bijective mapping between each (Request, Reply)
message pairs, f : ef > &”

4) alabeling function, / that identifies each event as either
Request or Reply, | : E +— ¢

5) Vi € [n], there exists a total order <; on the events of
endpoint i, such that the transitive closure of the relation
<= Ujepn) <i U, f(r) | r € R} is a partial order
onkE.

Let’s consider the MSC in Fig.4. The label for e; for
sending of message m is send(User, EP1, m1). Note that,
we have another event with f(e;)~! such that my is a Reply
message to my; therefore, f(e;) = es4. Even though, degen-
erate MSC might occur in a CoAP network, we restrict our
MSCs to non-degeneracy condition. An MSC is degenerate,
if there are two send message events ey and e such that
l(e1) = l(ez), where e < ez and f(e;) < f(ez). For a
thorough coverage of non-degeneracy condition and MSC
formalization the reader should refer to [19] and [18].

Now that we have a definition for an MSC, we can use
this definition to express a specification that an MSC can
deliver. We define the specification of an MSC by its lineari-
sation. A linearisation of an MSC M, which is represented
by aword w = wy wy ... w, over M (e.g., w; = l(e1), wp =
l(e2), w3 = l(e3), and wy = I(e4) for Fig.4), is attained by
a total order of events in E; and it is considered as a string
over ¢. In other words, a linearisation is said to exist if a total
order of (e] e . . . e,) exists between the events in E such that
whenever e; < e; we have i < j, and for w(i) = I(e;).

An MSC represents event interactions for a single service
composition scenario in a CoAP-based IoT system; there-
fore, the specification of an IoT system, I', that delivers
N distinct services, would consists of a disjoint set of N
MSC linearisations. That is, specification contains N MSCs
M, ..., My each for a distinct service implementation,
in which Ey, ..., Ey are disjoint event sets. Let ¥ = UszlEj
be the disjoint sets of eventsin ['; T = Uf.V: 1Aj be the message

alphabet of I', and W = U;V: EP; be the set of endpoints in I'.
Then the language of an MSC Specification I' is the union of
languages of all MSCs in I". Note that the message alphabets
and endpoints in different MSCs can be similar, because an
endpoint may engage in several similar interactions in various
service compositions.

We have shown that a linearisation of a single MSC
M; € T can be achieved by means of send message events
occurring on each endpoint, EP; € W; where W¥; is the
set of endpoints for M;. MSC guidelines [16] provides var-
ious graphical operations such as coregion, par for detailed
elaboration of communication scenarios. However, we will
assume no such operations exist on the MSCs we deal with;
those are to be handled in model-based testing approach we
are working on. We will utilize this event phenomenon in
facilitating an event calculus for IoT systems in the next
section.

13506

B. EVENT CALCULUS FOR CoAP

Considering an execution of a MSC M;, the trace can be
monitored in terms of send message events in the network.
As pointed out in [21], testing is an event-centric activity;
and events recorded as indications of actions in the execution
trace should match with the sequence of events occurring in
the linearisation of MSC M;. The sequence of events in a
trace implicitly exhibit a follows relation between each pair of
consecutive events. Our aim is to formulate an event calculus
that is succinct enough to express both the expected behavior
captured in the linearisation of a MSC in terms of events,
and the observed behavior captured as the trace of events
from a CoAP network. Consequently, we can compare both
behaviors to conclude with a Pass/Fail decision at runtime.

Before we dive into the formulation of event calculus,

let’s elaborate on types of relations that might identify the
correlation between events in a MSC. Remember that, there
is a visual and temporal/causal correlation between the events
on the vertical lines of a MSC for a CoAP scenario. Consid-
ering Fig.4, e; happens both visually and temporally before
e>, because the events exhibit a causal relation in order to
deliver the required service. Note that, the follows relation
is transitive, meaning that if e, follows ey and e3 follows e,
then e3 follows e1. Based on these definitions, we can define
following relations for event sequences of a MSC M:

1) f(ej,e;)) = e; < ej where e¢;,¢; € E; and i < j for
i,j € [n]: defines the follows relation in My

2) filej,e)) =e; <i ejwheree;, ej € Ey andi <ijf0ri,j €
[n]: defines the immediately follows relation between
(ei, €j) such that fle,, € Ex | (i < em) A (em < €))
where (i < m) A (m < j).

3) t(e;,) < T': defines a temporal relation between two
events such that e; happens in at most T' time after e;
happens.

4) s(e;, ej): defines an domain-specific semantic relation
between two events; for instance, e; carries a token id
that is bigger than e;.

where Ej is the event set of MSC M}. Those four relations
will enable us to express complex relations between events in
terms of event calculus. Note that, relations (1) and (2) must
always be observed in a runtime verification scenario, but
relations (3) and (4) are observed only when they are defined
in the domain of application under test. Note also that, < and
<! relations are

o irreflexive, —(e; < ¢;)Ve; € Ej, and

e asymmetric, Fe;, eicE|ei<eNne <e

As an example, let’s try to express a requirement

of CoAP standard stating that every CON type mes-
sage must be followed by an ACK type message in
EXCHANGE_LIFETIME [8], by using the relations defined
above. We can express this requirement as

Req(CON) =f (eack econ)
A [t(eack, econ) < EXCHANGE _LIFETIME],

ey

VOLUME 6, 2018

K. Incki, 1. Ari: Novel Runtime Verification Solution for loT Systems

IEEE Access

where (econ , eack) are any pairs of send events for a CON-
firmable message and its corresponding ACKnowledgement
messages [8].

Eq. 1 states that every CON message must be followed by
an ACK message in EXCHANGE_LIFETIME time. Hereby,
we can use this equation to express runtime monitors for
failure and success situations of the requirement in terms of
events. In order to conclude with a success verdict, the equa-
tion must hold TRUE for (CON, ACK) event pair. However,
in order for the system fail for this requirement we must have

—Req(CON)

= —{f(eack. econ)
Altleack, econ) < EXCHANGE_LIFETIME]} (2)

or

—Req(CON)

= —f(eack econ)
V [teack econ) >= EXCHANGE_LIFETIME] (3)

Event linearisation for the sample MSC in Fig.4 constitutes
an expected behavior of message interactions between end-
points, such that it represents the specification for the service
S Requested by event eq:

Req(S) =e1 < e < e3 < eq, “4)

where Req(S) represents the requirement for service
requested by e;. In a Request/Reply interaction model such
as CoAP, User represents another endpoint that requests a
service provided by endpoint EP] with event ej. In order
for this scenario to fail, event trace monitored at runtime
must deviate from that of Eq.-4. This linerarization can be
interpreted in event relations of MSC as

Req(S) = fi(ez, e1) A fi(es, e2)
Nfiles, e3) A[t(es,e1) <T1 (5)

Note also that, the requirement can be satisfied only with a
conjunction of all the relational components that represent
causal order of events in the expected behavior MSC. In Eg-5,
t(eq, e1) < T constitute a temporal constraint between events
e4 and eg. In case any of those relations is not observed at
runtime, then the requirement is not satisfied (Eq-6).

—Req(S) = —fi(ez, e1) V —file3, e2) V —fi(es, e3)
V [t(es, e1) >=T] (6)

The core CoAP network can provide communication
among hundreds, even thousands of endpoints delivering
multitude of services. Thus, we need a concept of context
for distinguishing similar events based on the surrounding
conditions. A context for a CoAP interaction scenario can be
defined as the set of events sequences that are visually traced
on an MSC diagram in order to accomplish a Request for a
certain service. The events that are not related to the expected
behavior is not relevant to the to the Requested service, thus
they are out of context. So, only those events that appear on

VOLUME 6, 2018

the diagram are context events, provided that the diagram is
complete.

A context Cysc can be described with the following defi-
nitions:

1) Cg: set of context events that appear on an MSC dia-

gram

2) ep: an initial Request event for the service of context

3) aset of pairwise follows relations: f (e;, e;),

4) an optional set of pairwise temporal constraints:

t(ej, i),
5) an optional set of pairwise semantic constraints:
s(ej, e;),
where ¢;,e; € Cg. Let Acomp be a subset of Cg such that
Acomp(ej, e;) = Cg \ (ejv e;).

Now that we have defined all the relations of an IoT system,
we can interpret those with event calculus. As SEC/DEC
defines in its fundamental predicate logic, relations that iden-
tify time dependent properties of a system constitute the
domain-specific fluents for that system. Thus, the relations
defined for an MSC are fluents of CoAP-based [oT system.
We can tailor those in order to represent any combinations
of complex relations between event traces. By using the
predicates of Table-1 we can express the relations of MSC as

filej, e;)) = Happens(ej, tj) N Happens(e;, t;)
A —Happens(ey, t¢), (7)

where e € Acomp(ej, €;) for (t; < 1), (tx < 1), and (#; < 1)).
Note that this is an immediately follows relation defined over
context Cg, thus only those events ex € Acomp(ej, €;) can
cause this relation to fail. It is important to note that the inves-
tigation for fi(e;, e;) begins with occurrence of e;, therefore
Happens(e;, t;) sets a precondition for f;(ej, e;). Rooting on
that precondition, —f;(e;j, ¢;) can be expressed as

—filej, ei) = filek, ei)) V f(ei, €)) (8)

where ey € Acomp(ej, €;). Eq.-8 states that f;(e;, ;) fails iff e;
is followed by an event ey € Acomp(ej, €;) or e; follows e;.
Eq.-8 can be elaborated in event calculus terms by expanding
fi’s asin Eq.7

Happens(ex, 1)
A Happens(e;, t;)

—fi(ej, e)) = A —Happens(ej, t;j), if Conda ©)]
Happens(e;, 1))

A Happens(e;, t;), if Condp,

where Condy = {ex € Acomp(ej, e} Nti <ti) N (x <
) N (i < tj),and Condg = t; > t;. Eq.9 states that e;
does not immediately follows e; iff either e; happens before
e; or ex € Acomp(ej, e;) happens immediately after e;.

If we visit the sample MSC in Fig.4 again, we can elicit
all the event traces that cause the sample scenario to either
succeed or fail as in Table-2. The event relations appearing
in Success and Failure rows of the table identifies runtime
monitors for the MSC in Fig.4. So, we can elaborate those

13507

IEEE Access

K. Incki, I. Ari: Novel Runtime Verification Solution for loT Systems

Event Calculus

1. Generate MSC diagram for each service
composition

k. 4
2. ldentify semantic fluents b/w events on
MsC

3. Identify temporal constraints b/w events
on MSC

b

4. Extract linearisation of each MSC

b 4
5. Express event calculus predicates for
Success and Failure

10. Deploy Metwork Sniffer for CoAP events

FIGURE 5. RV process with complex-event processing.

TABLE 2. Context and event verdicts for Fig.4.

Verdict EPL Statement for RV

Cg {e1,e2,e3,e4}

€o e1

Success fi(ez,e1) A fi(es,e2) A fi(ea, e3)

Failure fi(es,e1) V fi(ea,e1) V filea,e2) V filer,e2) V

fi(es,ea) V fi(ea,es)

event relations as in Eq.7 and Eq.9 so that we get a repre-
sentation of runtime monitors in event calculus. In the next
section, we are going to explain how we can translate those
basic event calculus predicates and constraints into complex
event processing statements.

VI. EVENT PROCESSING FOR RUNTIME VERIFICATION
RV of a system requires representing system specifications
of a SUT in terms of monitoring framework. Afterwards,
the monitoring framework observes the behavior of the SUT
to conclude with particular verdicts of Success, Fail or Incon-
clusive for certain constraints. In this section, we present a
transformation mechanism that will facilitate to develop EPL
statements from EC relations defined in Section-V, and a
reference architecture that employs the proposed framework.
In order to systematically define how an event processing
solution can be tailored for runtime verification, we follow a
series of consecutive transformation steps. Fig.5 summarizes
the process that we defined for generating an event processing
solution for runtime verification. We have developed our
reference architecture incorporating Esper CEP engine by
following those steps process. However, one can tailor the

13508

. |

Complex-Event Processing
]

ki

6. Identify Event Sources for each MSC

k. 4

7. Define Context for each MSC
I

L

9. Determine
“Failure” complex-
event pattern(s) as

EPL statements

h
8. Determine
“Success”
complex-event
pattem(s) as EPL
statements

swiy ubisag

11. Monitor Complex Events for
Success/Failure

WUy

process for event processing engines other than Esper by
customizing the steps 7 through 11.

CEP engines that we use should allow us to define a context
for each service, and help us express complex-event relations
for success and failure verdicts. We can achieve those goals
by employing certain constructs in Esper CEP engine as
listed in Listing.1. Esper provides a notion of context, which
enables us to define a set of circumstances or facts that
surround a particular event [9].

Create a Context per e0 of each MSC
Insert each MSC event into Variant Stream
;| Apply MATCH_RECOGNIZE pattern on Variant
Stream to observe Success
s| Apply EVERY pattern on Variant Stream
to observe Failure
7| End context at last event or timeout

Listing 1. Event processing steps.

A context takes a cloud of events and classifies them into
one or more event sets that are called context partitions.
An event processing operation that is associated with a con-
text operates on each of these context partitions indepen-
dently. By this notion of context, we can analyze the events
associated with a particular MSC diagram under a certain
context partition. The context partition would be started with
eo for each Cyssc (Table-2). The context can be terminated
by receiving of an end event or a timeout value defined for
the particular MSC behavior. The timeout value can be set as
the maximum time it takes between the starting event and the
finishing event for the MSC under test.

VOLUME 6, 2018

K. Incki, 1. Ari: Novel Runtime Verification Solution for loT Systems

IEEE Access

Moreover, the CoAP Events sniffed from the network
should be filtered such that only the context events are pro-
cessed at runtime monitors (i.e., EPL statements). There-
fore, we utilize another construct of Esper, variant stream
(RVSpec) for maintaining an event stream that consists only
of those defined under the context Cysc. Remember that,
in order to conclude with a Success verdict all the event
correlations must be observed on the runtime event trace.
Thus, we use match_recognize pattern processing construct
of Esper. The [pattern element of match_recognize construct
enables us to indicate an exact trace of events, each of which
immediately follows each other. Let us remind that the Fail
can occur whenever any of the immediately follows relations
(Eq.-9) is violated. Thus, we need a runtime monitor for each
not immediately follows relation (—f;).

create context CtxSample

initiated by pattern

5| [every—distinct(startevent.srcld, startevent.dstld,
startevent .mld)

startevent = CoAPEvent(srcld = el.id)] @inclusive

s| terminated by pattern

[endevent = CoAPEvent(srcld = startevent.destld) or
timer:interval (T)];

context CtxSample
create variant schema RVSpec as CoAPEvent;

context CtxSample

insert into RVSpec

13| select % from CoAPEvent where srcld = el.id or srcld
= e2.id or srcld = e3.id or srcld = e4.id;

Listing 2. EPL statements for context-based RV.

Let us now give an example on how to write the EPL
statements for an MSC by writing those for Fig.4. Code
listing in List.2 summarizes the basic EPL statement that we
use for determining a Success verdict at runtime. The context
is initiated for each distinct service invocation and terminated
when receiving the terminating event or a timeout 7' passes.
Notice that each distinct service invocation is uniquely iden-
tified by the triplet (srcld, destld, msgld) because of CoAP
features. As you can see from the code listing between lines
13 through 16, we insert only those events that are associated
with the context into the variant stream. The code listing
in List.3 provides an example of how to detect a pattern
of events that observe the visual order as in MSC of Fig.4.
Note that we tag each EPL statement with @ Name(..) so that
we can distinguish visually the outputs of each statement.
FAIL statement returns the ending event for the context. If the
context ends before the end event arrives, then FAIL statement
returns a nullpointer, thereby we can deduce that the run-
time monitor yielded Fail. However, if SUCCESS statement
returns a count of 1, then it means that the runtime monitor
yielded a Success verdict. FAIL statement is the complement
of SUCCESS statement in List.3, so it’s not a comprehensive
Fail monitoring statement.

The code listing in List.4 presents a case of Fail verdict
as an EPL statement. The every — operator allows us to
represent custom event patterns that follow each other. We can

VOLUME 6, 2018

@Name("FAIL’)

context CtxSample

;| select context.endevent from RVSpec.std:lastevent
output snapshot when terminated;

@Name(*SUCCESS *)

context CtxSample

select count(x) as SuccessVerdict from RVSpec
ol match_recognize (

measures A.srcld as ald

pattern (A B C)

define
13 A as A.srcld = el.id,
B as B.srcld = e2.id,
C as C.srcld = e3.id
) output when terminated and context.endevent.srcld
= e4.id;

Listing 3. EPL statements for success verdict.

@Name("FAIL—1")

2| context CtxSample

select count(x) as FailOneVerdict from pattern [

every

rspl = RVSpec(srcld= el.id) —> ((rsp2=RVSpec(srcld =
e3.id) or

6 rsp2 = RVSpec(srcld = e4.id)) and not rsp3 = RVSpec(

srcld = e2.id))

=

1

output when terminated;

Listing 4. EPL statements for fail verdict.

filter those events according to certain properties, such as
event id. The FAIL — 1 statement in List.4 states that when
an event with id el is followed by an event with id 3 or an
event with id e4 and not by an event with id e2, then return
the count for that occasion. So, for each context, if that count
equals to 1, then this is a case for yielding a Fail verdict.
Similar statements can be written for other failure situations
easily.

Fig.6 shows how the reference architecture was designed
in order to reveal failure cases from simple coap events.
The detailed design of CoAP Sniffer is provided in [6].
CoAP Sniffer listens to the IPv6 network for any CoAP
communication. As soon as it captures a new CoAP mes-
sage, it is parsed into an event representation in terms of
SimpleCoAPEvent Class. Each SimpleCoAPEvent instance
represents a simple event, which is later injected into the CEP
engine (e.g., Esper). The EPL statements that are developed
specifically for the constraints of SUT processes those simple
events, consequently resulting in verdicts of Success or Fail-
ure in terms of complex events (i.e., red events in the
figure). Each instance of SimpleCoapEvent instance is
uniquely identified with an eventld, and instantiated with
a timestamp value indicating occurrence of event, a destld
for destination identification, and a srcld for identifying the
source of the message.

The loosely-coupled design approach, thanks to RESTful-
like CoAP, in the reference architecture (Fig.6) enables us
to modify the building blocks of the architecture without
compromising the integrity. The Esper CEP engine, which is
implemented in Java, can be deployed on any platform that
supports Java Virtual Machine (JVM).

13509

IEEE Access

K. Incki, I. Ari: Novel Runtime Verification Solution for loT Systems

Sniffer

Listens
__ COAP Packages |
—
Internet of
Things
{il

Generates ' e
Simple
Events
/]]/
Simple Events é{:&; e.* é}
a] '@
DemfmjflEmnfs ------- CEP-----
(O RO RU

Complex Event:

Figure. 6. CEP assisted runtime verification reference architecture.

VII. EXPERIMENT

A. IMPLEMENTATION

We have used a prominent real-time operating system that
is particularly designed for resource constrained embedded
devices, Contiki [22]. The WTRP is implemented on each
mote of type Zolertia-Z1 according to [12]. The simulation
in Fig.1 is run on Cooja [14]. The configuration of the com-
puter that we performed the simulation is Intel i7-6700HQ
CPU that runs at 2.6GHz with 16GB of RAM.

The simulation environment consists of 5 motes, each of
which is uniquely identified with an increasing value of mode
ids, and a border router that is used for providing connectivity
over IPv6 network. Each mote (m;) transmits a broadcast
message to the network when it owns the token and then
passes the token on to the next mote (71;) with id that satisfies
m; —m; = 1 relation.

CoAP messages are passively captured by a sniffer as
described in [6]. Captured messages are converted to Sim-
pleCoapEvent instances and injected into Esper CEP engine.
A failure case is fictitiously generated by adding a random
seeded error function in WTRP algorithms of motes, which
randomly causes a mote to tranmit a message without owning
the token. The failure situation is diagnosed by monitoring
for a sequence of messages that violate Eq.-9. This condition
renders the predicate function OO(Diff;t) to become False.
The mote that randomly transmits an erroneous message also
outputs an appropriate message to indicate the error situation
in Cooja simulation environment.

Fig.7 demonstrates how the EPL statements are organized
in order to yield a verdict about the order of ownership
relation. Each simple event is decorated with event id and
time stamp. After that, all token events are maintained in
an ordered event window, which is an Esper EPL specific
element that enables managing events in data views. The
order of ownership relation is later enforced on that window.
Note that, order of event occurrence might differ from order

13510

Srep-1 S'Icp 3
Insert Insert into Ordered
TokenWin TokenWindow TokenWindow
1 y
Order by
Time of — ":Id
Oxcurrence TolnEveat
Step-2 - =
Out of i De“-’c‘ e
Order T(n) - T(n-1)
I=1]

Step-4

Figure. 7. EPL statement flow for Fig.4.

of event arrival, thus, we must make sure that events are
processed with respect to order of event occurrence. That’s
why we order the token window with respect to order of event
occurrence data.

TABLE 3. Predicates and meanings for WTRP.

Predicate
TO(m,t)
DifiTO(my, t;), TO(my, t;))

Meaning

m owns the token at ¢

TO mote id difference between suc-
cessive messages from m; and mj,
True if 1, False otherwise

Diff predicate holds at ¢

OO(Diff, 1)

The predicates and corresponding meanings for WTRP are
given in Table-3. Diff (m;, m;) is a predicate that is assigned a
boolean value depending on the mote id difference between
two consecutive token events (i.e., True if 1, False otherwise).
Diff is an example of a domain-specific constraint s(e;, e;)
as we defined in Section-V-B. OO(Diff;t) is a predicate func-
tion that determines whether or not the order of ownership
relations is preserved during successive transmissions at any
time ¢. Thus, having a OO(Diff ,t) # 1 at time ¢ indicates

VOLUME 6, 2018

K. Incki, 1. Ari: Novel Runtime Verification Solution for loT Systems

IEEE Access

@Name(*SUCCESS ")

2| context CtxSample

select count(x) as SuccessVerdict from RVSpec

match_recognize

measures A.mld as a_Id

pattern (A B C D)

define

8 A as A.moteld

B as B.moteld moteld + 1,

10 C as C.moteld moteld + 1,

D as D.moteld = C.moteld + 1

2|) output when terminated and context.endevent.moteld
= m5;

ml,
A.
B.

Listing 5. EPL statement for success in WTRP.

@Name("FAIL—1")

2| context CtxSample

select count(x) as FailOneVerdict from pattern

[every

rspl = RVSpec (srcld=2) —> ((rsp2=RVSpec (srcld=3)
or rsp2=RVSpec (srcld=4)) and not rsp3=RVSpec (
srcld=6))

] output when terminated;

Listing 6. EPL statement for failure in WTRP.

a failure case. As explained in [6] OO relation must satisfy
HoldAt(0O0, t)Vt.

The EPL statements in List.3 can be tailored to reflect
event properties specific to the WTRP case, but we can also
represent those new predicates (i.e., semantic relations) in
EPL statements as shown in List.5. As for the Fuil cases,
we can use the EPL statements shown in List.6, as well as
those in List.4. Note that the Diff (m;, m;) predicate indicates
that m; —m; = 1 for any consecutive TO(m;, t;) and TO(m;, t;)
predicates where 1; > #; A iﬂtkm < # < tj. Therefore,
the difference between mote ids can also be expressed as
mj = m; + 1.

B. RESULTS AND DISCUSSION

The results of simulation are attained by observing the num-
ber of errors logged in Cooja simulation environment and
the number of errors captured in Esper CEP engine. The
performance of the solution is evaluated by considering the
percentage of errors that are successfully captured in Esper.

TABLE 4. Experiment results.

Tr.Period # of CjFaults # of EspFaults Performance
20 117 117 100
15 195 193 98.97
10 363 363 100
5 568 568 100
3 993 991 99.79

Table-4 shows the results for various communication sce-
narios. The scenarios are tailored such that we can observe the
performance of our solution approach on different network
loads, consequently with increasing numbers of events and
errors. In order to achieve such results, we ran each simulation
for 10 minutes, in each of which each mote had possessed the
token for periods of 3, 5, 10, 15, and 20 seconds, so it can
transmit messages. As seen on the Table-4, the performance

VOLUME 6, 2018

of our verification approach reaches almost 100% success
rate. However, there are two cases where we could not find
all the errors in an event trace. We believe that duplicate
messages that might occur due to network condition can cause
such deviations.

VIil. CONCLUSION

The event calculus (EC) for CoAP-based IoT system interac-
tions is provided in this paper. The EC is a tool for specifying
requirements of an IoT system in terms of its expected behav-
ior as sequence of events that occur due to messaging model
of CoAP. We further presented a transformation method for
mapping EC algebra into Esper EPL statements. The case
study demonstrated that once a domain-specific EC algebra is
developed, it’s straightforward to generate runtime monitors
in terms of EPL statements so as to utilize a complex-event
processing engine for runtime verification. The EC also will
allow us to derive a protocol-specific metamodel that can be
used in representing IoT systems with modeling languages
such as UML. The MSC approach presented in this paper lays
the foundation for our ongoing and future work on model-
based testing of [oT systems. We believe that RV verification
scenarios including the lower-layer IoT network protocols
(i.e. a multi-layer MSC approach) will be of interest to the
community.

REFERENCES

[1] R. Medhat, B. Bonakdarpour, D. Kumar, and S. Fischmeister, “Runtime
monitoring of cyber-physical systems under timing and memory con-
straints,” ACM Trans. Embedded Comput. Syst., vol. 14, no. 4, 2015,
Art. no. 79.

[2] S. Colin and L. Mariani, “Run-time verication,” in Model-Based

Testing of Reactive Systems: Advanced Lectures. Cham, Switzerland:

Springer-Verlag, 2005.

E. T. Mueller, “Automating commonsense reasoning using the event cal-

culus,” Commun. ACM, vol. 52, no. 1, pp. 113-117, 2009.

[4] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, ‘“Towards secu-

rity monitoring patterns,” in Proc. 22nd ACM Annu. Symp. Appl. Comput.,

2007, pp. 1518-1525.

W. Gaaloul, S. Bhiri, and M. Rouached, “Event-based design and runtime

verification of composite service transactional behavior,” IEEE Trans.

Serv. Comput., vol. 3, no. 1, pp. 32-45, Mar. 2010.

[6] K. Incki, I. Ari, and H. Sozer, “Runtime verification of IoT system using
complex-event processing,” in Proc. IEEE 14th Int. Conf. Netw., Sens.,
Control (ICNSC), May 2017, pp. 625-630.

[7] N. Chen, C. Viho, A. Baire, X. Huang, and J. Zha, “Ensuring interoper-

ability for the Internet of Things: Experience with CoAP protocol testing,”

Automatika, vol. 54, no. 4, pp. 448-458, 2013.

Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application

Protocol (CoAP), Standard IETF RFC7272, 2004.

EsperTech: Complex Event Processing Streaming Analytics. Accessed:

Aug. 28, 2017. [Online]. Available: http://www.espertech.com

[10] K. Yu, Z. Chen, and W. Dong, “A predictive runtime verification frame-
work for cyber-physical systems,” in Proc. IEEE 8th Int. Conf. Softw.
Security Rel.-Companion, Jul. 2014, pp. 223-227.

[11] A. Kane, “Runtime monitoring for safety-critical embedded systems,”
Ph.D. dissertation, Dept. Elect. Comput. Eng., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 2015.

[12] F Wei, A. Men, X. Zhang, and H. Xiao, “A modified wireless token
ring protocol for wireless sensor network,” in Proc. IEEE 2nd Int. Conf.
Consum. Electron., Commun. Netw. (CECNet), Apr. 2012, pp. 795-799.

[13] L.Lamport, R. Shostak, and M. Pease, ‘““The Byzantine generals problem,”
ACM Trans. Programm. Lang. Syst., vol. 4, no. 3, pp. 382-401, Jul. 1982.

[14] F Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, ““Cross-level
sensor network simulation with Cooja,” in Proc. Ist IEEE Int. Workshop
Pract. Issues Building Sens. Netw. Appl. (SenseApp), Tampa, FL, USA,
Nov. 2006, pp. 641-648.

3

—

[5

—

[8

—

9

—

13511

IEEE Access

K. Incki, I. Ari: Novel Runtime Verification Solution for loT Systems

[15]

[16]
[17]

[18]
[19]

[20]

[21]

[22]

L. Richardson and S. Ruby, RESTful Web Services. Sebastopol, CA, USA:
O’Reilly Media, 2007.

Message Sequence Chart (MSC), Standard Rec. ITU-T Z.120, 2011.

E. T. Muller, “Event calculus,” Handbook of Knowledge Representation.
Amsterdam, The Netherlands: Elsevier, 2008, pp. 671-708.

B. Mitchell, “Resolving race conditions in asynchronous partial order
scenarios,” IEEE Trans. Softw. Eng., vol.31,n0.9, pp. 767-784, Sep. 2005.
R. Alur, K. Etessami, and M. Yannakakis, ““Inference of message sequence
charts,” IEEE Trans. Softw. Eng., vol. 29, no. 7, pp. 623-633, Jul. 2003.
H. Dan and R. M. Hierons, ““Conformance Testing from Message Sequence
Charts,” 2011 Fourth IEEE Int. Conf. Softw. Test., Verification Validation,
Berlin, 2011, pp. 279-288.

F. Belli, M. Beyazit, and A. Memon, “Testing is an event-centric activity,”
in Proc. IEEE 6th Int. Conf. Softw. Security Rel. Companion, Gaithersburg,
MD, USA, Jun. 2012, pp. 198-206.

A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and
flexible operating system for tiny networked sensors,” in Proc. IEEE
Workshop Embedded Netw. Sens. (Emnets-I), Tampa, FL, USA, Nov. 2004,
pp. 455-462.

KORAY INCKI received the B.Sc. degree in elec-
trical and electronics engineering from Cukurova
University in 1997 and the M.Sc. degree in com-
puter networks from the University of Southern
California in 2000. He is currently pursuing the
Ph.D. degree in runtime verification of embed-
ded systems with the Computer Science Depart-
ment, Ozyegin University, under the supervision of
Dr. Ari. He has been a software engineer, a senior
software engineer, a project manager, and the

13512

director in various industries since 2001. After starting his career as a
Software Engineer in Silicon Valley, he worked in several indigenous tech-
nology research and development projects for the Turkish Defense Indus-
try at TUBITAK. His research interests include software verification and
validation, model-based testing, complex-event processing, service-oriented
architectures, data stream processing, Internet of Things, cloud comput-
ing, software engineering, safety-critical systems, and real-time operating
systems.

ISMAIL ARI received the Ph.D. degree from the
Computer Science Department, University of Cal-
ifornia at Santa Cruz in 2004. From 2004 to 2009,
he was a Researcher with Hewlett Packard Labs,
Silicon Valley, CA, USA. His research interests
include cloud computing, service-oriented archi-
tectures, data mining, data stream processing,
complex event processing, and networked stor-
age systems. He has international publications and
U.S. patents related to these topics. In 2009, he
joined Ozyegin University. He is a member of ACM and a founding member
of the IBM Cloud Academy. He has received several awards and research
grants, including the IBM Top Faculty Contributor Award, the EU Marie
Curie International Reintegration Grant (IRG), and the TUBITAK (Turkish
NSF) National Young Researcher Career Award.

VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	RUNNING EXAMPLE
	BACKGROUND
	CoAP-BASED IoT SYSTEMS
	EVENT CALCULUS REVISITED
	COMPLEX-EVENT PROCESSING

	IoT REDEFINED: AN EVENT CALCULUS FOR SYSTEM SPECIFICATION
	REPRESENTING IoT WITH EVENTS
	EVENT CALCULUS FOR CoAP

	EVENT PROCESSING FOR RUNTIME VERIFICATION
	EXPERIMENT
	IMPLEMENTATION
	RESULTS AND DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	KORAY INCKI
	director
	ISMAIL ARI

